
LR Parsing

Petr Horáček, Eva Zámečnı́ková, Ivana Burgetová and
Alexander Meduna

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, 612 00 Brno, CZ

FRVŠ MŠMT FR0097/2011/G1

Outline

LR Parsing Algorithm

Construction of LR Table

Handling Errors in LR Parsing

LR Parsing 2 / 31

LR Parsing

LR Parsers
• Left-to-right scan of tokens
• Rightmost derivation
• Uses right parse – reverse sequence of rules
• Bottom-up parsing
• Based on LR tables constructed from LR grammars

• LR grammar – context-free grammar for which LR table can be built

Advantages

• LR parsers are fast
• Easy way of handling syntax errors
• Ultimately powerful

• The family of LR languages equals the family of languages
accepted by deterministic pushdown automata (DPDA)

LR Parsing 3 / 31

Topic

LR Parsing Algorithm

Construction of LR Table

Handling Errors in LR Parsing

LR Parsing 4 / 31

LR Parsing Algorithm

LR table

Consider LR grammar G = (N,T ,P,S). Then G-based LR table
consists of:
• G-based action part Gaction
• G-based goto part Ggoto

• Rows are denoted by the symbols of GΘ = {θ1, . . . , θm}
• States of extended pushdown automata (LR parser is EPDA)

• Columns of Gaction are denoted by the symbols of T
• Terminal symbols

• Columns of Ggoto are denoted by the symbols of N
• Nonterminal symbols

Configuration of the parser

�q0Y1q1 . . .Ym−1qm−1Ymqm3v�

where qi ∈ GΘ,Yi ∈ N ∪ T , v ∈ suffixes(w),w ∈ L(G)

LR Parsing 5 / 31

goto and action Part of LR Table

Table: Gaction

t1 . . . ti . . . tn
θ1
...
θ1 action[θj , ti] ∈ GΘ ∪ P ∪ { ,} or blank
...
θm

Table: Ggoto

A1 . . . Ai . . . Ak
θi
...
θj goto[θj ,Ai] ∈ N or blank
...
θm

LR Parsing 6 / 31

Operations LR-REDUCE and LR-SHIFT

LR-REDUCE
If
• p : A→ X1X2 . . .Xn ∈ P

• for some n ≥ 0, Xj ∈ N ∪ T , 1 ≤ j ≤ n
• o0X1o1X2o2 . . . on−1Xnon is the pushdown top

• on topmost, ok ∈ GΘ, 0 ≤ k ≤ n

then LR-REDUCE(p) replaces o0X1o1X2o2 . . . on−1Xnon with Ah on
the pushdown top
• h ∈ GΘ is defined as h = Ggoto[o0,A], otherwise REJECT

LR-SHIFT
• Let ins1 = t , t ∈ N ∪ T and action[pd1, t] = o,o ∈ GΘ

• LR-SHIFT extends pushdown pd by to and advances to the next
input

• to now occurs at the top of the pushdown (o is the topmost) and
ins1 refers to the input symbol occurring right behind t in the input
string

LR Parsing 7 / 31

Algorithm 1.1: LR Parser

• Input: An LR grammar, G = (N,T ,P,S),
an input string w ,w ∈ T ∗ and
G-based LR table.

• Output: ACCEPT if w ∈ L(G), or
REJECT if w /∈ L(G).

Method
pd := �θ1
repeat

case action[pd1, ins1] of
in GΘ: LR-SHIFT
in P: LR-REDUCE(p) with p = action[pd1, ins1]
2 : REJECT {2 denotes blank symbol (undefined action)}
, : ACCEPT

end case
until ACCEPT or REJECT

LR Parsing 8 / 31

LR Table Example
• Consider grammar G with the following rules:

1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

where S is the start symbol, T = {∨,∧, (,), i} and N = {A,B}

Table: G-based LR table example
∧ ∨ i () � S A B

θ1 θ6 θ5 θ2 θ3 θ4

θ2 θ7 ,
θ3 θ8 2 2 2
θ4 4 4 4 4
θ5 θ6 θ5 θ9 θ3 θ4

θ6 6 6 6 6
θ7 θ6 θ5 θ10 θ4

θ8 θ6 θ5 θ11

θ9 θ7 θ12

θ10 θ7 1 1 1
θ11 3 3 3 3
θ12 5 5 5 5

action part goto part
LR Parsing 9 / 31

LR Table Example

• Consider an expression

i ∧ i ∈ L(G)

• We make a parse by Algorithm 1.1
• The sequence of configurations is given in following table

Configuration Table Entry Parsing Action
�θ13i ∧ i� action[θ1, i]=θ6 LR-SHIFT(i)
�θ1iθ63 ∧ i� action[θ6,∧]=6, goto [θ1,B] = θ4 LR-REDUCE(6)
�θ1Bθ43 ∧ i� action[θ4,∧] = 4, goto[θ1,A] = θ3 LR-REDUCE(4)
�θ1Aθ33 ∧ i� action[θ3,∧] = θ8 LR-SHIFT(∨)
�θ1Aθ3 ∧ θ83i� action[θ8, i] = θ8 LR-SHIFT(i)
�θ1Aθ3 ∧ θ8iθ63� action[θ6,�] = 6, goto[θ8,B] = θ11 LR-REDUCE(6)
�θ1Aθ3 ∧ θ8Bθ113� action[θ11,�] = 3, goto[θ1,A] = θ3 LR-REDUCE(3)
�θ1Aθ33� action[θ3,�] = 2, goto[θ1,S] = θ2 LR-REDUCE(2)
�θ1Sθ23� ACCEPT ACCEPT

LR Parsing 10 / 31

Topic

LR Parsing Algorithm

Construction of LR Table

Handling Errors in LR Parsing

LR Parsing 11 / 31

Construction of GΘ – Items

Item

A→ x�y

for each rule A→ z and any two strings x and y such that z = xy

• x – handle prefix on the pd top
• Start item: A→ �z
• End item: A→ z�

Example
• Rule: S → S ∨ A
• Items: S → �S ∨ A,S → S� ∨ A,S → S ∨ �A,S → S ∨ A�

Convention
• GI – set of all items for LR grammar G
• GIstart – set of start items, GIstart ⊆ GI
• GIend – set of end items, GIend ⊆ GI
• GΩ = 2G I – state space

LR Parsing 12 / 31

Construction of GΘ – Idea I

1 Change the start symbol S to a new start symbol Z in G, and
add a dummy rule Z → S

• Every derivation in G now starts by applying Z → S

2 Initially, set GΘ = ∅, GW = {{Z → �S}}
• GW – auxiliary item set

3 Repeat extensions I and II until no new item set can be included
in GW

LR Parsing 13 / 31

Construction of GΘ – Idea II

Extension I
• Let I ∈ GW . Suppose that u appears on the pd top, and let

A→ uBv ∈ P
• Observe: if A→ u�Bv ∈ I and B → �z ∈ GIstart , then by using

B → z, the parser can reduce z to B
• Does not affect u on the pd top because B → �z is a start item

• Thus, add B → �z into I
• Repeat until I can no longer be extended in this way
• Add the resulting I to GΘ

repeat
if A→ u�Bv ∈ I and B → z ∈ GR then

include B → �z into I
end if

until no change
include I into GΘ

LR Parsing 14 / 31

Construction of GΘ – Idea III

Extension II
• Based upon a relation G" from GΩ× (N ∪ T) to GΩ:

G"(I,X) = {A→ uX�v |A→ u�Xv ∈ I,A ∈ N,u, v ∈ N ∪ T}

• Let I ∈ GW and A→ uX�v ∈ I
• Consider a part of rightmost derivation in G in reverse order,

during which a portion of the input string is reduced to X –
simulating this part, the parser obtains X on the pushdown

• Thus, for every I ∈ GW and X ∈ N ∪ T , extend GW by G"(I,X)
unless G"(I,X) is empty

for all X ∈ N ∪ T with G"(I,X) 6= ∅ do
include G"(I,X) into GW

end for

LR Parsing 15 / 31

Algorithm 2.1: Construction of GΘ

• Input: An LR grammar, G = (N,T ,P,S), extended by the dummy rule
Z → S, where Z is the new start symbol.

• Output: GΘ.
• Note: An auxiliary set GW ⊆ GΩ is used.

Method

set GW = {{Z → �S}}
set GΘ = ∅
repeat

for all I ∈ GW do
repeat {start of extension I}

if A→ u�Bv ∈ I and B → z ∈ P then
include B → �z into I

end if
until no change
include I into GΘ
for all X ∈ N ∪ T with G"(I,X) 6= ∅ do {start of extension II}

include G"(I,X) into GW
end for

end for
until no change

LR Parsing 16 / 31

Construction of GΘ – Example

Example
• Consider condG. Add a dummy rule Z → S and define Z as the

start symbol

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

• Apply Algorithm 2.1. First, set cond GΘ = ∅, GW = {{Z → �S}}
• By extension I, extend {Z → �S} ∈ GW to:
{Z → �S,S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,B → �(S),
B → �i}

• For I = {Z → �S,S → S ∨ A}, we have
G"(I,S) = {Z → S�,S → S� ∨ A}

• Thus, by extension II, include {Z → S�,S → S� ∨ A} into GW
• Perform second iteration of I and II, and so on

LR Parsing 17 / 31

Construction of GΘ – Example

Rules

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

cond GΘ Item Sets

θ1
{Z → �S,S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,
B → �(S),B → �i}

θ2 {Z → S�,S → S� ∨ A}
θ3 {S → A�,A→ A� ∧ B}
θ4 {A→ B�}

θ5
{B → (�S),S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,
B → �(S),B → �i}

θ6 {B → i�}
θ7 {S → S ∨ �A,A→ �A ∧ B,A→ �B,B → �(S),B → �i}
θ8 {A→ A ∧ �B,B → �(S),B → �i}
θ9 {B → (S�),S → S� ∨ A}
θ10 {S → S ∨ A�,A→ A� ∧ B}
θ11 {A→ A ∧ B�}
θ12 {B → (S)�}

LR Parsing 18 / 31

Construction of LR Table

I. goto part

• Consider item A→ u�Bv , where I ∈ GΘ, A,B ∈ N and
u, v ∈ N ∪ T

• After reducing portion of the input string to B, parser extends the
prefix u by B, so uB occurs on the pd top

if G"(θi ,B) = θj − GIstart , where B ∈ N then
goto[θi ,B] = θj

end if

II. action part – shift
• By analogy with I

if G"(θi ,b) = θj − GIstart , where b ∈ T then
action[θi ,b] = θj

end if

LR Parsing 19 / 31

Construction of LR Table

III. action part – reduction
• Consider a rule p : A→ u ∈ P and A→ u� ∈ GIend

• A complete handle u on pd top

• Parser reduces u to A provided that after the reduction,
A is followed by terminal a that may legally occur after A in
a sentential form

if A→ u� ∈ θi ,a ∈ follow(A),p : A→ u ∈ P then
action[θi ,a] = p

end if
• Note that:

• Every derivation starts with 0 : Z → S
• LR parser simulates rightmost derivations in reverse
• Input symbol � – all the input has been read

• Thus, if Z → S� ∈ θi , set action[θi ,�] = , (parsing completed
successfully)

if Z → S� ∈ θi then
action[θi ,�] = ,

end if
LR Parsing 20 / 31

Algorithm 2.2: LR Table (1/2)

• Input: An LR grammar G = (N,T ,P,S), in which Z and
0 : Z → S have the same meaning as in Algoritm 2.1, and GΘ
constructed by Algorithm 2.1.

• Output: A G-based LR table, consisting of the action and goto
parts.

• Note: We suppose that A,B ∈ N, b ∈ T and u, v ∈ (N ∪ T)∗ in
this algorithm.

Method
denote the rows of action and goto with the members of GΘ
denote the columns of action and goto with the members of T and
N, respectively

{continued on next slide}

LR Parsing 21 / 31

Algorithm 2.2: LR Table (2/2)

Method (cont.)
repeat

for all θi , θj ∈ GΘ do
if G"(θi ,B) = θj − GIstart , where B ∈ N then

goto[θi ,B] = θj
end if
if G"(θi ,b) = θj − GIstart , where b ∈ T then

action[θi ,b] = θj
end if
if A→ u� ∈ θi ∩ GIend ,a ∈ follow(A), i : A→ u ∈ P then

action[θi ,a] = i
end if

end for
until no change
if Z → S� ∈ θi then

action[θi ,�] = , {success}
{all the other entries remain blank and, thereby, signalize
a syntax error}

end if
LR Parsing 22 / 31

Construction of LR Table – Example

Example
• Consider again condG

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

• Consider cond GΘ = {θ1, θ2, . . . , θ12} (obtained in previous
example)

• According to the first if statement in Algorithm 2.2,
goto[θ1,S] = θ2 because S → �S ∨ A ∈ θ1 and S → S� ∨ A ∈ θ2

• Second if statement: action[θ2,∨] = θ7 because S → S� ∨A ∈ θ2
and S → S ∨ �A ∈ θ7

• Third if statement: action[θ10,∨] = 2 because 2 : S → A� ∈ θ10
and ∨ ∈ follow(A)

• Repeat until there is no change
• Set action[θ2,�] = , because θ2 contains Z → S�

LR Parsing 23 / 31

Construction of LR Table – Example

Table: G-based LR table example

∧ ∨ i () � S A B
θ1 θ6 θ5 θ2 θ3 θ4

θ2 θ7 ,
θ3 θ8 2 2 2
θ4 4 4 4 4
θ5 θ6 θ5 θ9 θ3 θ4

θ6 6 6 6 6
θ7 θ6 θ5 θ10 θ4

θ8 θ6 θ5 θ11

θ9 θ7 θ12

θ10 θ7 1 1 1
θ11 3 3 3 3
θ12 5 5 5 5

action part goto part

LR Parsing 24 / 31

Topic

LR Parsing Algorithm

Construction of LR Table

Handling Errors in LR Parsing

LR Parsing 25 / 31

LR Parsing: Handling Errors

Error detection
No valid continuation for the portion of the input thus far scanned

• More exact than in precedence parsing
• Detection of all possible errors by using action part

• We can reduce the size of goto part by removing unneeded blank
entries

LR error recovery methods
• Panic-mode LR Error Recovery
• Ad-hoc Recovery

LR Parsing 26 / 31

Panic-mode LR Error Recovery

Method
• Try to isolate the shortest possible erroneous substring,
• skip this substring, and
• resume parsing process

• Basic idea of this method: we have selected set of nonterminals
GO representing major pieces of program such as expressions or
statements

• Find the shortest string uv , where:
• u ∈ (N ∪ T)∗ is obtained from the current pushdown top

x ∈ ((N ∪ T)GΘ)∗ by deletion of all pushdown symbols
• v is the shortest input prefix followed by input symbol a from

follow(A), whereA ∈ O and Arm ⇒∗ uv

• Let x be preceded by o ∈ GΘ and goto[o,A] = θ

• To recover, this method replaces x with Aθ on the pushdown and
skips the input prefix v

• After this it resumes the parsing process from action[θ,a]

LR Parsing 27 / 31

Ad-hoc Recovery

• Resembles the way the precedence parser handles the
table-detected errors

• This method considers each blank action entry, which signalize
error

• We decide the most probable mistake that led to particular error
and according to this we design recovery procedure

• Typical recovery routines: modify the pushdown or input by
changing, inserting or deleting some symbols

• Modification has to avoid infinite loops
• Each blank entry is filled with the reference to the corresponding

recovery routine

LR Parsing 28 / 31

Ad-hoc Recovery Example

• Consider again the grammar G:

1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

where S is the start symbol, T = {∨,∧, (,), i} and N = {A,B}
• As an expression we take

i∨)

• The parsing process for this input is interrupted after six steps⇒
RECOVERY

• We update the action part of table by filling the blank entries by
recovery routines, the goto part of LR table stays the same

• The construction of recovery procedures needs sophisticated
approach

LR Parsing 29 / 31

Ad-hoc Recovery Example

Table: G-based LR table example

∧ ∨ i () �
θ1 1© 1© θ6 θ5 2© 1©
θ2 1© θ7 3© 3© 2© ,
θ3 θ8 2 3© 3© 2 2
θ4 4 4 3© 3© 4 4
θ5 1© 1© θ6 θ5 2© 1©
θ6 6 6 3© 3© 6 6
θ7 1© 1© θ6 θ5 2© 1©
θ8 1© 1© θ6 θ5 2© 1©
θ9 1© θ7 3© 3© θ12 1©
θ10 θ7 1 3© 3© 1 1
θ11 3 3 3© 3© 3 3
θ12 5 5 3© 3© 5 5

LR Parsing 30 / 31

Ad-hoc Recovery Example

• The description of recovery procedures 1© through 4©
• Consider string i ∨ (as an input

1© diagnostic: missing i or (, recovery: insert iθ6 onto the pushdown
2© diagnostic: unbalanced), recovery: delete the input)
3© diagnostic: missing operator, recovery: insert ∨θ5 onto the

pushdown
4© diagnostic: missing), recovery: insert)θ6 onto the pushdown

Then we can make LR parse. After the input is finaly accepted there
are saved error reports with the information about used recovery
processes.

LR Parsing 31 / 31

	LR Parsing Algorithm
	Construction of LR Table
	Handling Errors in LR Parsing

