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Genetic Programming

Evolutionary computation
 Non-deterministic search algorithms
 Based on aspects of Darwin's theory of evolution
 1970s

Alan Turing (1948)
 Idea of artificial evolution

Genetic programming (GP)
 Automatic evolution of computer programs
 Generating random programs (initial population)
 Evaluation of each program in population (determining fitness)
 Creating of new generation (using recombination, mutation)
 Till searched program is found
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Variants of GP

Tree-Based GP
 LISP expressions
 Unique path between any pair of nodes

Gramatical evolution (GE)
 Grammar defined using Backus-Naur form (BNF)

Push GP
 Lee Spector – stack-based computer language Push

Cartesian Graph-Based GP 
 Graphs allow more than one path between any pair of nodes
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Cartesian Genetic Programming

Grew from a method of evolving digital circuits (Miller et al., 1997)

Programs represented as directed acyclic graphs

Applications: 
 Self-modiffying digital circuits
 Evolution of Electronic Circuits
 Image processing
 Artificial art and creativity 
 Medical applications
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Cartesian Program (CP)

Directed acyclic graph
 More general than tree - two directed paths from a single 

starting node meet back at the same ending node

Two-dimensional grid of computation nodes
 Coding nodes, non-coding nodes
 Similar to digital circuits
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Cartesian Program (CP)

A cartesian program is  a 9-tuple

P = (G, n
i
, n

o
, n

n
, F, n

f
, n

r
, n

c
, l)

where
G represents genotype as a sequence of integers
n
i
 number of program inputs

n
o
 number of program outputs

n
n

number of node input connections

F set of node functions
n
f
, number of node functions

n
r
 number of rows

n
c
 number of columns

l levels back parameter (how many columns of cells may 
have their outputs connected to a node in current column)
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Cartesian Program (CP)

Let P = (G, n
i
, n

o
, n

n
, F, n

f
, n

r
, n

c
, l) be a cartesian program, where

G = (0, 0, 1, 0, 0, 1, 0, 0, 3, 2, 2, 2, 3, 1, 4, 3, 0, 3, 3, 6, 2, 3, 6, 1, 8), 
n
i
 = 1, n

o
 = 1, n

n
 = 2, F = {+, -, *, /}, n

f
 = 4, n

r
 = 2, n

c
 = 4, l = 4:

y = x2 + x3
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Cartesian Genetic Programming

Training data set
 CGP training data set (TDS) is a set of n-tuples, where n = n

i
 + n

o
.

 Cardinality of TDS in CGP typically goes from tens to ten 
thousands in dependence on application domain.

 A one-bit full adder TDS has 8 5-tuples
 Symbolic regression f(x) with 200 training data points has 200 2-

tuples

CP fitness evaluation
 A fitness evaluation is an assessment used to determine current 

fitness level of CP.
 CP fitness evaluation includes runing CP for every n-tuple in TDS 

(interpretation of CP). 
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CP Interpretation – Recursive Descent Interpretation
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CP – Sequential Interpretation
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CP – Recursive Descent Active Nodes Selection 
and Sequential Interpretation

 Active nodes selected using recursive descent
 CP sequentialy interpreted for every element in TDS, but only active 

nodes
 + every active node is evaluated exactly once
 + inactive nodes are not evaluated
 - additional active nodes selection
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Evolution of CGP genotypes - Mutation
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Mutation
 one-point mutation
 an allele at randomly chosen gene is changed to another valid 

random value
 mutation rate μ

r
 is a percentage of total number of genes L

g
 in the 

genotype. Number of mutations per genotype is then defined
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Evolution of CGP genotypes

1) Randomly generate CPs in initial population

2) Select the fittest individual (parent) in population

3) Mutate the parent and generate offsprings (next generation)

4) If solution is not found or the generation limit is not reached 
continue with 2) 
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Thank you for your attention
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