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LR Parsing

LR Parsers
• Left-to-right scan of tokens
• Rightmost derivation
• Uses right parse – reverse sequence of rules
• Bottom-up parsing
• Based on LR tables constructed from LR grammars

• LR grammar – context-free grammar for which LR table can be built

Advantages

• LR parsers are fast
• Easy way of handling syntax errors
• Ultimately powerful

• The family of LR languages equals the family of languages
accepted by deterministic pushdown automata (DPDA)
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LR Parsing Algorithm

LR table

Consider LR grammar G = (N,T ,P,S). Then G-based LR table
consists of:
• G-based action part Gaction
• G-based goto part Ggoto

• Rows are denoted by the symbols of GΘ = {θ1, . . . , θm}
• States of extended pushdown automata (LR parser is EPDA)

• Columns of Gaction are denoted by the symbols of T
• Terminal symbols

• Columns of Ggoto are denoted by the symbols of N
• Nonterminal symbols

Configuration of the parser

�q0Y1q1 . . .Ym−1qm−1Ymqm3v�

where qi ∈ GΘ,Yi ∈ N ∪ T , v ∈ suffixes(w),w ∈ L(G)
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goto and action Part of LR Table

Table: Gaction

t1 . . . ti . . . tn
θ1
...
θ1 action[θj , ti ] ∈ GΘ ∪ P ∪ { ,} or blank
...
θm

Table: Ggoto

A1 . . . Ai . . . Ak
θi
...
θj goto[θj ,Ai ] ∈ N or blank
...
θm
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Operations LR-REDUCE and LR-SHIFT

LR-REDUCE
If
• p : A→ X1X2 . . .Xn ∈ P

• for some n ≥ 0, Xj ∈ N ∪ T , 1 ≤ j ≤ n
• o0X1o1X2o2 . . . on−1Xnon is the pushdown top

• on topmost, ok ∈ GΘ, 0 ≤ k ≤ n

then LR-REDUCE(p) replaces o0X1o1X2o2 . . . on−1Xnon with Ah on
the pushdown top
• h ∈ GΘ is defined as h = Ggoto[o0,A], otherwise REJECT

LR-SHIFT
• Let ins1 = t , t ∈ N ∪ T and action[pd1, t ] = o,o ∈ GΘ

• LR-SHIFT extends pushdown pd by to and advances to the next
input

• to now occurs at the top of the pushdown (o is the topmost) and
ins1 refers to the input symbol occurring right behind t in the input
string
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Algorithm 1.1: LR Parser

• Input: An LR grammar, G = (N,T ,P,S),
an input string w ,w ∈ T ∗ and
G-based LR table.

• Output: ACCEPT if w ∈ L(G), or
REJECT if w /∈ L(G).

Method
pd := �θ1
repeat

case action[pd1, ins1] of
in GΘ: LR-SHIFT
in P: LR-REDUCE(p) with p = action[pd1, ins1]
2 : REJECT {2 denotes blank symbol (undefined action)}
, : ACCEPT

end case
until ACCEPT or REJECT
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LR Table Example
• Consider grammar G with the following rules:

1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

where S is the start symbol, T = {∨,∧, (, ), i} and N = {A,B}

Table: G-based LR table example
∧ ∨ i ( ) � S A B

θ1 θ6 θ5 θ2 θ3 θ4

θ2 θ7 ,
θ3 θ8 2 2 2
θ4 4 4 4 4
θ5 θ6 θ5 θ9 θ3 θ4

θ6 6 6 6 6
θ7 θ6 θ5 θ10 θ4

θ8 θ6 θ5 θ11

θ9 θ7 θ12

θ10 θ7 1 1 1
θ11 3 3 3 3
θ12 5 5 5 5

action part goto part
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LR Table Example

• Consider an expression

i ∧ i ∈ L(G)

• We make a parse by Algorithm 1.1
• The sequence of configurations is given in following table

Configuration Table Entry Parsing Action
�θ13i ∧ i� action[θ1, i]=θ6 LR-SHIFT(i)
�θ1iθ63 ∧ i� action[θ6,∧]=6, goto [θ1,B] = θ4 LR-REDUCE(6)
�θ1Bθ43 ∧ i� action[θ4,∧] = 4, goto[θ1,A] = θ3 LR-REDUCE(4)
�θ1Aθ33 ∧ i� action[θ3,∧] = θ8 LR-SHIFT(∨)
�θ1Aθ3 ∧ θ83i� action[θ8, i] = θ8 LR-SHIFT(i)
�θ1Aθ3 ∧ θ8iθ63� action[θ6,�] = 6, goto[θ8,B] = θ11 LR-REDUCE(6)
�θ1Aθ3 ∧ θ8Bθ113� action[θ11,�] = 3, goto[θ1,A] = θ3 LR-REDUCE(3)
�θ1Aθ33� action[θ3,�] = 2, goto[θ1,S] = θ2 LR-REDUCE(2)
�θ1Sθ23� ACCEPT ACCEPT
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Construction of GΘ – Items

Item

A→ x�y

for each rule A→ z and any two strings x and y such that z = xy

• x – handle prefix on the pd top
• Start item: A→ �z
• End item: A→ z�

Example
• Rule: S → S ∨ A
• Items: S → �S ∨ A,S → S� ∨ A,S → S ∨ �A,S → S ∨ A�

Convention
• GI – set of all items for LR grammar G
• GIstart – set of start items, GIstart ⊆ GI
• GIend – set of end items, GIend ⊆ GI
• GΩ = 2G I – state space
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Construction of GΘ – Idea I

1 Change the start symbol S to a new start symbol Z in G, and
add a dummy rule Z → S

• Every derivation in G now starts by applying Z → S

2 Initially, set GΘ = ∅, GW = {{Z → �S}}
• GW – auxiliary item set

3 Repeat extensions I and II until no new item set can be included
in GW
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Construction of GΘ – Idea II

Extension I
• Let I ∈ GW . Suppose that u appears on the pd top, and let

A→ uBv ∈ P
• Observe: if A→ u�Bv ∈ I and B → �z ∈ GIstart , then by using

B → z, the parser can reduce z to B
• Does not affect u on the pd top because B → �z is a start item

• Thus, add B → �z into I
• Repeat until I can no longer be extended in this way
• Add the resulting I to GΘ

repeat
if A→ u�Bv ∈ I and B → z ∈ GR then

include B → �z into I
end if

until no change
include I into GΘ
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Construction of GΘ – Idea III

Extension II
• Based upon a relation G" from GΩ× (N ∪ T ) to GΩ:

G"(I,X ) = {A→ uX�v |A→ u�Xv ∈ I,A ∈ N,u, v ∈ N ∪ T}

• Let I ∈ GW and A→ uX�v ∈ I
• Consider a part of rightmost derivation in G in reverse order,

during which a portion of the input string is reduced to X –
simulating this part, the parser obtains X on the pushdown

• Thus, for every I ∈ GW and X ∈ N ∪ T , extend GW by G"(I,X )
unless G"(I,X ) is empty

for all X ∈ N ∪ T with G"(I,X ) 6= ∅ do
include G"(I,X ) into GW

end for
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Algorithm 2.1: Construction of GΘ

• Input: An LR grammar, G = (N,T ,P,S), extended by the dummy rule
Z → S, where Z is the new start symbol.

• Output: GΘ.
• Note: An auxiliary set GW ⊆ GΩ is used.

Method

set GW = {{Z → �S}}
set GΘ = ∅
repeat

for all I ∈ GW do
repeat {start of extension I}

if A→ u�Bv ∈ I and B → z ∈ P then
include B → �z into I

end if
until no change
include I into GΘ
for all X ∈ N ∪ T with G"(I,X ) 6= ∅ do {start of extension II}

include G"(I,X ) into GW
end for

end for
until no change
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Construction of GΘ – Example

Example
• Consider condG. Add a dummy rule Z → S and define Z as the

start symbol

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

• Apply Algorithm 2.1. First, set cond GΘ = ∅, GW = {{Z → �S}}
• By extension I, extend {Z → �S} ∈ GW to:
{Z → �S,S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,B → �(S),
B → �i}

• For I = {Z → �S,S → S ∨ A}, we have
G"(I,S) = {Z → S�,S → S� ∨ A}

• Thus, by extension II, include {Z → S�,S → S� ∨ A} into GW
• Perform second iteration of I and II, and so on
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Construction of GΘ – Example

Rules

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

cond GΘ Item Sets

θ1
{Z → �S,S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,
B → �(S),B → �i}

θ2 {Z → S�,S → S� ∨ A}
θ3 {S → A�,A→ A� ∧ B}
θ4 {A→ B�}

θ5
{B → (�S),S → �S ∨ A,S → �A,A→ �A ∧ B,A→ �B,
B → �(S),B → �i}

θ6 {B → i�}
θ7 {S → S ∨ �A,A→ �A ∧ B,A→ �B,B → �(S),B → �i}
θ8 {A→ A ∧ �B,B → �(S),B → �i}
θ9 {B → (S�),S → S� ∨ A}
θ10 {S → S ∨ A�,A→ A� ∧ B}
θ11 {A→ A ∧ B�}
θ12 {B → (S)�}
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Construction of LR Table

I. goto part

• Consider item A→ u�Bv , where I ∈ GΘ, A,B ∈ N and
u, v ∈ N ∪ T

• After reducing portion of the input string to B, parser extends the
prefix u by B, so uB occurs on the pd top

if G"(θi ,B) = θj − GIstart , where B ∈ N then
goto[θi ,B] = θj

end if

II. action part – shift
• By analogy with I

if G"(θi ,b) = θj − GIstart , where b ∈ T then
action[θi ,b] = θj

end if
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Construction of LR Table

III. action part – reduction
• Consider a rule p : A→ u ∈ P and A→ u� ∈ GIend

• A complete handle u on pd top

• Parser reduces u to A provided that after the reduction,
A is followed by terminal a that may legally occur after A in
a sentential form

if A→ u� ∈ θi ,a ∈ follow(A),p : A→ u ∈ P then
action[θi ,a] = p

end if
• Note that:

• Every derivation starts with 0 : Z → S
• LR parser simulates rightmost derivations in reverse
• Input symbol � – all the input has been read

• Thus, if Z → S� ∈ θi , set action[θi ,�] = , (parsing completed
successfully)

if Z → S� ∈ θi then
action[θi ,�] = ,

end if
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Algorithm 2.2: LR Table (1/2)

• Input: An LR grammar G = (N,T ,P,S), in which Z and
0 : Z → S have the same meaning as in Algoritm 2.1, and GΘ
constructed by Algorithm 2.1.

• Output: A G-based LR table, consisting of the action and goto
parts.

• Note: We suppose that A,B ∈ N, b ∈ T and u, v ∈ (N ∪ T )∗ in
this algorithm.

Method
denote the rows of action and goto with the members of GΘ
denote the columns of action and goto with the members of T and
N, respectively

{continued on next slide}
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Algorithm 2.2: LR Table (2/2)

Method (cont.)
repeat

for all θi , θj ∈ GΘ do
if G"(θi ,B) = θj − GIstart , where B ∈ N then

goto[θi ,B] = θj
end if
if G"(θi ,b) = θj − GIstart , where b ∈ T then

action[θi ,b] = θj
end if
if A→ u� ∈ θi ∩ GIend ,a ∈ follow(A), i : A→ u ∈ P then

action[θi ,a] = i
end if

end for
until no change
if Z → S� ∈ θi then

action[θi ,�] = , {success}
{all the other entries remain blank and, thereby, signalize
a syntax error}

end if
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Construction of LR Table – Example

Example
• Consider again condG

0 : Z → S 1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

• Consider cond GΘ = {θ1, θ2, . . . , θ12} (obtained in previous
example)

• According to the first if statement in Algorithm 2.2,
goto[θ1,S] = θ2 because S → �S ∨ A ∈ θ1 and S → S� ∨ A ∈ θ2

• Second if statement: action[θ2,∨] = θ7 because S → S� ∨A ∈ θ2
and S → S ∨ �A ∈ θ7

• Third if statement: action[θ10,∨] = 2 because 2 : S → A� ∈ θ10
and ∨ ∈ follow(A)

• Repeat until there is no change
• Set action[θ2,�] = , because θ2 contains Z → S�
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Construction of LR Table – Example

Table: G-based LR table example

∧ ∨ i ( ) � S A B
θ1 θ6 θ5 θ2 θ3 θ4

θ2 θ7 ,
θ3 θ8 2 2 2
θ4 4 4 4 4
θ5 θ6 θ5 θ9 θ3 θ4

θ6 6 6 6 6
θ7 θ6 θ5 θ10 θ4

θ8 θ6 θ5 θ11

θ9 θ7 θ12

θ10 θ7 1 1 1
θ11 3 3 3 3
θ12 5 5 5 5

action part goto part
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LR Parsing: Handling Errors

Error detection
No valid continuation for the portion of the input thus far scanned

• More exact than in precedence parsing
• Detection of all possible errors by using action part

• We can reduce the size of goto part by removing unneeded blank
entries

LR error recovery methods
• Panic-mode LR Error Recovery
• Ad-hoc Recovery
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Panic-mode LR Error Recovery

Method
• Try to isolate the shortest possible erroneous substring,
• skip this substring, and
• resume parsing process

• Basic idea of this method: we have selected set of nonterminals
GO representing major pieces of program such as expressions or
statements

• Find the shortest string uv , where:
• u ∈ (N ∪ T )∗ is obtained from the current pushdown top

x ∈ ((N ∪ T )GΘ)∗ by deletion of all pushdown symbols
• v is the shortest input prefix followed by input symbol a from

follow(A), whereA ∈ O and Arm ⇒∗ uv

• Let x be preceded by o ∈ GΘ and goto[o,A] = θ

• To recover, this method replaces x with Aθ on the pushdown and
skips the input prefix v

• After this it resumes the parsing process from action[θ,a]
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Ad-hoc Recovery

• Resembles the way the precedence parser handles the
table-detected errors

• This method considers each blank action entry, which signalize
error

• We decide the most probable mistake that led to particular error
and according to this we design recovery procedure

• Typical recovery routines: modify the pushdown or input by
changing, inserting or deleting some symbols

• Modification has to avoid infinite loops
• Each blank entry is filled with the reference to the corresponding

recovery routine
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Ad-hoc Recovery Example

• Consider again the grammar G:

1 : S → S ∨ A 2 : S → A 3 : A→ A ∧ B
4 : A→ B 5 : B → (S) 6 : B → i

where S is the start symbol, T = {∨,∧, (, ), i} and N = {A,B}
• As an expression we take

i∨)

• The parsing process for this input is interrupted after six steps⇒
RECOVERY

• We update the action part of table by filling the blank entries by
recovery routines, the goto part of LR table stays the same

• The construction of recovery procedures needs sophisticated
approach

LR Parsing 29 / 31



Ad-hoc Recovery Example

Table: G-based LR table example

∧ ∨ i ( ) �
θ1 1© 1© θ6 θ5 2© 1©
θ2 1© θ7 3© 3© 2© ,
θ3 θ8 2 3© 3© 2 2
θ4 4 4 3© 3© 4 4
θ5 1© 1© θ6 θ5 2© 1©
θ6 6 6 3© 3© 6 6
θ7 1© 1© θ6 θ5 2© 1©
θ8 1© 1© θ6 θ5 2© 1©
θ9 1© θ7 3© 3© θ12 1©
θ10 θ7 1 3© 3© 1 1
θ11 3 3 3© 3© 3 3
θ12 5 5 3© 3© 5 5
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Ad-hoc Recovery Example

• The description of recovery procedures 1© through 4©
• Consider string i ∨ ( as an input

1© diagnostic: missing i or (, recovery: insert iθ6 onto the pushdown
2© diagnostic: unbalanced), recovery: delete the input )
3© diagnostic: missing operator, recovery: insert ∨θ5 onto the

pushdown
4© diagnostic: missing ), recovery: insert )θ6 onto the pushdown

Then we can make LR parse. After the input is finaly accepted there
are saved error reports with the information about used recovery
processes.
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