
Genetic Improvement using Grammars

Michal Wiglasz

iwiglasz@fit.vutbr.cz

October 15, 2015

Genetic programming (GP) is a machine learning method inspired by Darwinian

evolution, which automatically generates whole programs in given programming

language. They involve a population of individuals, each representing one candi-

date program. Each program is given a fitness value, which is higher if the pro-

gram’s behaviour is closer to the desired functionality. The fitness and parent se-

lection functions represent the “survival-of-the-fittest” selection pressure known

from the nature.

Grammars are core representation structures in Computer Science. They are

widely used to represent restrictions on general domains, limiting the expressions

that may be used. They can be used to define the legal expressions of a computer

language, to impose type restrictions, or to describe constraints on interactions

within systems. As such, they can be naturally used in genetic programming.

Genetic improvement (GI) uses genetic programming to find somehow improved

version of existing human-created software. The aim of GI can be for example

better performance, lower memory requirements, bug fixing or porting code to

different platform. The source code can be used as the template for its own

improvement, in which case it is analyzed to create a special “one-sentence”

BNF grammar. In this grammar, rules correspond to single lines of source code,

conditional parts of if, else and while statements, and the initial, increment

and test parts of the for statement. The evolution is then constrained by the

grammar, which ensures that the code is always syntactically correct and that

structures like classes, functions or data structures are retained. GP modifies the

grammar by exchanging rules of the same type (for example two if conditions),

yielding syntactically valid – and hopefully better performing – program.

This work deals with method to construct BNF grammar from existing source

code and properties of the resulting grammar. It also describes the genetic pro-

gramming itself and genetic operators used to modify the grammar during the

search for improved version of the analyzed program.


