
PARALLEL PARSING BASED UPON
GENERAL MULTIGENERATIVE
GRAMMAR SYSTEMS

Zbyněk Sopuch
TID 2011
Supervisor: Alexander Meduna

Contents

 Multigenerative grammar systems

 Classification

 Synchronization

 Modes of n-languages

 Independent grammar parsing

 Keeping synchronization during parsing

 Parsing with simulation

 Parsing without simulation

 Issues during parsing of modes

Zbyněk Sopuch, TID 2011 2

Multigenerative grammar
system (MGS)

 n-generative grammar system:

(n+1)-tuple  = (G1 , G2 , … , Gn , Q), where:

 Gi … i = 1..n, a context free grammar

 Q … a synchronization component

 The number of grammars can be reduce to 2
without any effect on a generative power

Zbyněk Sopuch, TID 2011 3

Classification of MGS

 Canonical multigenerative grammar systems

 Gi is a LL-grammar

 General multigenerative grammar systems

 Gi is a classic context free grammar

 Hybrid multigenerative grammar systems

 Gi can be a classic CFG or a LL-grammar, but the
type of each must be known

Zbyněk Sopuch, TID 2011 4

Synchronization of MGS

 Nonterminal-synchronized (n-MGN)
 Q is set of n-tuples of the form:

(A1, …, An): AiNi

 Rule-synchronized (n-MGR)
 Q is set of n-tuples of the form:

(p1, …, pn): pi Pi

 The generative power of n-MGR and n-MGN is
the same (can be automatically convert).

Zbyněk Sopuch, TID 2011 5

n-language of n-MGN

 n-string  = (x1, x2, …, xn), where xi (NiTi)*

  ‘ and * ‘ in the common way

  = (u1A1v1, u2A2v2, …, unAnvn)

 ‘ = (u1x1v1, u2x2v2, …, unxnvn)

 pi: Ai → xi Pi, where (A1, A2, …, An) Q

 If n-MGN , then n-L() = {(w1, w2, …, wn),:
(S1, S 2, …, S n) * (w1, w2, …, wn)}

Zbyněk Sopuch, TID 2011 6

Example of n-MGN

  = (G1, G2, Q) is n-MGN, where:

 G1 = ({S1, A1}, {a, b, c},
{S1 → aS1, S1 → aA1, A1 → bA1c, A1 → bc}, S1)

 G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2)

 Q = {(S1, S2), (A1, A2)}

 L1(G1) = {anbmcm | n > 0, m > 0}

 L2(G2) = {dn | n > 0}

 n-language n-L() = {(anbncn, dn) | n > 0}

Zbyněk Sopuch, TID 2011 7

  = (G1, G2, Q) is n-MGN, where:

 G1 = ({S1, A1}, {a, b, c},
{S1 → aS1, S1 → aA1, A1 → bA1c, A1 → bc}, S1)

 G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2)

 Q = {(S1, S2), (A1, A2)}

Zbyněk Sopuch, TID 2011 8

(S1, S2) Q

(S1, S2) Q

(A1, A2) Q

(A1, A2) Q

S

a S

a a A

a a b A c

S

S A

A A

d A

(A1, A2) Qa a b b c c d d

Example of n-MGR

  = (G1, G2, Q) is n-MGR, where:

 G1 = ({S1, A1}, {a, b, c},
{1: S1 → aS1, 2: S1 → aA1, 3: A1 → bA1c, 4: A1 → bc},
S1)

 G2 = ({S2, A2}, {d},
{1: S2 → S2A2, 2: S2 → A2, 3: A2 → d}, S2)

 Q = {(1, 1), (2, 2), (3, 3), (4, 3)}

 n-MGN: Q = {(S1, S2), (A1, A2)}

 n-language n-L() = {(anbncn, dn) | n > 0}

Zbyněk Sopuch, TID 2011 9

Modes of n-language

 n-language  language: n-ary operation 

L = {w1, w2, …, wn | (w1, w2, …, wn)  n-L()}

 Union:

 Lunion() = {w1,w2,…,wn | (w1, w2, …, wn)  n-L()}

 Concatenation:

 Lconc() = {w1w2…wn | (w1, w2, …, wn)  n-L()}

 First component:

 Lfirst() = {w1 | (w1, w2, …, wn)  n-L()}

Zbyněk Sopuch, TID 2011 10

Example of modes

 n-L() = {(anbncn, dn) | n > 0}

 Union:

 Lunion() = {(anbncn) | n > 0}  {(dn) | n > 0}

 Concatenation:

 Lconc() = {(anbncndn) | n > 0}

 First component:

 Lfirst() = {(anbncn) | n > 0}

 The generative power is the same.

Zbyněk Sopuch, TID 2011 11

Parsing for general MGR

  = (G1 , G2 , … , Gn , Q)

 n-language  n-string  = (x1, x2, …, xn)

 x1G1, x2G2, x3G3, …

 The strings can be assigned to appropriate
grammars

 If the strings are parsed independently like CFG:
 If the parsing of at least one fails, whole parsing fails

 But if all parsing succeed, the whole parsing can fail

Zbyněk Sopuch, TID 2011 12

Example of the issue in
an independent parsing
  = (G1, G2, Q) is n-MGN, where:

 G1 = ({S1, A1}, {a, b, c},
{S1 → aS1, S1 → aA1, A1 → bA1c, A1 → bc}, S1)

 G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2)
 Q = {(S1, S2), (A1, A2)}

 L1(G1) = {anbmcm}, L2(G2) = {dn}
 n-language n-L() = {(anbncn, dn)}

 aabbbccc L1, dd L2, (aabbbccc, dd)  n-L()
 Missing a synchronization which is forbidding some

derivations

Zbyněk Sopuch, TID 2011 13

Inclusion of synchronization

 After the parsing phase

 Independent parsing of CFGs with back
verification of synchronization

 Useful for the modes first component and union

 During the parsing phase

 Inclusion of synchronization to process of parsing

 Can be used for the mode concatenation

Zbyněk Sopuch, TID 2011 14

Back verification of
synchronization

Zbyněk Sopuch, TID 2011 15

Figure 1: Back verification of synchronization.

Issues of back verification

 Different parse trees for one string
 The helpful limitation:

There must be tree of the same height for each string.

 Halting problem (cycle in a parsing)
 Can be partly solved: if there is at least one grammar

with limited number of parse trees (without cycle or
deterministic…), we can use it for generating of all
possible heights of trees => all other trees have to
have the same height as one of its parse tree

 My solution in my Master‘s thesis was based on using
a CYK normal form, but it was connected with
decrease of generative power, because we can‘t
generate strings of some length with binary rules

Zbyněk Sopuch, TID 2011 16

Issue of slowing rules

Figure 2: Two different trees for the same string

Zbyněk Sopuch, TID 2011 17

Involving a synchronization
during the parsing phase

Figure 3: Controlling of synchronization during
the parsing phase

Zbyněk Sopuch, TID 2011 18

Issues of „in-the-middle“
verification

 No mathematical prove – yet

 Significant reduction in the number of
parsing trees, but not only one tree

 Cycles in the parsing are still possible

 All part of n-string are necessary

 It‘s an issue with modes of n-languages

Zbyněk Sopuch, TID 2011 19

Issues in the parsing of
modes of n-languages

 The biggest issues is lost of context between
the grammars and strings from n-strings

 Except of the mode of the first component, we
don‘t know which grammar generated that string

 Except of the mode of concatenation, there is only
one string from n-string to parse

 => it‘s necessary to use simulation

Zbyněk Sopuch, TID 2011 20

Parsing of n-languages in
the mode of first component

Zbyněk Sopuch, TID 2011 21

Figure 4: Using simulation to verification
in the mode of the first component

Parsing with other modes

 Union: Almost the same as the mode of the
first component

 there is unknown which grammar is the right one
=> all grammars have to be tested

 Concatenation: Each string have to be spited
into the n substrings and tested like n-string
 there are many possibilities how to split

Zbyněk Sopuch, TID 2011 22

Conclusion

 There is a lot of issues and no formal proves

 It‘s not deterministic => less effective

 The number of possible parse trees can be
significantly reduced, but not to only one

Zbyněk Sopuch, TID 2011 23

References

1. Čermák, M.: Multi–Languages and Systems
of Formal Models. Brno, FIT BUT, 2010

2. Lukáš, R., Meduna, A.: Multigenerative
grammar systems. Brno, FIT BUT, 2006

3. Meduna, A., Sopuch, Z.: Parallel
multigenerative CYK-based parsing. Brno, FIT
BUT, 2011

Zbyněk Sopuch, TID 2011 24

Questions?

THANK YOU FOR YOUR ATTENTIONS

Zbyněk Sopuch, TID 2011 25

