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Probabilistic Context-Free Grammar

• A probabilistic context-free grammar (PCFG; also called
stochastic CFG, SCFG) is a context-free grammar, where a
certain probability is assigned to each rule.

• Thus, some derivations become more likely than other.

Definition

A PCFG G is a quintuple G = (M,T ,R,S,P), where
• M = {N i : i = 1, . . . ,n} is a set of nonterminals
• T = {wk : k = 1, . . . ,V} is a set of terminals
• R = {N i → ζ j : ζ j ∈ (M ∪ T )∗} is a set of rules
• S = N1 is the start symbol
• P is a corresponding set of probabilities on rules such that

∀i
∑

j

P(N i → ζ j) = 1
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Probabilistic Context-Free Grammar

Notations

G Grammar (PCFG)
L(G) Language generated by grammar G
t Parse tree
{N1, . . . ,Nn} Nonterminal vocabulary
{w1, . . . ,wV} Terminal vocabulary
N1 Start symbol

w1 . . .wm Sentence to be parsed

N j
pq Nonterminal N j spans positions p through q

in string

αj(p,q) Outside probabilities
βj(p,q) Inside probabilities
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PCFG – Example

S→ NP VP 1.0
PP→ P NP 1.0
VP→ V NP 0.7
VP→ VP PP 0.3
P→ with 1.0
V→ saw 1.0
NP→ NP PP 0.4
NP→ astronomers 0.1
NP→ ears 0.18
NP→ saw 0.04
NP→ stars 0.18
NP→ telescopes 0.1

P(t1) = 1.0× 0.1× 0.7× 1.0× 0.4× 0.18× 1.0× 1.0× 0.18
= 0.0009072

with ears

stars

saw

astronomers

P1.0 NP0.18

NP0.18 PP1.0

V1.0 NP0.4

NP0.1 VP0.7

S1.0t1:
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"
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PCFG – Example

S→ NP VP 1.0
PP→ P NP 1.0
VP→ V NP 0.7
VP→ VP PP 0.3
P→ with 1.0
V→ saw 1.0
NP→ NP PP 0.4
NP→ astronomers 0.1
NP→ ears 0.18
NP→ saw 0.04
NP→ stars 0.18
NP→ telescopes 0.1

P(t2) = 1.0× 0.1× 0.3× 0.7× 1.0× 0.18× 1.0× 1.0× 0.18
= 0.0006804

with earsstarssaw
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PCFG – Example

• For the sentence

astronomers saw stars with ears,

we can construct 2 parse trees.

P(t1) = 0.0009072
P(t2) = 0.0006804

• Sentence probability:

P(w15) = P(t1) + P(t2)
P(w15) = 0.0009072 + 0.0006804
P(w15) = 0.0015876
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PCFG – Assumptions

1 Place invariance

∀k , l P(N j
k(k+c) → ζ) = P(N j

l(l+c) → ζ)

2 Context-free

P(N j
kl → ζ|anything outside k through l) = P(N j

kl → ζ)

3 Ancestor-free

P(N j
kl → ζ|any ancestor nodes outside N j

kl) = P(N j
kl → ζ)
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PCFG – Features

• Gives a probabilistic language model.
• Can give some idea of the plausibility of different parses of

ambiguous sentences.
• However, only structure is taken into account, no lexical

co-occurence.
• Good for grammar induction.

• Can be learned from positive data alone.

• Robust, able to deal with grammatical mistakes.
• In practice, PCFG shows to be a worse language model for

English than n-gram models (no lexical context).
• However, we could combine the strengths of PCFGs (sentence

structure) and n-gram models (lexical co-ocurence).
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PCFG – Questions

1 Probability of a sentence w1m according to grammar G:

P(w1m|G) = ?

2 The most likely parse for a sentence:

arg max
t

P(t |w1m,G) = ?

3 Setting rule probabilities to maximize the probability of a
sentence:

arg max
G

P(w1m|G) = ?

• We will consider grammars in Chomsky Normal Form (without
loss of generality).
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Sentence Probability

Definition
Sentence probability of a sentence w1m according to grammar G:

P(w1m|G) =
∑

t

P(w1m, t)

where t is a parse tree of the sentence.

• Trivial solution:
Find all parse trees, calculate and sum up their probabilities.

• Problem:
Exponential time complexity in general - unsuitable in practice.

• Efficient solution:
Using inside and outside probabilities.
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Inside and Outside Probabilities

Definition

• Inside probability: βj(p,q) = P(wpq |N j
pq ,G)

• Outside probability: αj(p,q) = P(w1(p−1),N
j
pq ,w(q+1)m|G)
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Inside Algorithm

• Dynamic programming algorithm based on inside probabilities:

P(w1m|G) = P(w1m|N1
1m,G) = β1(1,m)

• Calculates the inside probabilities recursively, bottom up.

1 Base case:

βj(k , k) = P(wk |N j
kk ,G) = P(N j → wk |G)

2 Induction:

wp wd wd+1 wq

N r Ns

N j

��� PPP ��� PPP

��� XXX

βj(p,q) = P(wpq |N j
pq ,G)

=
∑
r ,s

q−1∑
d=p

P(N j → N r Ns)βr (p,d)βs(d + 1,q)

Probabilistic Context-Free Grammar 15 / 32



Inside Algorithm – Example

S→ NP VP 1.0 NP→ NP PP 0.4
PP→ P NP 1.0 NP→ astronomers 0.1
VP→ V NP 0.7 NP→ ears 0.18
VP→ VP PP 0.3 NP→ saw 0.04
P→ with 1.0 NP→ stars 0.18
V→ saw 1.0 NP→ telescopes 0.1

1 2 3 4 5
1

βNP = 0.1 βS = 0.0126 βS = 0.0015876

2

βNP = 0.04 βVP = 0.126 βVP = 0.015876
βV = 1.0

3

βNP = 0.18 βNP = 0.01296

4

βP = 1.0 βPP = 0.18

5

βNP = 0.18

astronomers saw stars with ears
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Outside Algorithm

• Dynamic programming algorithm based on outside probabilities:

P(w1m|G) =
∑

j

P(w1(k−1),wk ,w(k+1)m,N
j
kk |G)

=
∑

j

P(w1(k−1),N
j
kk ,w(k+1)m|G)

×P(wk |w1(k−1),N
j
kk ,w(k+1)m,G)

=
∑

j

αj(k , k)P(N j → wk )

for any k such that 1 ≤ k ≤ m.
• Calculates the outside probabilities recursively, top down.
• Requires reference to inside probabilities.
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Outside Algorithm – Case 1

w1 . . .wp−1wp . . .wqwq+1 . . .wewe+1 . . .wm
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αj(p,q) =
∑
f ,g

m∑
e=q+1

αf (p,e)P(N f → N jNg)βg(q + 1,e)
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Outside Algorithm – Case 2

w1 . . .we−1we . . .wp−1wp . . .wqwq+1 . . .wm

N j
pqNg

e(p−1)

N f
eq

N1

�� @@ �� @@

�
�
Q
Q

�
�

�
�
�

�
�
�

�
�

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

αj(p,q) =
∑
f ,g

p−1∑
e=1

αf (e,q)P(N f → NgN j)βg(e,p − 1)
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Outside Algorithm

1 Base case:

α1(1,m) = 1
αj(1,m) = 0 for j 6= 1

2 Induction:

αj(p,q) =

∑
f ,g

m∑
e=q+1

αf (p,e)P(N f → N jNg)βg(q + 1,e)


+

∑
f ,g

p−1∑
e=1

αf (e,q)P(N f → NgN j)βg(e,p − 1)


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Sentence Probability – Summary

• Using inside probabilities:

P(w1m|G) = β1(1,m)

• Using outside probabilities:

P(w1m|G) =
∑

j

αj(k , k)P(N j → wk )

for any k such that 1 ≤ k ≤ m.
• Probability of a sentence w1m and that there is some constituent

spanning from word p to q:

P(w1m,Npq |G) = αj(p,q)βj(p,q)
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Finding the Most Likely Parse

• Modication of the inside algorithm:
• Find the maximum element of the sum in each step.
• Record which rule gave this maximum.

• We can define accumulators (similar to Viterbi algorithm for
HMM):

δi(p,q) = the highest probability parse of a subtree N i
pq
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Finding the Most Likely Parse

1 Base case:
δi(p,p) = P(N i → wp)

2 Induction:

δi(p,q) = max
1≤j,k≤n
p≤r<q

P(N i → N jNk )δj(p, r)δk (r + 1,q)

Backtrace:

ψi(p,q) = arg max
(j,k,r)

P(N i → N jNk )δj(p, r)δk (r + 1,q)

3 Termination:
P (̂t) = δ1(1,m)

We need to reconstruct the parse tree t̂ .

Probabilistic Context-Free Grammar 23 / 32



Topic

Probabilistic Context-Free Grammar
Definition and examples
Properties and usage

Inside and Outside Probabilities
Definitions
Algorithms

Inside-Outside Algorithm
Idea, formal description and properties

Probabilistic Context-Free Grammar 24 / 32



Training a PCFG

• Assume a certain topology of the grammar G given in advance.
• Number of terminals and nonterminals.
• Name of the start symbol.
• Set of rules (we can have a given structure of the grammar, but we

can also assume all possible rewriting rules exist).

• We want to set the probabilities of rules to maximize the
likelihood of the training data.

P̂(N j → ζ) =
C(N j → ζ)∑
γ C(N j → γ)

where C(x) is the number of times the rule x is used.
• Trivial if we have a parsed corpus for training.
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Inside-Outside Algorithm

• Usually, a parsed training corpus is not available.
• Hidden data problem - we can only directly see the probabilities

of sentences, not rules.
• We can use an iterative algorithm to determine improving

estimates - the inside-outside algorithm.

Idea
1 Begin with a given grammar topology and some initial probability

estimates for rules.
2 The probability of each parse of a training sentence according to

G will act as our confidence in it.
3 Sum the probabilities of each rule being used in each place to

give an expectation of how often each rule was used.
4 Use the expectations to refine the probability estimates -

increase the likelihood of the traning corpus according to G.
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Inside-Outside Algorithm

αj(p,q)βj(p,q) = P(w1m,N
j
pq |G)

= P(w1m|G)P(N j
pq |w1m,G)

P(N j
pq |w1m,G) =

αj(p,q)βj(p,q)
P(w1m|G)

• To estimate the count of times the nonterminal N j is used in the
derivation:

E(N j is used in the derivation) =
m∑

p=1

m∑
q=p

αj(p,q)βj(p,q)
P(w1m|G)

(1)
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Inside-Outside Algorithm

• If N j is not a preterminal, we can substitute the inductive
definition of β. Then, ∀r , s,p,q:

P(N j
pq |w1m,G) =

∑q−1
d=p αj(p,q)P(N j → N r Ns)βr (p,d)βs(d + 1,q)

P(w1m|G)

• To estimate the number of times this rule is used in the
derivation:

E(N j → N r Ns,N j used)

=

∑m−1
p=1

∑m
q=p+1

∑q−1
d=p αj(p,q)P(N j → N r Ns)βr (p,d)βs(d + 1,q)

P(w1m|G)
(2)
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Inside-Outside Algorithm

• For the maximization step, we want:

P̂(N j → N r Ns) =
E(N j → N r Ns,N j used)

E(N j used)

• Reestimation formula:

P̂(N j → N r Ns) = (1)/(2)

=

∑m−1
p=1

∑m
q=p+1

∑q−1
d=p αj(p,q)P(N j → N r Ns)βr (p,d)βs(d + 1,q)∑m

p=1
∑m

q=p αj(p,q)βj(p,q)
(3)

• Analogically for preterminals, we get:

P̂(N j → wk ) =

∑m
h=1 αj(h,h)P(wh = wk )βj(h,h)∑m

p=1
∑m

q=p αj(p,q)βj(p,q)
(4)
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Inside-Outside Algorithm

Method
1 Initialize probabilities of rules in G.
2 Calculate inside probabilities for the training sentence.
3 Calculate outside probabilities for the training sentence.
4 Update the rule probabilities using reestimation formulas (3) and

(4).
5 Repeat from step 2 until the change in estimated rule

probabilities is sufficiently small.

• The probability of the training corpus according to G will improve
(or at least not get worse):

P(W |Gi+1) ≥ P(W |Gi)

where i is the current iteration of training.
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Inside-Outside Algorithm – Properties

• Time complexity:
For each sentence, each iteration of training is O(m3n3), where
m is the length of the sentence and n is the number of
nonterminals in the grammar.

• Relatively slow compared to linear models (such as HMM).

• Problems with local maxima, higly sensitive to the initialization of
parameters.

• Generally, we cannot guarantee any resemblance between the
trained grammar and the kinds of structures commonly used in
NLP (NP, VP, etc.). The only hard constraint is that N1 remains
the start symbol.

• We could impose further constraints.
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