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Multigenerative grammar 
system (MGS)

 n-generative grammar system:

(n+1)-tuple  = ( G1 , G2 , … , Gn , Q ), where:

 Gi … i = 1..n, a context free grammar

 Q … a synchronization component

 The number of grammars can be reduce to 2 
without any effect on a generative power
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Classification of MGS

 Canonical multigenerative grammar systems

 Gi is a LL-grammar

 General multigenerative grammar systems

 Gi is a classic context free grammar

 Hybrid multigenerative grammar systems

 Gi can be a classic CFG or a LL-grammar, but the 
type of each must be known
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Synchronization of MGS

 Nonterminal-synchronized (n-MGN)
 Q is set of n-tuples of the form:

(A1, …, An): AiNi

 Rule-synchronized (n-MGR)
 Q is set of n-tuples of the form:

(p1, …, pn): pi Pi

 The generative power of n-MGR and n-MGN is 
the same (can be automatically convert).
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n-language of n-MGN

 n-string  = (x1, x2, …, xn), where xi (NiTi)*

  ‘  and * ‘ in the common way

  = (u1A1v1, u2A2v2, …, unAnvn)

 ‘ = (u1x1v1, u2x2v2, …, unxnvn)

 pi: Ai → xi Pi, where (A1, A2, …, An) Q

 If n-MGN , then n-L() = {(w1, w2, …, wn),: 
(S1, S 2, …, S n) * (w1, w2, …, wn)}
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Example of n-MGN

  = (G1, G2, Q) is n-MGN, where:

 G1 = ({S1, A1}, {a, b, c}, 
{S1 → aS1, S1 → aA1, A1 → bA1c, A1 → bc}, S1)

 G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2)

 Q = {(S1, S2), (A1, A2)}

 L1(G1) = {anbmcm | n > 0, m > 0}

 L2(G2) = {dn | n > 0}

 n-language n-L() = {(anbncn, dn) | n > 0}
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Example of n-MGR

  = (G1, G2, Q) is n-MGR, where:

 G1 = ({S1, A1}, {a, b, c}, 
{1: S1 → aS1, 2: S1 → aA1, 3: A1 → bA1c, 4: A1 → bc}, 
S1)

 G2 = ({S2, A2}, {d}, 
{1: S2 → S2A2, 2: S2 → A2, 3: A2 → d}, S2)

 Q = {(1, 1), (2, 2), (3, 3), (4, 3)}

 n-MGN: Q = {(S1, S2), (A1, A2)}

 n-language n-L() = {(anbncn, dn) | n > 0}
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Modes of n-language

 n-language  language: n-ary operation 

L = {w1, w2, …, wn | (w1, w2, …, wn)  n-L()}

 Union:

 Lunion() = {w1,w2,…,wn | (w1, w2, …, wn)  n-L()}

 Concatenation:

 Lconc() = {w1w2…wn | (w1, w2, …, wn)  n-L()}

 First component:

 Lfirst() = {w1 | (w1, w2, …, wn)  n-L()}
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Example of modes

 n-L() = {(anbncn, dn) | n > 0}

 Union:

 Lunion() = {(anbncn) | n > 0}  {(dn) | n > 0}

 Concatenation:

 Lconc() = {(anbncndn) | n > 0}

 First component:

 Lfirst() = {(anbncn) | n > 0}

 The generative power is the same.

Zbyněk Sopuch, TID 2011 11



Parsing for general MGR

  = ( G1 , G2 , … , Gn , Q )

 n-language  n-string  = (x1, x2, …, xn)

 x1G1, x2G2, x3G3, …

 The strings can be assigned to appropriate 
grammars

 If the strings are parsed independently like CFG:
 If the parsing of at least one fails, whole parsing fails

 But if all parsing succeed, the whole parsing can fail
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Example of the issue in 
an independent parsing
  = (G1, G2, Q) is n-MGN, where:

 G1 = ({S1, A1}, {a, b, c}, 
{S1 → aS1, S1 → aA1, A1 → bA1c, A1 → bc}, S1)

 G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2)
 Q = {(S1, S2), (A1, A2)}

 L1(G1) = {anbmcm}, L2(G2) = {dn}
 n-language n-L() = {(anbncn, dn)}

 aabbbccc L1, dd L2, (aabbbccc, dd)  n-L()
 Missing a synchronization which is forbidding some 

derivations
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Inclusion of synchronization

 After the parsing phase

 Independent parsing of CFGs with back 
verification of synchronization

 Useful for the modes first component and union

 During the parsing phase

 Inclusion of synchronization to process of parsing

 Can be used for the mode concatenation
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Back verification of 
synchronization
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Figure 1: Back verification of synchronization.



Issues of back verification 

 Different parse trees for one string
 The helpful limitation: 

There must be tree of the same height for each string.

 Halting problem (cycle in a parsing)
 Can be partly solved: if there is at least one grammar 

with limited number of parse trees (without cycle or 
deterministic…), we can use it for generating of all 
possible heights of trees => all other trees have to 
have the same height as one of its parse tree

 My solution in my Master‘s thesis was based on using 
a CYK normal form, but it was connected with 
decrease of generative power, because we can‘t 
generate strings of some length with binary rules
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Issue of slowing rules

Figure 2: Two different trees for the same string
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Involving a synchronization 
during the parsing phase

Figure 3: Controlling of synchronization during 
the parsing phase 
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Issues of „in-the-middle“ 
verification

 No mathematical prove – yet

 Significant reduction in the number of 
parsing trees, but not only one tree

 Cycles in the parsing are still possible

 All part of n-string are necessary

 It‘s an issue with modes of n-languages
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Issues in the parsing of
modes of n-languages

 The biggest issues is lost of context between 
the grammars and strings from n-strings

 Except of the mode of the first component, we 
don‘t know which grammar generated that string

 Except of the mode of concatenation, there is only 
one string from n-string to parse

 => it‘s necessary to use simulation
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Parsing of n-languages in 
the mode of first component
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Figure 4: Using simulation to verification
in the mode of the first component



Parsing with other modes

 Union: Almost the same as the mode of the 
first component

 there is unknown which grammar is the right one
=> all grammars have to be tested

 Concatenation: Each string have to be spited 
into the n substrings and tested like n-string
 there are many possibilities how to split
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Conclusion

 There is a lot of issues and no formal proves

 It‘s not deterministic => less effective

 The number of possible parse trees can be 
significantly reduced, but not to only one
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Questions?

THANK YOU FOR YOUR ATTENTIONS

Zbyněk Sopuch, TID 2011 25


