BRNO UNIVERSITY OF TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY

I

(8

Regulated Formal Models and Their
Reduction

Updated PhD Thesis

Updated October 10, 2007 Tomas Masopust



Abstract

This thesis is divided into two parts. The first part introduces and studies self-regulating automata.
In essence, these automata regulate the use of their rules by a sequence of rules applied during
the previous moves. A special attention is paid to furns defined as moves during which a self-
regulating automaton starts a new self-regulating sequence of moves. Based on the number of
turns, two infinite hierarchies of language families resulting from two variants of these automata are
established. It demonstrates that in case of self-regulating finite automata these hierarchies coincide
with the hierarchies resulting from parallel right linear and right linear simple matrix grammars, so
the self-regulating finite automata can be viewed as the automaton counterparts to these grammars.
Finally, both infinite hierarchies are compared. In addition, as an open problem area, it suggests the
discussion of self-regulating pushdown automata.

The second part studies the descriptional complexity of partially parallel grammars and gram-
mars regulated by context conditions with respect to the number of nonterminals and a special type
of productions. Specifically, it proves that every recursively enumerable language is generated (1)
by a scattered context grammar with no more than four non-context-free productions and four non-
terminals, (2) by a multisequential grammar with no more than two selectors and two nonterminals,
(3) by a multicontinuous grammar with no more than two selectors and three nonterminals, (4) by
a context-conditional grammar of degree (2, 1) with no more than six conditional productions and
seven nonterminals, (5) by a simple context-conditional grammar of degree (2, 1) with no more than
seven conditional productions and eight nonterminals, (6) by a generalized forbidding grammar of
degree two and index six with no more than ten conditional productions and nine nonterminals,
(7) by a generalized forbidding grammar of degree two and index four with no more than eleven
conditional productions and ten nonterminals, (8) by a generalized forbidding grammar of degree
two and index nine with no more than eight conditional productions and ten nonterminals, (9) by
a generalized forbidding grammar of degree two and unlimited index with no more than nine con-
ditional productions and eight nonterminals, (10) by a semi-conditional grammar of degree (2, 1)
with no more than seven conditional productions and eight nonterminals, and (11) by a simple
semi-conditional grammar of degree (2, 1) with no more than nine conditional productions and ten
nonterminals.
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Chapter 1

Introduction

At the end of 50’s, linguist Naom Chomsky introduced the well-known hierarchy of languages (reg-
ular, context-free, context-sensitive, and recursively enumerable languages), which is in his honour
called Chomsky hierarchy. His work inspired mathematicians and theoretical computer scientists,
who gave that theory the needed formal shape convenient for its application in informatics. Thereby,
formal language theory was established.

In classical formal language theory, there are three main approaches to formal languages.

1. Grammatical approach—language generation.
2. Automata approach—language recognition.

3. Algebraic approach—based on algebraic properties of languages and families of languages,
such as closure properties under some language operations, etc. (see [22]).

According to the previous approaches, this thesis is divided into two parts. The first part, con-
sisting of chapter four, is concerning the automata approach to the theory of formal languages. It
introduces and studies self-regulating automata (see [71]). Automata theory has, over its history,
modified and restricted classical automata in many ways (see [7, 15, 24, 25, 29, 65, 66, 85, 88, 90]).
Recently, regulated automata have been introduced and studied in [69, 70]. In essence, these au-
tomata regulate the use of their rules according to which they make moves by control languages.
This thesis continues with this topic by defining and investigating self-regulating finite (pushdown)
automata. Instead of prescribed control languages, the self-regulating automata restrict the selec-
tion of a rule according to which the current move is made by a rule according to which a previous
move was made.

To give a more precise insight into self-regulating automata, consider a finite automaton, M,
with a finite binary relation, R, over M’s rules. Furthermore, suppose that M makes a sequence
of moves, p, that leads to the acceptance of a string, so p can be expressed as a concatenation of
n+1 consecutive subsequences, p = Popi ... Pu, |pil = [p;], 0 < i,j < n, in which r/ denotes the
rule according to which the ith move in p; is made, forall 0 < j<nand 1 <i < lp j] (as usual,
|pj| denotes the length of p;). If forall 0 < j < n, (r{ , r{“) € R, then M represents an n-turn first-
move self-regulating finite automaton with respect to R. If for all 0 < j < n and, in addition, for all
1<i<|py, (rl,r} +1) € R, then M represents an n-turn all-move self-regulating finite automaton
with respect to R.

Based on the number of turns, two infinite hierarchies of language families that lie between the
families of regular and context-sensitive languages are established. First, a demonstration that n-
turn first-move self-regulating finite automata give rise to an infinite hierarchy of language families




coinciding with the hierarchy resulting from (n+ 1)-parallel right linear grammars (see [82, 83, 94,

]) is given. Recall that n-parallel right linear grammars generate a proper language subfamily of
the language family generated by (n + 1)-parallel right linear grammars (see Theorem 5 in [83]).
As a result, n-turn first-move self-regulating finite automata accept a proper language subfamily
of the language family accepted by (n+ 1)-turn first-move self-regulating finite automata, for all
n > 0. Similarly, a proof that n-turn all-move self-regulating finite automata give rise to an infinite
hierarchy of language families coinciding with the hierarchy resulting from (n + 1)-right linear
simple matrix grammars (see [11, 33, 95]) is given. As n-right linear simple matrix grammars
generate a proper subfamily of the language family generated by (n+ 1)-right linear simple matrix
grammars (see Theorem 1.5.4 in [11]), n-turn all-move self-regulating finite automata accept a
proper language subfamily of the language family accepted by (n+ 1)-turn all-move self-regulating
finite automata. Furthermore, since the families of right linear simple matrix languages coincide
with the language families accepted by multitape nonwriting automata (see [15]) and by finite-
turn checking automata (see [88]), the all-move self-regulating finite automata characterize these
families, too. Finally, the results about both infinite hierarchies are summarized.

Next, self-regulating pushdown automata are discussed. Regarding all-move self-regulating
pushdown automata, a proof that all-move self-regulating pushdown automata do not give rise to
any infinite hierarchy analogical to hierarchies resulting from the self-regulating finite automata
is given. It is shown that while zero-turn all-move self-regulating pushdown automata define the
family of context-free languages, one-turn all-move self-regulating pushdown automata define the
family of recursively enumerable languages. On the other hand, as far as first-move self-regulating
pushdown automata are concerned, it is an easy observation that zero-turn first-move self-regulating
pushdown automata define the family of context-free languages. However, the question whether
these automata define an infinite hierarchy with respect to the number of turns or not is open.

The second part of this thesis, consisting of chapter five, is concerning the grammatical ap-
proach. Specifically, it studies the descriptional complexity of partially parallel grammars and
grammars regulated by context conditions. The main aim of the descriptional complexity of gram-
mars is to describe grammars in a reduced and succinct way (see pages 145-148 of Volume 2 in [84]
for an overview). This trend of formal language theory has recently so intensified that an annual
international conference Descriptional Complexity of Formal Systems is held to discuss this specific
topic (see [75, 38, 21] for its latest proceedings). As a central topic, this investigation of the de-
scriptional complexity studies how to reduce the number of grammatical components, such as the
number of nonterminals or (special) productions.

Consider a family of languages, .Z, and a family of grammars, ¢, such that L € . if and only
if there is a grammar G € ¢ such that L = Z(G). To reduce the number of nonterminals means
to find a natural number (if exists), k, such that for every language L € %, there is a grammar
G € ¢ such that the set of all G’s nonterminals, N, contains no more than k elements, |N| < k, and
G generates L, L = .Z(G). In other words, the question is what is the minimal & such that there
is a subfamily, .77, of ¢ consisting of grammars having no more than £ nonterminals such that
any language from .Z is generated by a grammar from 7. The reduction of special productions
is defined analogously, i.e., the aim is to find a natural number (if exists), [, such that for every
language L € .Z, there is a grammar G € ¢ with P being the set of all its productions, P = P'UP”,
where P” is the set of all special productions, such that |P”| <[ and L = .%(G). For instance, let P’
be the set of all context-free and P” the set of all remaining productions of P.

This thesis studies the simultaneous reduction of both the number of nonterminals and the num-
ber of special productions. In other words, in case of studied grammars, it is well-known that there
are natural numbers k and / such that there is a subfamily, .#°, of ¢ having no more than k nonter-




minals and / special productions such that any language from .’ is generated by a grammar from
. We decrease these numbers as follows.

The first section of chapter five studies the descriptional complexity of scattered context, mul-
tisequential, and multicontinuous grammars (see [11, 36, 56, 58, 59, 62, 63, 64, 67, 68, 92] for
more details). These grammars are ordinary context-free grammars, where a limited number of
productions is allowed to be parallelly applied in one derivation step. Recall that every recursively
enumerable language was shown to be generated

(1) by a scattered context grammar with no more than five nonterminals and two non-context-free
productions (see [92]);

(2) by a multisequential grammar with no more than six nonterminals (see [58]); and
(3) by a multicontinuous grammar with no more than six nonterminals (see [59]).

In this thesis, these results are improved (see [44]). Specifically, it proves that every recursively
enumerable language is generated

(A) by a scattered context grammar with no more than four nonterminals and four non-context-free
productions;

(B) by a multisequential grammar with no more than two nonterminals and two selectors; and
(C) by a multicontinuous grammar with no more than three nonterminals and two selectors.

The second section of chapter five studies the descriptional complexity of context-conditional
grammars. Context-conditional grammars are ordinary context-free grammars in which two sets
of strings, called a permitting and a forbidding context, are attached to each production. Such a
production is then applicable if each element of its permitting context occurs in the current sentential
form while none of its forbidding context does.

Many variants of these grammars that differ in requirements put on their permitting and for-
bidding contexts are studied in the literature, such as generalized forbidding, semi-conditional, or
simple semi-conditional grammars (see [11, 35, 72, 74, 79]). All these grammars are proved to
be able to generate the family of recursively enumerable languages. Specifically, recall that every
recursively enumerable language was shown to be generated

(1) by a context-conditional grammar of degree (1, 1) (however, the number of conditional produc-
tions and nonterminals is not limited, see [1 1, 50, 86]);

(2) by a generalized forbidding grammar of degree two with no more than thirteen conditional
productions and fifteen nonterminals (see [73]); and

(3) by a simple semi-conditional grammar of degree (2, 1) with no more than ten conditional pro-
ductions and twelve nonterminals (see [92]).

This thesis improves these results (see [41, 42, 46, 48, 47]). Specifically, it proves that every recur-
sively enumerable language is generated

(A) by a context-conditional grammar of degree (2, 1) with no more than seven conditional pro-
ductions and eight nonterminals;

(B) by a generalized forbidding grammar of degree two and index six with no more than ten con-
ditional productions and nine nonterminals;



(C) by a generalized forbidding grammar of degree two and index four with no more than eleven
conditional productions and ten nonterminals;

(D) by a generalized forbidding grammar of degree two and index nine with no more than eight
conditional productions and ten nonterminals;

(E) by a generalized forbidding grammar of degree two and unlimited index with no more than
nine conditional productions and eight nonterminals;

(F) by a simple semi-conditional grammar of degree (2,1) with no more than nine conditional
productions and ten nonterminals; and

(G) by a semi-conditional grammar of degree (2, 1) with no more than seven conditional produc-
tions and eight nonterminals.

In fact, except for result (E), all these results are established for grammars with context conditions
represented by strings consisting solely of nonterminals as opposed to the previous results that allow
terminals to appear in them as well.



Chapter 2

Notation and Basic Definitions

The set of all natural numbers is denoted by N. The set of all natural numbers with zero is denoted
by Ny. The cardinality of a set, A, is denoted by |A|. For two sets, A and B, A C B denotes that A is
a subset of B; A C B denotes that A C B and A # B, i.e. A is a proper subset of B.

2.1 Alphabets and Strings

An alphabet is an arbitrary finite nonempty set of elements, which are called symbols. A finite
sequence, w, of symbols forms a string. The empty string, denoted by &, is the string that contains
no symbols. The length of w, |w|, is the number of all symbols in w.

Let x and y be two strings over an alphabet 7. Then, xy is the concatenation of x and y. The
following equation is an immediate consequence of the definition;

XE=EX=X.

Definition 1. Let x be a string over an alphabet 7. For i € Ny, the ith power of x is defined as

Observe that for any string x, o . o
xx/ = xx' =X

for any i, j € Np.

Definition 2. Let x be a string over an alphabet T. The reversal of x, xX, is defined as

=€

2. ifx=ay...a, forsomen €N, anda; €X, fori=1,...,n, then (a;...a,)¥ =a,...a;.

Definition 3. Let x and y be two strings over an alphabet T. Then, x is a substring of y if there exist
two strings z and 7’ over T so that zxz’ = y. If z = €, then x is a prefix of y. If 7 = €, then x is a suffix
of y. Moreover, if x & {&,y}, then x is a proper substring (prefix, suffix) of y.



2.2 Languages and Language Operations

Let T be an alphabet and let 7* denote the set of all strings over 7. Set 7+ = T* — {e}. In other
words, T denotes the set of all nonempty strings over 7. A language, L, over T is a subset of T*,
ie. LCT*.

As languages are sets, the common set operations can be applied to them (such as union, inter-
section, difference, and complement). That is, for two languages L; and L,

LiULy, = {x:x€Ljorxel,},
LiNnL, = {x:xe€Ljandxe€ Ly},
Li—L, = {x:x€L1 andx§{L2}.

Consider a language, L, over an alphabet T. The complement of L, L, is defined as

L=T"-L.

A language, L, is said to be finite if |L| = n, for some n € Ny; otherwise, L is said to be infinite.
The basic language operations follow.

Definition 4. Let L; and L, be two languages. The concatenation of Ly and L, LL,, is defined as
LiL,={xy:x€Liandy€ Ly}.
Definition 5. Let L be a language. The reversal of L, LR, is defined as
=R xel}).
Definition 6. Let L be a language. For i € Ny, the ith power of L, L, is defined as
1. I°=¢
2. L'=LL"!

Definition 7. Let L be a language. The Kleene closure of L, L*, is defined as
L'=r.
i=0
Definition 8. Let L be a language. The positive closure of L, L™, is defined as
Lr=Jr.
i=1

Definition 9. Let f: T* — 2" be a mapping, T, U alphabets. If f satisfies the following conditions,
then f is said to be a substitution.

L. f(e) = {e},

2. f(xy) = f(x)f(y), where x,y € T*.



f is said to be finite if f(a) is a finite language, for all @ € T. For any language L C T*,

fy=J .

xelL

Substitution f is called nonerasing if € & f(a), for any a € T. A homomorphism is a substitution
f such that |f(a)| =1, forall a € T. Let f be a homomorphism. Then, the inverse homomorphic
image of L is the set

FI)={xeT": f(x) €L},
and, for strings,

fw) ={xeT: fx) =w}.

Definition 10. A right quotient of a language L with a language K is the set
L/K={w:wxelL, forsomex€cK}.

Definition 11. Let .% be a family of languages and & be an n-ary language operation. .% is closed
under the operation O if, for any languages Li,...,L, € %, O(Ly,...,L,) € Z.

Definition 12. Let w be a string over an alphabet 7. Then,
sub(w) = {u : uis a substring of w},

and
alph(w) ={a € T : a appears in w} .

For any language, L, over T,
alph(L) = U alph(w) .

weL

Definition 13. For a finite subset W C 7%, T is an alphabet, max(W) is the minimal nonnegative
integer n such that |x| < n, for all x € W.

Definition 14. For integers ny,...,n, k € N, max{ny,...,n;} denotes the maximum of ny,...,ny.

2.3 Grammars

In this section, devices generating languages are defined. Such devices are called grammars and
play the main role in formal language theory.

Definition 15. A grammar, G, is a quadruple G = (N, T,P,S), where
e N is a nonterminal alphabet,

e T is a terminal alphabet such that NNT =0,

P is a finite set of productions of the form
u—v,

where u € V*NV* and v € V*; V denotes the toral alphabet of G,i.e. V=NUT.

S € N is the start symbol.

10



Every grammar G = (N,T,P,S) defines a binary relation of direct derivation on the set V*
denoted by = and defined as
xX=y

provided that
1. there is a production u — v € P and
2. strings x1,xp € V* such that

e x = xjuxp and

® y=X|VX).

If x,y € V* and m € N, then x =" y if and only if there is a sequence xo = x| = ... = x,,,, where
xo = x and x,, = y. We write x =" y if and only if there is m € N such that x =" y, and x =* y if
and only if x =y or x =7 y. In other words, =" and =* are the transitive and the reflexive and
transitive closures of =, respectively.

The elements of V* that can be derived from the start symbol, S, are called sentential forms of
G = (N,T,P,S). More precisely, x € V* is a sentential form if

S=%*x.

If x does not contain nonterminals, then x is called a sentence. If x is a sentence, then S =" x is said
to be a terminal derivation. The set of all sentences is the language generated by G, denoted by
Z(G),ie.
Z(G)={weT":S="w}.
Grammars G| and G are said to be equivalent if and only if they generate the same language,
i.e.

Z(G1) =Z(Ga).

Chomsky Hierarchy of Languages

At the end of 50’s, linguist Naom Chomsky separated grammars into four basic groups according
to limitations put on their productions. Chomsky hierarchy distinguishes the following four basic
types of grammars:

type 0: Any grammar is a type 0 grammar.

type 1: A grammar is a type 1 (or context-sensitive) grammar if all its productions are of the form
u — v with |u| <|v|; except for the case S — €, where S does not occur on the right-hand side
of any production.

type 2: A grammar is a type 2 (or context-free) grammar if all its productions are of the form u — v
withu € N.

type 3: A grammar is a type 3 (or regular) grammar if all its productions are of the form u — v
withu e Nandve TNUT U{e}.

The hierarchy of grammars establishes the hierarchy of languages. A language, L, is said to
be regular (context-free, context-sensitive, recursively enumerable) if there is a regular (context-
free, context-sensitive, type 0) grammar, G, such that L = £(G). These families of languages are
denoted by REG, CF, CS, and RE, respectively. The following theorem holds (see [01]).

11



Theorem 1. REG C CF C CS C RE.

Definition 16. Let G= (N, T,P,S) be a grammar. G is in the Kuroda normal form if each production
in P is in one of the following four forms

1. AB— CD,
2. A— BC,
3. A—a,

4. A — &,

where A,B,C,D € N and a € T. In addition, if for each production of the form AB — CD we have
A = C, then G is in the Penttonen normal form.

Proofs of the following theorem can be found in [61, 77].

Theorem 2. Let L be a recursively enumerable language. Then, there is a grammar G in the Kuroda
(Penttonen) normal form such that L = £ (G).

The following three normal forms are fundamental for the results concerning the descriptional
complexity of grammars proved in this thesis.

Definition 17. Let G = (N, T, P,S) be a grammar.
1. G is in the first Geffert normal form if it is of the form
G = ({S,A,B,C},T,PU{ABC — €},S),
where P contains context-free productions of the form

S — uSa, where u € {A,AB}*, a € T,
S — uSv, where u € {A,AB}*, v € {BC,C}",
S — uv, where u € {A,AB}*, v € {BC,C}*.

2. G is in the second Geffert normal form if it is of the form
G=({S,A,B,C,D},T,PU{AB — €,CD — ¢},S5),
where P contains context-free productions of the form

S — uSa, where u € {A,C}*, a €T,
S — uSv, where u € {A,C}*, v € {B,D}",
S — uv, where u € {A,C}*, v € {B,D}".

3. G isin the third Geffert normal form if it is of the form
G=({S,A,B},T,PU{ABBBA — ¢},S),
where P contains context-free productions of the form

S — uSa, where u € {AB,ABB}*, a € T,
S — uSv, where u € {AB,ABB}*, v € {BA,BBA}",
S — uv, where u € {AB,ABB}*, v € {BA,BBA}".

12



The following three theorems are proved in [17, 20].

Theorem 3. Let L be a recursively enumerable language, then there is a grammar, G, in the first
Geffert normal form such that L = Z(G).

In addition, any terminal derivation in G is of the form S =* wiwow by productions from P,
where wy € {A,AB}*, wy € {BC,C}*, w € T*, and wiwow =" w is derived by ABC — €.

Theorem 4. Let L be a recursively enumerable language, then there is a grammar, G, in the second
Geffert normal form such that L = Z(G).

In addition, any terminal derivation in G is of the form S =* wiyww by productions from P,
where wi € {A,C}*, wa € {B,D}*, w € T*, and wiwow =" w is derived by AB — € and CD — &.

Theorem 5. Let L be a recursively enumerable language, then there is a grammar, G, in the third
Geffert normal form such that L = £ (G).

In addition, any terminal derivation in G is of the form S =* wiwow by productions from P,
where wy € {AB,ABB}*, w, € {BA,BBA}*, w € T*, and wiw,w =* w is derived by ABBBA — &.

2.4 Automata

In this section, basic devices for recognizing strings of a given (regular or context-free) language
are defined—finite and pushdown automata. These definitions are based on the notation of [61],
however, they are equivalent to the so-called delta-notation (see [32]).
2.4.1 Finite Automata
Definition 18. A finite automaton, M, is a quintuple M = (Q, X, 8, qo, F), where

e () is a finite set of states,

e Y is a finite input alphabet,

e 0 is a finite set of rules of the form
qw — p,
where ¢,p € Qand w € ¥,

qo € Q is an initial state, and

F is a set of final states.

Definition 19. Let ¥ be an alphabet of rule labels such that |¥| = |§|, and y be a bijection from &
to . For simplicity, to express that y maps a rule gw — p € 0 to r, where r € ¥, we write

rgw — p € 9;

in other words, r.qw — p means y(gw — p) =r.

A configuration of M is any string from QX*. For any configuration gwy, where g € Q, wy € £*,
and any r.qw — p € 8, M makes a move from configuration gwy to configuration py according to
r, written as

gwy = py|[r].

Let x be any configuration of M. M makes zero moves from ) to ¥ according to €, written as
0
x="xlel.

13



Let there exist a sequence of configurations o, X1,. . ., Xn, for some n € N, such that x;,_1 = x;[ri],
where r; € ¥, i =1,...,n. Then, M makes n moves from )y to X, according to ry,...,r,, symboli-
cally written as

Xo="Xnlri...ra).

Such a sequence of moves is also called a computation. We write Yo =" X, [r1...r] if xo ="
Xnl|r1-..ra), for some n € N. Analogously, we write yo =" x, [u] if either yo = ), and u = €, or
X0 =" Xn[u], where u = ry...r,, for some ry,...,r, € P. If w € L* and gow =" f[u], for some
f € F, then w is accepted by M and gow =" f[u] is an acceptance of w in M.

The language of M is defined as

ZL(M) ={weX:gow=" f[u] is an acceptance of w}.
For a proof of the following theorem see [01].
Theorem 6. Let L be a language. L is regular if and only if there is a finite automaton, M, such

that L= 2 (M).

24.2 Pushdown Automata
Pushdown automata represent finite automata extended by a potentially unbounded pushdown store.

Definition 20. A pushdown automaton, M, is a septuple M = (Q,X,T", 8, q0,Z, F), where

Q is a finite set of states,

¥ is a finite input alphabet,
e [ is a finite pushdown alphabet,

S is a finite set of rules of the form

Zqw — Yp,
where g, p e Q,Zcl,weX* andyeI™,
® go € Q is an initial state,
e 7y is an initial pushdown symbol, and
e F is a set of final states.

Definition 21. Again, let y denote the bijection from & to ¥, and write
r.Zgw — Yp

instead of y(Zgw — yp) =r.

A configuration of M is any string from I"™*QX*. For any configuration xAgwy, where x € I'*,
AeTl, ge Q,wye X and any rAgw — yYp € 8, M makes a move from xAgwy to xypy according
to r, written as

xAgwy = xypy|r].
As usual, we define =", for n € Ny, =7, and =*. If w € £* and Zygow =" f 1], for some f € F,
then w is accepted by M and Zygow =* f [u] is an acceptance of w in M.
The language of M is defined as

ZL(M)={weX": Zygow =" f[u] is an acceptance of w}.
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For a proof of the following theorem see [61].

Theorem 7. Let L be a language. L is context-free if and only if there is a pushdown automaton,
M, such that L= % (M).
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Chapter 3

Current Concepts and Results

Undoubtedly, over its history, the most studied languages of the Chomsky hierarchy were regular
and context-free languages because of their great practical use. However, a short time after its
introduction, some practical applications were discovered for which context-free languages were
shown not to be sufficient. According to the Chomsky hierarchy, there was no other way than to
consider such languages as being context-sensitive. Nevertheless, most of these languages were
quite simple and, therefore, new ways how to describe languages of such types were looked for.
These efforts eventually led to the idea of increasing the power of existing formal systems by their
regulation.

Regulated Formal Systems

Formal language theory has paid a great attention to regulated and modified grammars, see [1 1, 74]
and papers [3, 4, 10, 14, 16, 23, 31, 53, 54, 57]. Specifically, the following regulated grammars
have been intensively studied.

e matrix grammars;

e programmed grammars;

e random context grammars;
e scattered context grammars;

e conditional grammars.

The main idea behind the regulation of grammars is to take a simple, well-known grammar
that is not as powerful as needed, and to find a new way how to simply increase the power of this
grammar. For instance, in most cases of regulated grammars, a context-free grammar is taken as
the initial or basic simple grammar. However, other types of grammars of the Chomsky hierarchy
were studied as well.

On the other side, the notion of regulated automata is rather new. So far, only two papers by
Meduna and Koléf concerning the topic of regulated automata have been published (see [69, 70]).
In essence, these automata regulate the use of their rules according to which they make moves by
control languages.

Informally, consider a pushdown automaton, M, and a control language, L, over M’s rule labels.
With L, M accepts a string, w, if and only if L contains a control string according to which M makes
a sequence of moves so that it reaches a final configuration after reading w. Moreover, with L, M
defines the following three types of accepted languages:
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Z(M,L,1)—the language accepted by final state;
Z(M,L,2)—the language accepted by empty pushdown;
£ (M, L,3)—the language accepted by final state and empty pushdown.

For any family of languages, .7, set RPD(.%,i) = {<£(M,L,i) : M is a pushdown automaton and
Le .7}, wherei=1,2,3.
The following results are proved in [69].

1. CF = RPD(REG,1) = RPD(REG,2) = RPD(REG,3), and
2. RE = RPD(LIN,1) = RPD(LIN,2) = RPD(LIN.,3).

Here, LIN denotes the family of context-free languages, where any context-free production A — «
contains no more than one nonterminal in . Such languages are called linear.

In [70], some restrictions of regulated pushdown automata are studied. Consider two consec-
utive moves made by a pushdown automaton, M. If during the first move M does not shorten its
pushdown and during the second move it does, then M makes a turn during the second move. A
pushdown automaton is one-turn if it makes no more than one turn during any computation starting
from an initial configuration. Recall that the one-turn pushdown automata are less powerful than
the pushdown automata.

It is proved that one-turn regulated pushdown automata characterize the family of recursively
enumerable languages and that this equivalence holds even for some restricted versions of one-turn
regulated pushdown automata, such as atomic and reduced one-turn pushdown automata.

During a move, an atomic one-turn regulated pushdown automaton changes a state and, in
addition, performs exactly one of the following actions:

1. it pushes a symbol onto the pushdown;
2. it pops a symbol from the pushdown;
3. itreads an input symbol.

A reduced one-turn regulated pushdown automaton has a limited number of some components, such
as the number of states, pushdown symbols, or transition rules.

The main result proved in [70] is that every recursively enumerable language is accepted by an
atomic reduced one-turn regulated pushdown automaton in terms of (A) acceptance by final state,
(B) acceptance by empty pushdown, and (C) acceptance by final state and empty pushdown. More
specifically, it proves that atomic one-turn pushdown automata with no more than one state and two
pushdown symbols regulated by linear languages characterize the family of recursively enumerable
languages.

One of the main aims of this thesis is to contribute to this topic.

Descriptional Complexity of Grammars

The second part of this thesis is concerning the descriptional complexity of grammars. As men-
tioned above, this is a vivid trend of formal language theory that has recently so intensified that an
annual international conference Descriptional Complexity of Formal Systems is held to discuss this
specific topic (see [75, 38, 21] for its latest proceedings). The following list presents the known
results concerning the descriptional complexity of partially parallel grammars and grammars regu-
lated by context conditions. It is known that every recursively enumerable language is generated
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(1) by a scattered context grammar with no more than five nonterminals and two non-context-free
productions (see [92]);

(2) by a multisequential grammar with no more than six nonterminals (see [58]);
(3) by a multicontinuous grammar with no more than six nonterminals (see [59]);

(4) by a context-conditional grammar of degree (1, 1) (however, the number of conditional produc-
tions and nonterminals is not limited, see [1 1, 50, 86]);

(5) by a generalized forbidding grammar of degree two with no more than thirteen conditional
productions and fifteen nonterminals (see [73]); and

(6) by a simple semi-conditional grammar of degree (2, 1) with no more than ten conditional pro-
ductions and twelve nonterminals (see [92]).
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Chapter 4

Self-Regulating Automata

This chapter studies self-regulating finite and pushdown automata. The first section introduces self-
regulating finite and pushdown automata and defines two variants how they accept an input string—
so-called first-move and all-move self-regulating finite and pushdown automata. The second section
studies first-move and all-move self-regulating finite automata and describes their power with re-
spect to the number of turns. Then, some closure properties of families of languages accepted by
these automata are studied. Finally, both variants of self-regulating finite automata are compared.
The last section of this chapter studies self-regulating pushdown automata. Although the first-move
self-regulating pushdown automata are introduced, the question of their power is an open problem.

4.1 Definitions and Examples

This section introduces self-regulating finite and pushdown automata and two ways how they accept
an input string.

Consider a finite (pushdown) automaton with a selected state, so-called turn state, and with a
finite relation on the alphabet of rule labels. Such an automaton is said to be a self-regulating finite
(pushdown) automaton.

Definition 22. Let N = (Q,X, 3,90, F) be a finite (N = (Q,X,T",8,q0,Zo, F) be a pushdown) au-
tomaton. A self-regulating finite (pushdown) automaton, SFA (SPDA), M, is a triple

M= (N,q:,R),
where
1. g; € Qs a turn state, and
2. R C¥ x W is a finite relation on the alphabet of N’s rule labels, W (see Definition 19).

Notation. Let N = (Q,X, 0, qo, F) be a finite automaton. The self-regulating finite automaton
M = (N,q:,R)
is, to clarify the components of N, written as
M=(Q,%,8,90,49:,F,R)

from now on. Analogously for self-regulating pushdown automata.

19



4.1.1 Self-Regulating Finite Automata

The main idea of the self-regulating finite automata is as follows. Consider a finite automaton, N.
This automaton starts its computation in the start state and then, during its computation, reads the
input string and, accordingly, goes from a state to another one. If, having read the whole input
string, the computation ends in a final state, the input is accepted; otherwise, the input is rejected.
A self-regulating finite automaton, M = (N,q;,R), is a finite automaton that behaves as follows.
M starts in the start state and while it does not reach the turn state, it reads the input, moves from
a state to another state according to the applied rule and records the rule. If M reaches the turn
state for the first time, i.e. state g, is, for the first time, the current state of M, the automaton
makes a turn. It means that M, in addition, starts to read the recorded sequence of rules, and the
computation proceeds according to the relation R. More precisely, M reads an input symbol a, reads
the first recorded rule, r, of the sequence of rules, r;r; ... r, goes from the current state to another
one according to a rule s; such that (r1,s;) € R, replaces r; with 51, and the next recorded rule
is read, rp. After the whole sequence rir;...r; has been read, M makes a turn again or finishes
its computation. Note that only in case of the first turn the current state is required to be the turn
state g;. If M makes n € Ny turns during its computation, it is called an n-turn self-regulating finite
automaton.

Now, let us formally define two variants self-regulating finite automata can accepted an input
string. The first variant are so-called n-turn first-move self-regulating finite automata. The phrase
“first-move” means that only the first rule applied after a turn is required to be in R with the first
rule of the current recorded sequence of rules.

Definition 23. Let n € Ny and
M= (Q)Ea 67q07qt7F7R)

be a self-regulating finite automaton. M is said to be an n-turn first-move self-regulating finite
automaton, n-first-SFA, if M accepts w in the following way. There is an acceptance of the form
gow =" f[u] such that

0 0.1 1 n
W=7r]. . .1 T F] ..

X

Y

where k € N, r,? is the first rule of the form gx — ¢;, for some g € Q, x € £*, and
(") €R,

forall0 < j<n.
The family of languages accepted by n-first-SFAs is denoted by FIRST,.

Example 1. Consider a one-turn first-move self-regulating finite automaton,

M= ({S,t,f},{a,b},s,s,ﬁ{f},{(l,:;)}),

with d containing rules 1.sa — s, 2.sa — t, 3.tb — f, and 4.fb — f (see Figure 4.1).
With aabb, M makes
saabb = sabb [1] = tbb[2] = fb[3] = f[4].

In brief, saabb =* f[1234]. Observe that £ (M) = {a"b" : n > 1}, which belongs to CF — REG.

The second variant are so-called n-turn all-move self-regulating finite automata. The phrase
“all-move” means that all rules applied after a turn are required to be in R with the corresponding
rules of the current recorded sequence of rules.
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SORO080
Figure 4.1: One-turn first-move self-regulating finite automaton M.

Definition 24. Let n € Ny and
M = (Q72767q07q17F7R)

be a self-regulating finite automaton. M is said to be an n-turn all-move self-regulating finite au-
tomaton, n-all-SFA, if M accepts w in the following way. There is an acceptance gow =" f [u] such

that

_ .0 0.1 1 n n
W=r]. .1y .. Ty ... ...,

where k € N, r,? is the first rule of the form gx — ¢;, for some g € Q, x € £*, and
GRANEY S

foralll1 <i<k, 0<j<n.
The family of languages accepted by n-all-SFAs is denoted by ALL,,.

Example 2. Consider a one-turn all-move self-regulating finite automaton,

M= ({sataf}’{a7b}757s7t>{f}v{(174)¢ (2¢5)> (3a6)})7

with & containing rules 1.sa —s,2.sb —s,3.5s —t,4.ta—1,5.tb —t,and 6.t — f (see Figure 4.2).

a,b a,b
OO0
Figure 4.2: One-turn all-move self-regulating finite automaton M.

With abab, M makes
sabab = sbab [1] = sab[2] = tab[3] = tb[4] = t[5] = f[6].

In brief, sabab =* f[123456]. Observe that £ (M) = {ww : w € {a,b}*}, which belongs to CS —
CF.

4.1.2 Self-Regulating Pushdown Automata

Self-regulating pushdown automata are defined in the same manner as self-regulating finite au-
tomata. Formal definitions follow.
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Definition 25. Let n € Ny and
M= (QazaraaquCIHZOaF?R)

be a self-regulating pushdown automaton. M is said to be an n-turn first-move self-regulating
pushdown automaton, n-first-SPDA, if M accepts w in the following way. There is an acceptance
Zogow =" f[u] such that

w=r)

where k € N, r,? is the first rule of the form Zgx — yg;, forsome Z €', g€ Q,x € X*, y € I'*, and
(r].F") eR,

forall0 < j<n.
The family of languages accepted by n-first-SPDAs is denoted by FIRST-SPDA,.

Definition 26. Let n € Ny and
M= (Qazara 57407%7ZO;F7R)

be a self-regulating pushdown automaton. M is said to be an n-turn all-move self-regulating
pushdown automaton, n-all-SPDA, if M accepts w in the following way. There is an acceptance

Zogow =" f[u] such that

_ 0 0.1 1 n
W=TF]...T(F ... T ... ...TE,

where k € N, r,? is the first rule of the form Zgx — vq;, forsome Z €T, g€ Q,x € ¥, y e I'*, and
(r] ") eR,

forall1 <i<k,0<j<n.
The family of languages accepted by n-all-SPDAs is denoted by ALL-SPDA,,.

4.2 Self-Regulating Finite Automata

In this section, the main results concerning self-regulating finite automata are proved.

4.2.1 First-Move Self-Regulating Finite Automata

This section proves the identity between the family of languages accepted by n-turn first-move self-
regulating finite automata and the family of languages generated by (n + 1)-parallel right linear
grammars. To do so, a special form of parallel right linear grammars is needed. First, however,
parallel right linear grammars are defined (see [82, 83, 94, 95]).

Definition 27. For n € N, an n-parallel right linear grammar, n-PRLG, is an (n+ 3)-tuple
G=(M,...,N,,T,S,P),
where
o N;, 1 <i<n, are pairwise disjoint nonterminal alphabets,

e T is a terminal alphabet,
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e SZN=N;U---UN, is the start symbol, NNT = @, and

e P is afinite set of productions of the following three forms:

1.S—X;...X,, X;eN;, 1<i<nm
2. X —wY, X, YeN;, forsomel <i<nweT"
3. X —w, XeN,weT"

For x,y € (NUT U{S})*, x = y if and only if
1. eitherx=Sand S —y € P, or
2. x=y1X1.. .V Xn, Y =V1X1 ... YuXn, Where y; € T*, X; e Nj,and X; — x; € P, fori=1,...,n.

Relations =", for n € Ny, =1, and =* are defined as usual.
The language generated by an n-parallel right linear grammar, G, is defined as

L(G)={weT":S="w}.

A language, L, is an n-parallel right linear language, n-PRLL, if there is an n-PRLG, G, such
that L = Z(G). The family of n-PRLLs is denoted by R,,.

Definition 28. Let G = (Ny,...,N,,T,S,P) be an n-PRLG, for somen € N, and leti = 1,...,n. By
the ith component of G we understand a one-PRLG

G=(N,T,S,P),
where P’ contains productions of the following forms:

1.8 = X; ifS—X;...X, € P,X; €N;;
2. X —>wY if X —>wYePand X,Y € N;;
3. X—>w ifX -wePand X € N,.

The following special form of parallel right linear grammars is needed to prove the main results.

Lemma 1. For every n-PRLG G = (Ny,...,N,,T,S,P), there is an equivalent n-PRLG

G =(N,,....N.,T,S,P)

that satisfies:

1. if S — X1...X, € P/, then X; does not occur on the right-hand side of any production, for
i=1,...,n

2. ifS— o, S— B € P and o # B, then alph(o) Nalph(B) = 0.

Proof. If G does not satisfy conditions from the lemma, then we will construct a new n-PRLG
G = (N{,...,N,,T,S,P"), where P’ contains all productions of the form X — 8 € P, X # S, and
N; C NJ’~, for j=1,...,n. For each production § — X; ...X,, € P, we add new nonterminals Y §ZN}
into N}, and productions include S — Y ...Y, and Y; — X; in P/, for j=1,...,n. Clearly,

S=¢X;...Xpifandonly it S=¢ 11...Y, = X1... X,.

Thus, Z(G) = Z(G). O
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The following lemma says that every language generated by an n-parallel right linear grammar
can be accepted by an (n — 1)-turn first-move self-regulating finite automaton. Thus, first-move
self-regulating finite automata are at least as powerful as parallel right linear grammars.

Lemma 2. Let G be an n-PRLG. Then, there is an (n — 1)-first-SFA, M, such that £ (G) = £ (M).

The basic idea of the proof is that M is divided into n parts (see Figure 4.3). The ith part
represents a finite automaton accepting the language of G’s ith component, and R also connects the
ith part to the (i + 1)st part as depicted in Figure 4.3.

Proof. Without loss of generality, we can assume that G = (Ny,...,N,,T,S,P) is in the form from
Lemma 1. Construct an (n — 1)-first-SFA

M= (Q,T,S,QquanR)a

where

0 = {q0,---,qu}UN, N=N;U---UN,, and {q0,q1,-..,qn.} "N =0,

F = Aa},
{gi = Xi1:S—X1.. X, €L0<i<n}U

o0 = {Xw—Y:X —wY € P}U
{Xw—gq:X—>wePweT* XeN;,1<i<n},

q = 41,

Y = § with the identity map, and

R = {(¢i—Xit1,9i+1 — Xig2) :S—X1.. X, € P,0<i<n—2}.

We prove that £ (G) = £ (M). To prove that £ (G) C £ (M), consider a derivation of w in G
and construct an acceptance of w in M depicted in Figure 4.3. This figure clearly demonstrates the

s e LN

4 el ) el
xj Xi X{ xj S G X{

4 x| |27l ,s’ xi
XXy xOxF .. XXy x| x| X2

4 x| : x| bl

1 oyl 2 w2 n Xt | 1 =L 2 T
Xpex X oxpe Xp o XX P X; X7
i3 xlll x;%l Xl
w=x}..,x,1( x%...x]% x’f...xz q 0 an

in G in M

Figure 4.3: A derivation of w in G and the corresponding acceptance of w in M.

fundamental idea behind this part of the proof; its complete and rigorous version is lengthy and left
to the reader. Thus, for each derivation S =* w, w € T*, there is an acceptance of w in M.

To prove that £ (M) C Z(G), let w € £ (M), and consider an acceptance of w in M. Observe
that the acceptance is of the form depicted on the right-hand side of Figure 4.3. It means that

the number of steps M made from g;_; to g; is the same as from g; to g;+| since the only rule in
the relation with g; | — Xj is the rule ¢; — X{“. Moreover, M can never come back to a state

corresponding to a previous component. (By a component of M, we mean the finite automaton
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M; = (0,%,0,qi-1,{qi}), for 1 <i < n.) Now, construct a derivation of w in G. By Lemma 1,
we have [{X : (¢; —>Xf+1,q,-+1 —X)€eR}| =1,forall0 <i<n—1. Thus, S—>X11X12...X1" €P.
Moreover, if Xj’:xi- — X;+1, we apply X} — x;-X]l:H € P, and if X,ﬁx}'{ — gj, we apply X,ﬁ — x}; €P,
1<i<nml1<j<k

Hence, Lemma 2 holds. O

The following lemma says that every language accepted by an n-turn first-move self-regulating
finite automaton can be generated by an (n + 1)-parallel right linear grammar. Thus, parallel right
linear grammars are at least as powerful as first-move self-regulating finite automata.

Lemma 3. Let M be an n-first-SFA. There is an (n+ 1)-PRLG, G, such that £ (G) = £ (M).

Proof. LetM = (Q,X%,9d,q0,q:,F,R). Consider G = (N, ...,Ny,L,S,P), where

N, = (QEuU{e})'xOx{i} xQ)u(Qx{i} xQ),

I = max{|w|:gw—ped}, 0<i<n, and
_ 0 1 2 n .
P = {S - [QOXan aocht][qrxlaq alvqil][QiIXZaq aZ,Qiz] cee [Qin,lxnaq an,CIi,l] .
70-90%0 — q°, 11.q:X1 — G, 12.qi X2 — @Fse oy TunGiy Xn — q" € 8,

(r()url);(rlarZ)a'-')(rnfber) GR) qi, EF}U
{lpx,q,i,r] — x[g,i,r]} U
{lg,i.q] = e:q€ QU
{lg.i.pl = wld,i,p]: qw — 4’ € 5}
We prove that £ (G) = £ (M). To prove that £ (G) C £ (M), observe that we make n + 1

copies of M and go through them similarly to Figure 4.3. Consider a derivation of w in G. Then, in
greater detail, this derivation is of the form

S = [QOX?),Q?vO,%] [th(l)aq%a 17qi|] < [qin,lxgaqulan7qin]
= x8[q(1)707%]x(1)[CI%7 17Qi1] ‘e 'xg[q}ilan7qi,,]

= x?)x(l)[qgvoaqt]x(l)x{ [C]éy 17611'1] . -xgxrf[qgan’%] (4'1)
= xgx?...xg[q,,o,qt]x(l)x%...x,i[q,-l,l,qil]...xﬁx’l’...xZ[q,-n,n,qin]
= )l x
and
109Xy — q°, T1.qixy — qb, 1.9 X5 — @3- .., TaeGiy X — €8,
(ro,r1), (r1,72)5--+, (rn—1,7n) ER,
and g;, € F.
Thus, the list of rules used in the acceptance of w in M is
uo= (q0x) — g)) (g} = 43) ... (qx} — ar)
(gix0 — a1)(q1x1 = @2) - (@i — 4i,)
(91,55 — 1) (gixi — @) - - (4i%i — aiy) (4.2)

(i, %0 = 1) (d1X] — q3) ... (qix] — qi,)-

25



Now, we prove that (M) C .Z(G). Informally, the acceptance is divided into n + 1 parts of
the same length. Grammar G generates the ith part by the ith component and records the state from
which the next component starts.

Let u be a list of rules used in an acceptance of

w=x0xd . adxdxl L x B

in M of the form (4.2). Then, the derivation of the form (4.1) is the corresponding derivation of w
in G since

[qu’lvp] - x;’[qa—&-laiap] ep
and
[9,1,9] — €,

forall0<i<n, 1< j<k.
Hence, Lemma 3 holds. O

The first main result of this chapter is that first-move self-regulating finite automata are as
powerful as parallel right linear grammars.

Theorem 8. For all n € Ny, FIRST,, = R,+1.
Proof. This proof follows from Lemmas 2 and 3. O
Corollary 1. The following statements hold true.

1. REG=FIRSTy C FIRST; C FIRST, C --- CCS.

2. FIRST, C CF.

3. FIRST, Z CF.

4. CF ¢ FIRST, for any n € Ny.

5. Foralln € Ny, FIRST, is closed under union, finite substitution, homomorphism, intersection
with a regular language, and right quotient with a regular language.

6. Foralln € N, FIRST, is not closed under intersection and complement.
Proof. Recall the following statements proved in [83]:

e REG=R| CRyCR3C---CCS.

e Ry CCF.

e CFZR,,neN.

e For all n € N, R, is closed under union, finite substitution, homomorphism, intersection with
a regular language, and right quotient with a regular language.

e Foralln € N—{1}, R, is not closed under intersection and complement.

These statements and Theorem 8 imply statements 1, 2, 4, 5, 6 of Corollary 1. Moreover, observe
that {a"b"c*" :n € No} € FIRST, — CF, which proves 3. U

Theorem 9. For all n € N, FIRST, is not closed under inverse homomorphism.
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Proof. For n =1, let L = {a*b* : k € N}, and let the homomorphism & : {a,b,c}* — {a,b}* be
defined as h(a) = a, h(b) = b, and h(c) = €. Then, it is not hard to see that L € FIRST,. However,
we prove that

L'=h'(L)Nnc*a*b* = {c*d*b* : k € N} ¢ FIRST; .

Assume that L' is in FIRST;. Then, by Theorem 8, there is a two-PRLG G = (N, N, T, S, P) such
that Z(G) = L'. Let k > |P|-max{|w| : X — wY € P}. Consider a derivation of c*a*b* € L'. The
second component can generate only finitely many as; otherwise, it derives {a*b" : k < n}, which
is not regular. Analogously, the first component generates only finitely many bs. Therefore, the
first component generates any number of as, and the second component generates any number of
bs. Moreover, there is a derivation of the form X =" X, for some X € N,, and m € N, used in the
derivation in the second component. In the first component, there is a derivation A =/ a*A, for some
A € Ny, and 5,1 € N. Then, we can modify the derivation of c*a*b¥ so that in the first component, we
repeat the cycle A = a*A (m+ 1)-times, and in the second component, we repeat the cycle X =" X
(I 4 1)-times. The derivations of both components have the same length—the added cycles are of
length ml, and the rest is of the same length as in the derivation of cfa*b*. Therefore, we have
derived cka’b*, where r > k, which is not in L'—a contradiction.

For n > 1, the proof is analogous and left to the reader. O

Corollary 2. For all n € N, FIRST, is not closed under concatenation. Therefore, it is not closed
under Kleene closure either.

Proof. Forn=1,let L; = {c}* and L, = {a*b* : k € N}. Then, L|L, = {c*a*b* : k € N}. Analo-
gously for n > 1. Moreover, let L = Ly ULy. Then, L* N {c}*{a}{b}* =L, L,. O
4.2.2 All-Move Self-Regulating Finite Automata

This section discusses n-turn all-move self-regulating finite automata. It proves that the family of
languages accepted by n-turn all-move self-regulating finite automata coincides with the family of
languages generated by n-right linear simple matrix grammars.

Definition 29. For n € N, an n-right linear simple matrix grammar, n-RLSMG, is an (n+ 3)-tuple
G=(M,...,N,,T,S,P),
where
o N;, 1 <i<n, are pairwise disjoint nonterminal alphabets,
e T is a terminal alphabet,
e SZN=N;U---UN, is the start symbol, NNT = @, and

e P is a finite set of matrix rules. Any matrix rule can be in one of the following three forms:

L[S = Xi...X,], XieN,1<i<m
2.[X1 = wil,.. Xy —wp Y], wieT X, Y,eN, 1 <i<nm
3. [X1—>W1,...,Xn—>wn}, XiENi,WiET*,ISign.

Let m be a matrix, then m|i] denotes the ith rule of m.
For x,y € (NUT U{S})*, x = y if and only if

1. eitherx=Sand [S—y| € P,
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2. orx=y1X1...YuXn, Yy = Y1X1...YnXn, Where y; € T*, X; € N;, and [X; — x1,...,X, — x,] € P,
fori=1,...,n,

We define =", for n € Ny, x =" y, and x =" y as usual.
The language generated by an n-right linear simple matrix grammar, G, is defined as

Z(G)={weT":S="w}.
A language, L, is an n-right linear simple matrix language, n-RLSML, if there is an n-RLSMG,
G, such that L = Z(G). The family of n-RLSMLs is denoted by R,).

The ith component of an n-RLSMG is defined analogously as in case of parallel right linear
grammars.
To prove the main result, the following lemma is needed.

Lemma 4. For every n-RLSMG, G = (Ny,...,N,,T,S,P), there is an equivalent n-RLSMG, G, that
satisfies:

1. if [S — X;...X,), then X; does not occur on the right-hand side of any rule, fori=1,... n;
2. if[S—al, [S— B] € Pand a # B, then alph(a) Nalph(B) = 0;
3. for any two matrices my,my € P, if m\[i| = mazli], for some 1 <i < n, then my = mj.

Proof. The first two conditions can be proved analogously to Lemma 1. Suppose that there are
matrices m and m’ such that m[i] = m'[i], for some 1 <i <n. Let m = [X; — x1,...,X; — Xu],
m' = [Y1 — y1,...,Y, — yu]. Replace these matrices with matrices m; = [X; — X{,..., X, — X],
my = [X{ —xi,....X, —x,],andm| =Y, = Y/,....Y, =Y, m)=[Y] = yi1,...,Y) — y,], where

X!, Y/ are new nonterminals, for all i = 1,...,n. These new matrices satisfy condition 3. Repeat
this replacement until the resulting grammar satisfies the properties of G’ given in this lemma. [J

The following lemma says that every language generated by an n-right linear simple matrix
grammar can be accepted by an (n — 1)-turn all-move self-regulating finite automaton. Thus, all-
move self-regulating finite automata are at least as powerful as right linear simple matrix grammars.

Lemma 5. Let G be an n-RLSMG. There is an (n— 1)-all-SFA, M, such that £ (G) = £ (M).

Proof. Without loss of generality, we can assume that G = (Ny,...,N,,T,S,P) is in the form de-
scribed in Lemma 4. Construct an (n — 1)-all-SFA

M= (Q7T767q07ql‘7F7R)7
where

Q0 = {q0,---,gn}UN, N=N;U---UN,, and {q0,41,...,qn} NN =0,

Fo= {qn}v
{¢i—Xis1: [S—X1... X, €P,0<i<n}U
0 = {Xiwi—>YiZ[Xl—>W1Y1,...,Xn—>WnYn]GP,lSiSn}U

{Xiwi — qi: [ X1 = wi,.... Xy > wy €EP,w; €T, 1 <i<n},

a4 = 41,

Y = § with the identity map, and
{(¢i = Xi+1,9i+1 = Xig2) : [S— X1.. X)) e PL0<i<n—-2}U

R = {(Xiwi — Y, Xit1Wit1 —>Yi+1) : [X] —wiY,..., X, —>WnYn] eP1 §i<n}U
{(Xiwi — g1, Xiv1Wir1 — qiv1) : [ X1 = wi,... . Xy = wy| EP,w; €T, 1 <i<n}.
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We prove that .2 (G) = .Z(M). The proof of the inclusion .2 (G) C .Z (M) is very similar to
the proof of the same inclusion of Lemma 2, so it is left to the reader.

To prove that £ (M) C Z(G), consider w € £ (M) and an acceptance of w in M. As in
Lemma 2, the derivation looks like the one depicted on the right-hand side of Figure 4.3. We
generate w in G as follows. By Lemma 4, there is matrix [S — X/X?...X]] in P. Moreover, if

X’x’ —>X+l,l§i§n,then

(X] Jl—i-la)(l:—"_1 _HX;i}) R7
for1 <i<n,1<j<k Weapply
1
[X — X X/+17 X _}xn j+1]
from P. If X{x; — g, 1 <i <n, then

0 =X X ) e,

for 1 <i < n, and we apply
[X¢ = x X =2 €

Thus, w € Z(G).
Hence, Lemma 5 holds. O

The following lemma says that every language accepted by an n-turn all-move self-regulating
finite automaton can be generated by an (n + 1)-right linear simple matrix grammar. Thus, right
linear simple matrix grammars are at least as powerful as all-move self-regulating finite automata.

Lemma 6. Let M be an n-all-SFA. There is an (n+ 1)-RLSMG, G, such that £ (G) = £ (M).

Proof. LetM = (Q,X%,0,q0,q:,F,R). Consider G = (N, ...,N,,%,S,P), where

N = (QEuU{e})! xQx{i} xQ)U(Qx {i} x Q),

I = max{|w|:qgw—p€d}, 0<i<n, and
P = {[S— [q0%,4°,0,q/]lgx1.q" 1. qi] - g, . %n.q" 1. i,]]
ro-goxo — ¢°, ri.qixi — q',. .., Fn-qi, Xn —q" €0,
(ro,r1)y--y (ra—1,n) €R, qi, € F}U
{{[Pox0, 90,0, 0] — x0[q0,0, 7], - .- [PnXn, Gn, 11, 7] — X[, 10, 1]} U
{[[90,0,90] — &, [qn,n,qn] — €] : q;: € Q,0<i<n}U
{[l90,0, po] — wolg0,0, pol. - -, [, 1, Pu] — waldy, 1, Pa]] :

erjog)qzeaaOS.lgnv (riari+1)€RaO§i<n}’

We prove that £ (G) = £ (M). To prove that £ (G) C £ (M), consider a derivation of w in G.
Then, the derivation is of the form (4.1) and there are rules

0 0 1 1 n
ro.qoXo — 41, "'-9rXg — 41,-- -, Vn‘CIi,,,lxg —q]

in 6 such that (ro,r1),..., (rn—1,72) € R. Moreover, (r 5, l+1) € R, where r q . — q§~+1 € 0, and
(r,’c,r,i“) € R, where r,l(.qfcx,’c —q;, €0,0<1<n,1<j<k, gj, denotes ¢, and qi, € F. Thus, M

accepts w with the list of rules u of the form (4.2).
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To prove that £ (M) C .Z(G), let u be a list of rules used in an acceptance of
w=x0x) . adxdxl L xxBXX
in M of the form (4.2). Then, the derivation is of the form (4.1) because

[[61?,0»%] _>x?[‘]?—i—laovqt}:'"7[‘1?71/17%'"] Hx?[q;ﬁm”a%ﬂ €P,

for all q; €0,1<i<n 1<j<k, and|q,0,9]— ¢€,...,[qi,n,qi] — €] €P.
Hence, Lemma 6 holds. O]

The second main result of this chapter is that all-move self-regulating finite automata are as
powerful as right linear simple matrix grammars.

Theorem 10. For alln € No, ALL, = R}, ).
Proof. This proof follows from Lemmas 5 and 6. O
Corollary 3. The following statements hold:

1. REG=ALLy CALLy CALL, C --- C CS.

2. ALL, € CF.

3. CF L ALL,, for every n € Ny.

4. For all n € Ng, ALL, is closed under union, concatenation, finite substitution, homomor-
phism, intersection with a regular language, and right quotient with a regular language.

5. Foralln €N, ALL, is not closed under intersection, complement, and Kleene closure.
Proof. Recall the following statements proved in [95]:
e REG = Rm - Rm C R[3] C---CCS.

e Forallne N, Ry is closed under union, finite substitution, homomorphism, intersection with
a regular language, and right quotient with a regular language.

e Forall n € N— {1}, R}, is not closed under intersection and complement.
Furthermore, recall statements proved in [87] and [88]:

e Forall n € N, R, is closed under concatenation.

e Foralln € N— {1}, R, is not closed under Kleene closure.

These statements and Theorem 10 imply statements 1, 4, and 5 of Corollary 3. Moreover, observe
that {ww : w € {a,b}*} € ALL, — CF (see Example 2), which proves 2. Finally, let L = {wcew® :
w € {a,b}*}. In[11, Theorem 1.5.2], there is a proof that L ¢ R[n], for any n € N. Thus, 3 follows
from Theorem 10. 0

Theorem 11, given next, follows from Theorem 10 and from Corollary 3.3.3 in [88]. However,
Corollary 3.3.3 in [88] is not proved effectively. We next prove Theorem 11 effectively.

Theorem 11. ALL,, is closed under inverse homomorphism, for all n € Ny,.
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The basic idea of the proof is to simulate the derivation of a one-all-SFA, M, as follows. If M
reads a, the simulation proceeds as if M reads h(a), where h is a given homomorphism. Since h(a)
is a string, we store /1(a) in the state of the simulating automaton and then, in the state, simulate the
reading of i(a). However, the automaton can make a turn while a piece of /(a) is still stored in the
state. This string, in the proof denoted by y, must be carried over.

Proof. Forn=1,let M = (Q,%,8,490,q:,F,R) be a one-all-SFA, and let 4 : A* — ¥£* be a homo-
morphism. Construct a one-all-SFA

M/ = (Q,aAa 6/’616,6];7 {Q}}>R,)
accepting h ! (£ (M)) as follows. Denote k = max{|w| : gw — p € 8} + max{|h(a)| : a € A}. Let
Q' =qyU{lx,q,y] : x,y X", x[ .|y <k, g € O}

Initially, set 8’ and R’ to 0. Then, extend 6’ and R’ by performing 1 through 5, where &’ contains
exactly the rules used in R'.

1. Fory e X*,

Y| <k, add (9o — [€,90,)],9; — [V.41,€]) to R';

2. ForA e Q, q+# q: add ([x,q,y|la — [xh(a),q,y],A — A) to R’;

3. ForA € 0, add (A — A, [x,q,€|la — [xh(a),q,€]) to R;

4. For (gx — p,q'x' — p') ER, q # q;, add ([xw,q,y] — [w, p,y], [¥'W', ¢, €] — [w', P, €]) to R’;
5. For gy € F,add ([y,q:,y] — q;,[€,97.€] — q¢}) o R..

In essence, M’ simulates M in the following way. In a state of the form [x, ¢, y], the three components
have the following meaning:

e x="h(a;...a,), where ay ...a, is the input string that M’ has already read;
e ¢ is the current state of M;

e y is the suffix remaining as the first component of the state that M’ enters during a turn; y
is thus obtained when M’ reads the last symbol right before the turn occurs in M; M reads y
after the turn.

More precisely, h(w) = wiyw,, where w is an input string, wy is accepted by M before making the
turn, i.e. from g to ¢;, and yw, is accepted by M after making the turn, i.e. from g; to gr € F.
For n > 1, the proof is analogous. O

4.2.3 Language Families Accepted by n-first-SFAs and n-all-SFAs

This section compares the family of languages accepted by n-turn first-move self-regulating finite
automata with the family of languages accepted by n-turn all-move self-regulating finite automata.

Theorem 12. For alln € N, FIRST, C ALL,.

Proof. In [83] and [95], it is proved that for alln € N— {1}, R, C R}, The proof of Theorem 12
thus follows from Theorems 8 and 10. O

Theorem 13. FIRST, £ ALL, 1, for alln € N.
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Proof. Itis easy to see that L = {a']‘a'zC .. .a'r‘Hrl :k € N} € FIRST, = R,+1. However, LZ ALL, | =
Ry, (see Lemma 1.5.6in[11]). ]

Lemma 7. For each regular language, L, language {w" : w € L} € ALL,_.

Proof. Let L =% (M), where M is a finite automaton. Make n copies of M. Rename their states
so all the sets of states are pairwise disjoint. In this way, also rename the states in the rules of each
of these n automata; however, keep the labels of the rules unchanged. For each rule label r, include
(r,r) into R. As a result, we obtain an n-turn all-move self-regulating finite automaton that accepts
{w":weL} O

Theorem 14. ALL, — FIRST # 0, for all n € N, where FIRST = J,,_, FIRST,,.

Proof. By induction on n € N, we prove that language
L={(ew)""" :w e {a,b}*} ¢ FIRST .

From Lemma 7, L € ALL,,.

Basis: For n =1, let G be an m-PRLG generating L, for some positive integer m. Consider a
sufficiently large string cwicwy € L such that wy = wy, = @™'b"™, ny > ny > 1. Then, there is a
derivation of the form

S =P
x1A1x2A2 .. .xmAm :>k xlylAleyzAz . .xmymAm (43)

in G, where cycle (4.3) generates more than one a in wy. The derivation continues as

XiV1A1x0242 . XpYymAm ="
xiV121B1x2y222B2 . . XymZmBm  ='  xiy1ziu1Bix2y2zourBa . . XY mZmimBum 4.4)
(cycle (4.4) generates no as) =* cwicws.

Next, modify the left derivation, the derivation in components generating cwy, so that the a-gene-
rating cycle (4.3) is repeated (I + 1)-times. Similarly, modify the right derivation, the derivation in
the other components, so that the no-a-generating cycle (4.4) is repeated (k + 1)-times. Thus, the
modified left derivation is of length

pHk(+ 1) +r+l+s=ptk+r+i(k+1)+s,

which is the length of the modified right derivation. Moreover, the modified left derivation generates
more as in w; than the right derivation in w,—a contradiction.

Induction step: Suppose that the theorem holds for n > 2, and consider n+ 1. Let
{(ew)"™ 2w € {a,b}*} € FIRST;,

for some / € N. As FIRST; is closed under right quotient with a regular language, and {cw : w €
{a,b}*} is regular, we obtain {(cw)" : w € {a,b}*} € FIRST; C FIRST—a contradiction. O

Figure 4.4 summarizes the language families discussed so far.
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Figure 4.4: The hierarchy of languages. Here, F, stands for FIRST,, and A, for ALL,,.

4.3 Self-Regulating Pushdown Automata

The previous section has discussed self-regulating finite automata. Next, self-regulating pushdown
automata are discussed.

4.3.1 All-Move Self-Regulating Pushdown Automata

It is easy to see that an all-move self-regulating pushdown automaton without making any turn
is exactly a common pushdown automaton. Therefore, ALL-SPDAy = CF. Next, we prove that
one-turn all-move self-regulating pushdown automata are as powerful as Turing machines.

Theorem 15. ALL-SPDA, = RE.

The main idea of the proof is that every recursively enumerable language, L, can be expressed
as L=h(Z(G)NZL(H)), where G and H are context-free grammars, and % is a homomorphism.
Then, on the pushdown, automaton M simulates

1. G that generates a string, w, so that if a is on the top, M reads h(a); then,
2. H that generates w, which is verified by R (no input is read).

Proof. For any recursively enumerable language, L C A*, there are context-free languages .£(G)
and .Z(H) and a homomorphism 4 : £* — A* such that

L=h(Z(G)NL(H))

(see Theorem 1.12 in [49]). Suppose that G = (Ng, X, Pg,S¢) and H = (Ny, X, Py,Sy) are context-
free grammars in the Greibach normal form, i.e. all productions are of the form A — a, where A is
a nonterminal, a is a terminal, and o is a (possibly empty) string of nonterminals. Let us construct
one-all-SPDA

M= ({CIOﬂaQtaP’f}aA,ZUNGUNHU{Z}>5»CIO,Z> {f}7R)7

where Z ¢ ¥ UNg U Ny, with R made as follows:
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1. add (Zgo — ZS¢q,Zq; — ZSup) to R

2. add (Aq — B,,...B1aq,Cp — Dy, ...Dyap) to R if
A —aB,...B, € P; and
C—aD;...D, € Py

3. add (agh(a) — q,ap — p) to R
4. add (Zg — Zq;,Zp — f) to R

Moreover, § contains only the rules from the definition of R.
We prove that w € (£ (G)NZ(H)) if and only if w € Z(M).

Only if Part: Letw € h(£(G)N.Z(H)). There are ay,az, ...,a, € X such that
aay...a, € L(G)NZL(H)
and w = h(aja; . ..ay), for some n € Ny. There are leftmost derivations
Sg="aiaz...a, and Sy =" a1a; .. .a,

of length n in G and H, respectively, because in every derivation step exactly one terminal symbol
is derived. Thus, M accepts h(a;)h(az)...h(a,) as

Zgoh(ay)h(az) ... h(ay) = ZSgqh(ay)h(az) ... h(ay),. .., Zayqh(a,) = Zq, Zq = Zq;

Zq; = ZSup,...,Za,p=2Zp,Zp=f.

In state g, by using its pushdown, M simulates G’s derivation of a; ...a, but reads h(a;)... h(ay)
as the input. In p, M simulates H’s derivation of aja;...a, but reads no input. As aja;...a, can
be derived in both G and H by making the same number of steps, the automaton can successfully
complete the acceptance of w.

If Part: Notice that in one step, M can read only h(a) € A*, for some a € X. Let w € £ (M), then
w = h(ay)h(az)...h(a,), for some ay,az,...,a, € X. Consider M’s acceptance of w

Zqoh(a))h(aa) ... h(a,) = ZSgqh(a))h(az) ... h(ay),.. ., Zanqgh(a,) = Zq, Zqg = Zq; ,

Zq; = ZSup,...,Za,p = Zp,Zp = f.

As stated above, in g, M simulates G’s derivation of aja;...a,, and then, in p, M simulates H’s
derivation of aja;...a,. It successfully completes the acceptance of w only if aja;...a, can be
derived in both G and H. Hence, the if part holds, too. O

4.3.2 First-Move Self-Regulating Pushdown Automata

Although the fundamental results about self-regulating automata have been achieved in previous
sections, there still remain several open problems concerning them. One of them is the question
what is the language family accepted by n-turn first-move self-regulating pushdown automata, when
n € N? It is clear that for n = 0 the language family accepted by zero-turn first-move self-regulating
pushdown automata is exactly the family of all context-free languages.

34



4.3.3 Open Problems

Perhaps the most important open problems include 1 through 3 given next.

1. What is the language family accepted by n-turn first-move self-regulating pushdown au-
tomata, when n € N?

2. By analogy with the standard deterministic finite and pushdown automata, introduce the de-
terministic versions of self-regulating automata. What is their power?

3. Discuss the closure properties under other language operations, such as the reversal.
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Chapter 5

Descriptional Complexity

This chapter studies the descriptional complexity of partially parallel grammars and grammars reg-
ulated by context conditions, where the well-known results concerning this topic are supplemented
and improved. The main aim of this chapter is to study how to describe partially parallel grammars
and grammars regulated by context conditions in a reduced and succinct way with respect to the
number of grammatical components, such as the number of nonterminals and special productions.
First, however, we define the notion description complexity of grammars with respect to the number
of nonterminals and special productions.

Consider a family of languages, .Z, and a family of grammars, ¢, such that every language
from . is generated by a grammar from ¢, and every grammar from ¢ generates only a language
from %, i.e. L € % if and only if there is a grammar G € ¢ such that L = .Z(G).

To reduce the number of nonterminals means to find a natural number (if exists), k, such that
for every language L € .Z, there is a grammar G € ¢ such that the set of all G’s nonterminals, N,
contains no more than k elements, |[N| <k, and G generates L, L = .2 (G). In other words, the
question is what is the minimal & such that there is a subfamily, 7, of ¢ consisting of grammars
having no more than k nonterminals such that any language from .# is generated by a grammar
from J7.

The reduction of special productions is defined analogously, i.e., the aim is to find a natural
number (if exists), /, such that for every language L € ., there is a grammar G € ¢ with P being
the set of all its productions, P = P’ U P”, where P” is the set of all special productions, such that
|P’| <l and L = £(G). For instance, let P’ be the set of all context-free and P” the set of all
remaining productions of P.

This chapter studies the simultaneous reduction of both the number of nonterminals and the
number of special productions. In other words, in case of studied grammars, it is well-known that
there are natural numbers k and / such that there is a subfamily, 77, of ¢ having no more than k
nonterminals and / special productions such that any language from % is generated by a grammar
from .7Z. We decrease these numbers. More precisely, we prove that every recursively enumerable
language is generated

(1) by a scattered context grammar with no more than four non-context-free productions and four
nonterminals;

(2) by a multisequential grammar with no more than two selectors and two nonterminals;
(3) by a multicontinuous grammar with no more than two selectors and three nonterminals;
(4) by a context-conditional grammar of degree (2, 1) with no more than six conditional produc-

tions and seven nonterminals;
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(5) by a simple context-conditional grammar of degree (2, 1) with no more than seven conditional
productions and eight nonterminals;

(6) by a generalized forbidding grammar of degree two and index six with no more than ten condi-
tional productions and nine nonterminals;

(7) by a generalized forbidding grammar of degree two and index four with no more than eleven
conditional productions and ten nonterminals;

(8) by a generalized forbidding grammar of degree two and index nine with no more than eight
conditional productions and ten nonterminals;

(9) by a generalized forbidding grammar of degree two and unlimited index with no more than nine
conditional productions and eight nonterminals;

(10) by a semi-conditional grammar of degree (2, 1) with no more than seven conditional produc-
tions and eight nonterminals; and

(11) by a simple semi-conditional grammar of degree (2,1) with no more than nine conditional
productions and ten nonterminals.

5.1 Partially Parallel Grammars

This section studies the descriptional complexity of partially parallel grammars. Specifically, the
descriptional complexity of scattered context grammars with respect to the number of nonterminals
and context-sensitive productions, and the descriptional complexity of multisequential and multi-
continuous grammars with respect to the number of nonterminals and selectors.

5.1.1 Scattered Context Grammars

A scattered context grammar is an ordinary context-free grammar that uses its productions in a
partially parallel way. More precisely, there is an integer n such that in each derivation step, no
more than n nonterminals of the current sentential form is rewritten.

More details about scattered context grammars can be found in [13, 26, 28, 43, 55, 60, 64, 76,

, 93]
Definition 30. A scarttered context grammar, G, is a quadruple G = (N, T, P,S), where
e N is a nonterminal alphabet,
e T is aterminal alphabet such that NNT = 0,
e § € N is the start symbol, and
e P is a finite set of productions of the form
(A1,...,Ap) — (x1,...,X4),

for some n € N, where A; € Nand x; € (NUT)*, fori=1,...,n. If n > 2, then the production
is said to be context-sensitive; otherwise, the production is said to be context-free.
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If x=ujAyuy .. . upApltyi1, y = U1 X143 . . . UpXplty11, Where u; € (NUT)*, fori=1,...,n, and
(A1,...,An) — (x1,...,x%,) EP,

then
xX=y

in G. As usual, = is extended to =, for i € Ny, =, and =*. The language generated by a
scattered context grammar, G, is defined as

ZG)={weT" :S="w}.

The last result concerning the descriptional complexity of scattered context grammars is by
Vaszil, who proved the following result (see [92]).

Theorem 16. Every recursively enumerable language is generated by a scattered context grammar
with no more than five nonterminals and two context-sensitive productions.

Now, we supplement this result as shown in the following theorem. Specifically, we prove
that the number of nonterminals can be decreased, however, the number of conditional productions
(nonsignificantly) increases.

Theorem 17. Every recursively enumerable language is generated by a scattered context grammar
with no more than four nonterminals and four context-sensitive productions.

Basic idea.

The main idea of the proof and, actually, all proofs in this chapter is to simulate a terminal derivation
of a grammar, G, in one of the Geffert normal forms'. To do this, we first apply all context-free
productions as applied in the G’s derivation, and then we simulate a non-context-free production,
say AB — €, so that we mark with ’ precisely one of As and one of Bs and check that these two
marked symbols form a substring A’B’ of the current sentential form. If so, the marked symbols
can be removed, which completes the simulation of the production AB — € in G; otherwise, the
derivation must be blocked. The formal proof follows.

Proof. Let L C T* be a recursively enumerable language and
G, = ({8',A,B,C,D},T,P"U{AB — ¢,CD — ¢},S)

be a grammar in the second Geffert normal form such that .2’ (G,) = L. Define the homomorphism
h:{A,B,C,D}* — {0,1}* sothat h(A) = h(B) =00, h(C) = 10, and h(D) =01. Set N = {S,0,1,$}.
Define the scattered context grammar G = (N, T, P,S) with P constructed as follows:

1. (S) — (h(z)Slal), where §' — zS8'a € P';

2. (S) — (h(u)Sh(v)), where S’ — uS'v € P';
3. (S) — (118);

4. (8) — (h(u)$$h(v)), where ' — uv € P';
5. (8) = (&)

6. (0,0,$,$,0,0) — ($,¢,¢,¢,€,9);

1See definition 17
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7. (1,0,%,$,0,1) — ($,¢,€,€,€,%);
8. (1,1,$,$,1,1) — (11%,¢,¢,¢,€,$);
9. (1,1,$,%,1,1) — (e,€,¢,¢,¢,¢€).
Consider a derivation of the form
S' = aayas...a, =" ajaz...ay,

where @ € {A,B,C,D}*,a; € T, fori=1,...,n, and neither AB — € nor CD — ¢ has been applied
in
S =*aaas...a,.

Moreover, only productions AB — € and CD — € have been applied in
oaiar...a, =" aaz...a,.
Ifayar...a, # €, then G can derive
S="11h(a)la;1layl... la,l
and, by productions constructed in 6 and 7, eliminate i(). Thus,
S=*11%%$1a111as1...1a,1.

By productions constructed in 8 and 9, G eliminates all nonterminals 1 and $.

If aja; ...a, = €, then G can derive S =* h(a); then, by productions constructed in 6 and 7,
G eliminates i(). Thus, S =* $$ in G. By the production constructed in 5, G eliminates both
nonterminals $. Therefore,

S'=*ayay...a, implies S =* aya;...a,.

On the other hand, let
S="o$$p =" ajaz...a,

be a derivation, where o € {00,01,11}*, B € ({00,01}U{1}T{1})*,a; €T, fori=1,...,n, and
none of context-sensitive productions has been applied in § =* a$$f3.

Notice that if a nonterminal occurs between the first and the second $, then the nonterminal
cannot be removed, so the derivation cannot generate a string of terminals.

If ajay...a, = €, then B € {00,01}*, B does not contain 11 as a substring. Therefore, produc-
tions constructed in 8 and 9 cannot be applied in the derivation. Thus, neither can production 3
be applied, so o does not contain 11 as a substring, too. As the other productions simulate the
productions from G;, §' =* € in G,.

If ajay...a, # €, then B = Bila;1B,, where B € {00,01}* and B € ({00,01}U{1}T{1})*.
After deleting fB; by productions constructed in 6 and 7, the production constructed in 8 or 9 has to
be applied. Therefore, o = op11¢t;, where o = ﬁlR and op € {0,1}*. Thus,

S =* (X$$ﬁ =% (X211$$1a11B2.

We prove that oy = € and f3, € ({1}T{1})* (by induction on |B;| € Np). At this point, the only
productions that can be applied are productions constructed in 8 and 9. By applying the production
constructed in 9, G makes

S =* OC$$ﬁ =+ 05211$$1a11[32 = Otzalﬁz.
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Therefore, oxa; B, € T* if and only if o, = B, = €. By applying the production constructed in 8, G
makes
S =" OC$$B =" 06211$$la1 lﬁz = 06211$a1$ﬁ2.
Therefore, if B, = 0085, the prefix 00 can be removed only by the production constructed in 6.
However, after using this production, the substring 11 attached to $ appears between the two $s,
so it cannot be removed after that. The same is true for B, = 01f). Thus, 8, = la,1f3. Then, by
induction,
S =* a$$p = 11Y8$$yla 11as1. .. 1a,l,
where y € {00,01}*. Since h(A) = h(B) = 00, h(C) = 10, and h(D) = 01, we get
S =*8&aar...a, =" a1as...a,,

where 8; € {A,C}*, &, € {B,D}*, h(8;) = ¥X, and h(&,) = 7.
Hence, the theorem holds. UJ

5.1.2 Multisequential Grammars

A multisequential grammar is a context-free grammar, where also terminal symbols can be rewrit-
ten. In addition, these grammars have a mechanism that chooses symbols of the current sentential
form that are supposed to be rewritten. Such mechanisms are called selectors. Then, during any
derivation step, all chosen symbols are rewritten.

Definition 31. A multisequential grammar, G, is a quintuple G = (N, T,P,S,K), where

e N is a nonterminal alphabet,

T is a terminal alphabet such that NNT =0,

S € N is the start symbol,

P is a finite set of productions of the form
a—x,
wherea € V=NUT and x € V*, and

K is a finite set of selectors of the form

Xlact(Yl )Xz .. .Xnact(Yn)X,,H s
where 7 is a positive integer,

- X, €e{Z":ZCV}, fori=1,...,n+1, and
-Y,e{Z:ZCV,Z#0},for j=1,...,n.

If x =waiupaous .. . upayiy 11, y = U1 X1UpX2uU3 . . . UpXylya 1, and K contains a selector
Xiact(Y1)X, ... Xact(Y,) Xyt
satisfying u; € X;, fori=1,...,n+1,a;€Y;,anda; — x; € P,for j=1,...,n, then
xX=y

in G. As usual, = is extended to =, for i € Ny, =, and =*. The language generated by a
multisequential grammar, G, is defined as

L(G)={weT":S="w}.
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In [58], the following result is proved.

Theorem 18. Every recursively enumerable language is generated by a multisequential grammar
with no more than six nonterminals.

Here, we improve this result. Specifically, we prove that no more than two nonterminals are
needed and, moreover, we give a limit to the number of selectors. First, however, we prove the
following auxiliary lemma.

Lemma 8. Every recursively enumerable language is generated by a multisequential grammar with
no more than three nonterminals and two selectors.

Proof. Let L C T* be a recursively enumerable language and
G3 = ({S,A,B},T,PU{ABBBA — €},S)

be a grammar in the third Geffert normal form such that .Z/(G3) = L. Define the multisequential
grammar
G=({S,A,B},T,PU{A —¢,B—€},5,K)

with K containing these two selectors:
1. {A,B}*act(S)({A,B}UT)*,
2. {A,B}*act(A)act(B)act(B)act(B)act(A)({A,B}UT)".
Observe that £ (G) = Z(G3). O
Now, based on the previous lemma, the main result of this part can be proved.

Theorem 19. Every recursively enumerable language is generated by a multisequential grammar
with no more than two nonterminals and two selectors.

Proof. Consider G constructed in the proof of Lemma 8. Define the homomorphism
h:({S,A,B}UT)" — ({S,A}u T)*

ash(b) =b,forb e T, h(S) =S, h(A) = aAa, and h(B) = aAAa, where a € T is a terminal symbol.
Define the multisequential grammar

G = ({S.A},T,{S — h(@) : S > @ € PYU{A — £,a — £},5,K)
with K containing these two selectors:
1. {A,a}*act(S)({A}UT)",

2. {A,a}*act(a)act(A)act(a)act(a)act(A)act(A)act(a)
act(a)act(A)act(A)act(a)act(a)act(A)act(A)act(a)
act(a)act(A)act(a)({A}UT)*.

Observe that S — ¢ is a production in G if and only if S — h(c) is a production in G'. If
uABBBAv = uv
in G, where u € {A,B}* and v € {A,B}*T*, then
h(u)aAaaAAaaAAaaAAaaAah(v) = h(uv)

in G’ (by selector 2), and vice versa.
Hence, the theorem holds. O
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5.1.3 Multicontinuous Grammars

A multicontinuous grammar is a multisequential grammar with the following difference—the whole
nonempty strings of symbols, not only one symbol, can be chosen to be rewritten. Then, in any
derivation step, all these symbols are rewritten.

Definition 32. A multicontinuous grammar, G, is a quintuple G = (N, T,P,S,K), where
e N is a nonterminal alphabet,

e T is aterminal alphabet such that NNT = 0,

S € N is the start symbol,

e P is a finite set of productions of the form
a—x,
wherea €V =NUT and x € V*, and

K is a finite set of selectors of the form

Xjact(Y))X; ... Xyact(Y,) Xt ,
where n is a positive integer,

- X, e{Z":ZCV},fori=1,...,n+1, and
-Ye{Z":ZCV,Z#0}, forj=1,...,n.

Forevery v e V', where v=aq; .. .ap,| witha; €V, fori=1,...,|v|, define the language
ContinuousRewriting(v) C V™

by this equivalence: for every z € V*, z € ContinuousRewriting(v) if and only if a; — x; € P, for
i=1,...,|v,and z =x; .. Xy If x = wyyuoyous .. .uy Yty 1, ¥y = U1Z1URZ2US - . . UpZylyt1, and K
contains a selector

Xlact(Yl )Xz .. .X,,act(Yn)XnH
such that u; € X;, fori=1,...,n+1,y; €Y}, and
z;j € ContinuousRewriting(y;),

for j=1,...,n, then
xX=y

in G. As usual, = is extended to =, for i > 0, =1, and =*. The language generated by a
multicontinuous grammar, G, is defined as

Z(G)={weT":S="w}.
In [59], the following result is proved.

Theorem 20. Every recursively enumerable language is generated by a multicontinuous grammar
with no more than six nonterminals.

We improve this result in the following way. Again, we give a limit to the number of selectors.
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Theorem 21. Every recursively enumerable language is generated by a multicontinuous grammar
with no more than three nonterminals and two selectors.

Proof. Let L C T* be a recursively enumerable language. Let
Gs = ({S,A,B},T,PU{ABBBA — €},S)
be a grammar in the third Geffert normal form such that .#(G3) = L. Define the homomorphism
h:({S,A,B}UT)" — ({S,(,)}UT)"

as h(a) =a, forae T, h(S) =S, h(A) = (), and h(B) = (b), where b € T is a terminal symbol.
Define the multicontinuous grammar

G=({S,(,)}, T,{S—h(a):S—aePtU{(—¢,) —¢&b—¢€}SK)
with K containing these two selectors:

L AG),b}ract(S)E()IUT)",

)

2. {(,),b}*act((*)act()")act((")act(b™)act()")
act((")act(b™)act()")act((")act(b™)act()™)
act((M)act()")({(,)}UT)".

At the beginning of any derivation, only selector 1 is applicable. After eliminating S, the other
selector is applicable. Moreover, as there is no more than one substring of the form

h(ABBBA) = ()(b)(b)(b)()

in each sentential form (see [17]), selector 2 is applicable only on no more than one substring. As
there is no occurrence of substrings (( or )) in any sentential form, this theorem holds. O

5.2 Context-Conditional Grammars

A context-conditional grammar is an ordinary context-free grammar, where a set of permitting and
a set of forbidding contexts are associated with each production. Then, a production is applica-
ble if and only if it is applicable as a context-free production and each permitting context and no
forbidding context associated with this production is a substring of the current sentential form.

Definition 33. A context-conditional grammar, G, is a quadruple G = (N, T, P,S), where
e N is a nonterminal alphabet,
e T is aterminal alphabet such that NNT = 0,
e S € N is the start symbol, and
e P is a finite set of productions of the form
(X — o, Per, For),

where X € N, @ € (NUT)*, and Per, For C (NUT)™ are finite sets. If Per U For # 0, then
the production is said to be conditional.
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G has degree (i, j) if for all productions (X — o, Per, For) € P,
max (Per)? <i

and
max (For) < j.

G has index k if
max{|Per|+ |For| : (X — a,Per,For) € P} <k.

For x1,x, € (NUT)*, x1Xx; directly derives x; ax; according to the production (X — «, Per, For) €
P, denoted by x; Xxy = x10xp, if
Per C sub(x)

and
ForNsub(x) =0.

As usual, = is extended to =/, for i € Ng, =+, and =*. The language generated by a context-
conditional grammar, G, is defined as

Z(G)={weT":S="w}.

In [74], a proof that context-conditional grammars generate the whole family of recursively
enumerable languages is given. However, the descriptional complexity of context-conditional gram-
mars has not been studied yet. Next, a result concerning this topic follows.

Theorem 22. Every recursively enumerable language is generated by a context-conditional gram-
mar of degree (2,1) and index two with no more than six conditional productions and seven non-
terminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G = ({S,A,B,C},T,PU{ABC — €},S)

in the first Geffert normal form such that L = Z’(G;). Construct the grammar
G=({S,A,B,C,A",B'.,C'},T,PUP"S),

where
P={X—a0,0):X— acP},

and P” contains the following six conditional productions:
1. (A—A0,{A",C'}),

2. (B—B,{A'},{B'}),

98]

C—C {A'B'},{C}),

o

91

-
- (
. (A — &, {BC'},0),
. (B'—¢,{C'},{A}),
- (

6. (C'—£,0,{A",B}).

2See definition 13.
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To prove that £ (G;) C .Z(G), consider a derivation
S =* wABCw'v = ww'v

in G| by productions from P and the only one production ABC — &, where w,w’ € {A,B,C}* and
v € T*. Then, S =* wABCw'v in G by productions from P’. By productions 1, 2, 3, 4, 5, and 6,

wABCw'vy = wA'BCw'v

= wA'B'Cw'v
wA'B'C'w'v
wB'C'w'v

/]
wCwv

Pl

/
ww .

The inclusion follows by induction.

To prove that £ (G;) O Z(G), consider a terminal derivation. We prove that, after eliminating
S, in each six consecutive steps, G can do nothing else than to remove a substring ABC. To prove it,
notice first that to remove A’ or B', i.e. A or B, C’ has to be in the sentential form (see productions 4
and 5). However, to obtain C’ to the sentential form, production 3 has to be applied. Then, A’B’ has
to be a substring of a former sentential form. Thus, productions 1 and 2 had to be applied before and
in this order. It is also easy to see, according to the forbidding contexts of productions 1, 2, and 3,
that there cannot be more than one occurrence of nonterminals A’, B’, and C’ in any sentential form.
Therefore, according to the permitting contexts of productions 3 and 4, A’B'C’ is a substring of the
current sentential form, and, moreover, there cannot be a terminal between any two nonterminals.
The derivation is of the form S =* wiw,ws3 in G by productions from P’, where wy € {A,AB}",
wy € {BC,C}*, and wz € T*, and wiwows =" w3. Then, S =" wiwows in G by productions from
P. We prove that wiwows =" w3 in G.

For wiw, = €, the proof is done. For wiw;, # €, wiwy, = wABCw', where w € {A,AB}* and
w' € {BC,C}*. Thus, at the beginning, only production 1, then 2, and then 3 is applicable. Then,
only production 4 is applicable, and, after that, only production 5 is applicable. Finally, production 6
can be applied;

wWABCWw; =3 wA'B'C'w'ws
= wB'C'ww;
=  wC'wws
= wwws.

Thus, if S =" wiwaws =" w3 in G, where w; € {A,AB}*, w, € {BC,C}*, and ws € T*, then
S =" WIWow3 =* ws in Gj. L]

To complete this section, note that it is proved (see [50], [1 1], and [86] for a complete proof)
that every recursively enumerable language is generated by a context-conditional grammar of degree
(1,1). However, in this case, the number of nonterminals and conditional productions is not limited.

Note that context-conditional grammars of degree (1,0) are called random context grammars,
or also permitting grammars, originally introduced by van der Walt in [91]. Furthermore, context-
conditional grammars of degree (0, 1) are known as forbidding grammars, and context-conditional
grammars of degree (1,1) are known as random context grammars with appearance checking. 1t is
also known that random context grammars (permitting and forbidding grammars) are not as power-
ful as type 0 grammars (they do not generate even all recursive languages; for more details see [5]).
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However, the relation between language families generated by these two types of grammars is not
known (see [84, pages 136 and 137]).

5.2.1 Simple Context-Conditional Grammars

Consider a context-conditional grammar. If for each its production, either the permitting or the for-
bidding context is empty, then the grammar is called simple context-conditional. Formal definition
follows.

Definition 34. Let G = (N,T,P,S) be a context-conditional grammar. If (X — «,Per,For) € P
implies that
0 € {Per,For},

then G is said to be a simple context-conditional grammar.
We can easily prove the following theorem.

Theorem 23. Every recursively enumerable language is generated by a simple context-conditional
grammar of degree (2,1) with no more than seven conditional productions and eight nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G, = ({S,A,B,C},T,PU{ABC — €},S)
in the first Geffert normal form such that L = #(G;). Construct the grammar
G=({S,A,B,C,A'",B',C',B"},T,PPUP"S),

where
P={X—-a00):X— acP},
and P” contains the following seven conditional productions:

1. (A—A",0,{A",B"}),

2. (B—HB,0,{B',B"}),

3. (C—C,0,{C,B"}),

4. (B — B",{A’B',B'C'},0),
5. (A" &,{B"},0),

6. (C'—¢€,{B"},0),

7. (B" — €,0,{A,C'}).

To prove that £ (G1) C Z(G), consider a derivation S =* wABCw'v = ww'v in G| by produc-
tions from P and the only one production ABC — &, where w,w' € {A,B,C}* and v € T*. Then,
S =* wABCw'v in G by productions from P’. By productions 1, 2, 3,4, 5, 6, and 7,

wABCw'v = wA'BCw'v
wA'B'Cw'v
wA'B'C'w'v
wA'B"C'w'v
wB'C'w'v

Y/
wB'w'y

4

R R

/
ww v.



The inclusion follows by induction.

To prove that £ (G;) 2 Z(G), consider a terminal derivation. Notice that to eliminate a non-
terminal, there must be B” in the derivation. From production 4 and the observation that there is
no more than one A’, B, C’ in the derivation (see productions 1, 2, 3), there cannot be a terminal
between any two nonterminals. Therefore, the derivation is of the form S =* wywyws3 in G by pro-
ductions from P’, where wy € {A,AB}*, w, € {BC,C}*, and w3 € T*, and wiwows =* w3. Note
that before § is eliminated, there is no occurrence of the substring ABC in the derivation. Then,
S =" wiwyws in G| by productions from P. We prove that wiwows =" w3 in G.

For wiwy = &, the proof is done. For wiwy # &€, there is B in wyw,; otherwise, B” cannot be
obtained and no nonterminal can be eliminated. To obtain B”, production 4 is applied. Therefore,
wiwy =wABCW, where w € {A,AB}* and w' € {BC,C}*; otherwise, the conditions of production 4
are not met. Thus, at the beginning, only productions 1, 2, and 3 are applicable. Then, only
production 4 is applicable, and, after that, only productions 5 and 6 are applicable. Finally, only
production 7 is applicable;

WABCw'w3 =3 wA'B "'wws = wA'B"C'w'ws =2 wB"'wWws = ww'ws.
Thus, if S =* wiwows =" w3 in G, where w; € {A,AB}*, w, € {BC,C}*, and w3 € T*, then
S =* WIWaW3 =% ws in Gj. OJ
5.2.2 Generalized Forbidding Grammars

A generalized forbidding grammar is a context-conditional grammar, where the permitting context
of any production is empty. These grammars are introduced in [51]. (A few modifications of these
grammars can be found in [8, 9, 12, 52].)

Definition 35. Let G = (N,T,P,S) be a context-conditional grammar. If (X — o, Per,For) € P
implies that
Per=20,

then G is said to be a generalized forbidding grammar.
As all permitting contexts are empty, we simplify the notation as follows.

Notation. As far as generalized forbidding grammars are concerned, we omit the symbol @ from
the notation of productions and, thus, write (X — a, For) instead of (X — a0, For).

Notation. G is said to have degree i if G has degree (k,i) as a context-conditional grammar, for
some k.

The last known result is the following theorem proved in [73].

Theorem 24. Every recursively enumerable language is generated by a generalized forbidding
grammar of degree two with no more than thirteen conditional productions and fifteen nonterminals.

Now, we prove the main results of this section. First, however, we prove the following auxiliary
lemma.

Lemma 9. Let L € RE, L = £(G)), G is a grammar in the second Geffert normal form. Then,
there is a grammar

G=({S,0,1,$},T,PU{0$0 — $,1$1 — $,$ — €}, 9),

with P containing only context-free productions of the form

47



S — h(u)Sa if S — uSa in Gy,
S — h(u)Sh(v) if S — uSvin Gy,
S— h(u)$h(v) if S —uvin Gy,

where h: {A,B,C,D}* — {0,1}* is a homomorphism defined as
h(A) =h(B) =0and h(C) =h(D) =1,
such that £ (G) = Z(Gy).
Proof. Any terminal derivation in G| is, after the application of S — uv, of the form
{A,C}{B,D}'T".
From this, any terminal derivation in G is, after generating $, of the form
h({A,CY")$h({B.DY")T"

It is easy to see that if the production AB — € or CD — ¢ is applied in Gq, then the production
0$0 — $ or 1$1 — $ is applied in G, respectively, and vice versa. Moreover, the last production
applied in G in any terminal derivation is $ — €. O

Theorem 25. Every recursively enumerable language is generated by a generalized forbidding
grammar of degree two and index six with no more than ten conditional productions and nine
nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
= ({S5,0,1,$},7,PU{030 — $,1$1 — $.$ — €},9)

such that L = Z(G) and P contains productions of the form shown in Lemma 9. Construct the
grammar
= ({S/7Z7 S? 07 170/7 1/7 $7#}7 T7 P/ UP//7S/) )

where P’ contains productions of the form

(S — ZSZ,0),

(S — uSZaz,0) ifS— uSacP,
(S — uSv,0) iftS—uSver,
(S — u$v,0) if S —uveP,

and P” contains following ten conditional productions:

1. (0—0,{0,1,#}),

2. (1= 1,{0,1,#}),

3. (001, {1, #}),

4. (1= 10,{0,#}),

5. ($— #,{08,18,2$,%0,$1,Z}),
6. (0 — &,{$,5),
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7. (I' = €,{$,S}),

#—$,{0,1}),

- (
8.
9. (Z—€,{$,#,5)),
-

10. ($—€,{0,1,0/,1'}),

To prove that .2 (G) C .Z(G'), consider a derivation S =* w$w®v in G using only productions
from P, where w € {0,1}* and v € T*. This can be derived in G’ by productions from P’ as §' =*
Zw$wRZV', where h(v') = v for a homomorphism & : (T U{Z})* — T* defined as h(a) = a, for
a€T,and h(Z) = €. If w =g, then

VAYAUESY /AUESET
by productions 10 and 9. If w = w/0, then

zw'osow'®zy = zw'0'sowRzv
Zw'0'$0'1'wRzy
Zw' 0'#0'1'wRzv/
ZwH#HO' 1'wRzZV
Zw'#1'wRzy
Zw'#w' Rz

Zw'$w'kzy/

R

by productions 1, 3, 5, 6, 6, 7, and 8. The case of w = w’'l is analogous. The inclusion follows by
induction.
To prove that £ (G) 2 Z(G’), consider a terminal derivation in G’

S =" Zwi$wrZws ,

by productions from P’, and
Zwi1$wrZws =" w,

where wi,wy € {0,1}* and w € T*. We prove that wz € (T U{Z})*.

Assume that Z0 or Z1 is in sub(Zws3). Then, to eliminate this O or 1, production 6 or 7 must be
applied. To apply production 6 or 7, production 5 must be applied before. Then, however, there is
0, 1, or Z next to $; indeed, there cannot be more than two 0's or 1’s in the derivation (there is no
more than either 0’ and 0’1, or 1’ and 1'0). Thus, w3 € (T U{Z})* and w = h(w3). Then,

S =* W1$W2h(W3)
in G by productions from P. We prove that
W1$W2h(W3) =" h(W3) .

Assume that w; = wy, = €. Then, the only applicable production in G’ is production 10. After
production 10, only production 9 is applicable. Thus, Z$Zw3; = ZZw3 =* h(w3).
Assume that € € {w,w,} and w; # w;. Then,

Zw1$wrZws € {Z$WQZW3,ZW1$ZW3} .
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In both cases, neither O nor 1 can be eliminated (see production 5).
By induction on the length of wy, we prove that w; = wX. The basic step has already been
proved. Assume that
Zw1SwaZws = Zw| 0$xw)Zws

where x € {0, 1}. Then, only productions 1, 2, 3, 4 can be applied. Notice that production 1 or 2 is
applied before production 3 or 4; otherwise, if production 3 or 4 is applied, then neither production 1
nor 2 is applicable. Moreover, if production 1 is applied, then only production 3 is applicable, and,
similarly, if production 2 is applied, then only production 4 is applicable. According to production 5,
0% is rewritten by production 1 or 3. Therefore, 0 is rewritten by production 1 and x is rewritten by
production 3, or vice versa. Thus, x =0 and

Zw 080whZws =2 Zw,0/$0' 1'whZws or  Zw|0'1'$0'whZws.
Then, only production 5 is applicable;
= Zw\0'#0'1'WiZws or Zw|0'1"#0'W)Zw;
and only productions 6 and 7 are applicable;
=3 Zw\#whZw;
and only production 8 is applicable;
= Zw$whZws.

The proof for Zw$wyZws = Zw’1 1$xw’2ZW3, where x € {0, 1}, is analogous. By the induction

hypothesis, w; = w¥.

Thus, if §" =* Zw;$wRZws =* h(ws) in G/, where w; € {0,1}* and w3 € (T U{Z})*, then
S =" W1$W11eh(W3) =* h(W3) in G. O

By a modification of the grammar from the proof of Theorem 25, the index can be decreased.

Theorem 26. Every recursively enumerable language is generated by a generalized forbidding
grammar of degree two and index four with no more than eleven conditional productions and ten
nonterminals.

Proof. Let L be a recursively enumerable language. There is a grammar
G=({S,0,1,$},7,PU{0%$0 — $,1$1 — $,$ — €},S)

such that L = .Z(G) and P contains productions of the form shown in Lemma 9. Construct the
grammar
G =({5,2,5,0,1,0,1,$,# @}, T,P UP"S),

where P’ contains productions of the form

(S' — Z5Z,0),

(S — uSZaz,0) if S— uSacP,
(S — uSv,0) if S > uSvePr,
(S — u$v,0) if S —uveP,

and P” contains following eleven conditional productions:

1. (0—0,{0,1 @}),
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N

1—1{0,1, @),
$— #,{0$,1$,7Z3}),
0—01,{01,1 @},
1—10,{1'0,0,@}),

N o kW

0 —&,{$,#,5}),
l'— e, {$,#,S}),
@ —$,{0,1'}),
Z—¢e,{$,# @,S}),
$—¢&,{0,1}),

To prove that £ (G) C .Z(G'), consider a derivation S =* w$w®v in G using only productions
from P, where w € {0,1}* and v € T*. This can be derived in G’ by productions from P’ as §' =*
Zw$wRZy', where h(v') = v for a homomorphism h : (T U{Z})* — T* defined as h(a) = a, for
a€T,and h(Z) =¢€. If w =g, then

(
(
(
(
(# — @, {#0,#1,47}),
(
(
(
10. (
(

11.

787V = 77V =" v,

by productions 11 and 10. If w = w/0, then

ZwosowRzy =  zZw'o'sow'Rzy
Zw' 0'#0w'RZy/
Zw'0'#0'1'w'Rzy
Zw'0' @0’ 1'wRzy
Zw' @0 1'wRzy
' @1'wrkzy
' @w'Rzy

Zw'$w'kzy'

R

4

by productions 1, 3, 4, 6, 7, 7, 8, and 9. The case of w = w'1 is analogous. The inclusion follows
by induction. Hence, if $ =* vin G,v € T*, then § =* vin G'.
To prove that £ (G) 2 Z(G’), consider a terminal derivation in G’

SI =" ZW1$W22W3 s
by productions from P’, and
ZwiSwrZws =% w,

where wi,w, € {0,1}* and w € T*. We prove that w3 € (TU{Z})".

Assume that Z0 or Z1 is in sub(Zws3). Then, to eliminate this 0 or 1, production 7 or 8 is applied
to this 0 or 1. To apply production 7 or 8, production 3 or 6 is applied before. However, there
is 0, 1, or Z next to $ or #; indeed, there cannot be more than two 0’s or 1’s in the derivation—a
contradiction; production 3 or 6 cannot be applied. Thus, w3 € (T U{Z})* and w = h(w3). Then,

S =" W1$W2h(W3)
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in G by productions from P. We prove that
W1$W2h(W3) =" h(W3) .

Assume that w; = wy = €. Then, the only applicable production is production 11 followed by
production 10. Clearly, $/(w3) = h(w3) in G.
Assume that € € {w,w,} and w; # wy. Then,

Zw1SwaZws € {Z$wrZws, Zw $Zws }.

In both cases, neither O nor 1 can be eliminated.
By induction on the length of w;, we prove that w; = w§. The basic step has already been
proved. Assume that
Zw1$waZws = Zw\0$xwhZws

where x € {0,1}. Then, only productions 1, 2, 4, 5 are applicable. Notice that production 1 (2)
has to be applied before 4 (5); otherwise, if production 4 (5) is applied, then production 1 (2) is
not applicable. Moreover, if production 1 is applied, then only production 4 is applicable, and if
production 2 is applied, then only production 5 is applicable. According to production 3, 0$ is
rewritten by production 1 or 4. Therefore, O is rewritten by production 1 and x is rewritten by
production 4, or vice versa. Thus, x = 0 and

Zw 080w, Zws =2 Zw, 'S0/ 1'whZws or  Zw|0'1'$0'whHZw;
or Zw|0'#0w,Zws (by productions 1 and 3).

Then, only production 3 or 4 is applicable;

= Zw 0'#0'1'WiZws or Zw|0'1'#0'W,Zw;
and only production 6 is applicable;

= Zw|0@0' 1I'wiZws or  Zw|0'l' @0'W)Zw;
and only productions 7 and 8 are applicable;

=3 Zw, @whZw;
and only production 9 is applicable;

=3 Zw| $whZws.

The proof for Zw $waZws = Zw| 1$xwsZws, where x € {0,1}, is analogous. By the induction
hypothesis, w; = w¥.

Thus, if §" =* Zw;$wRZw; =* h(ws3) in G, where wy € {0,1}* and w3 € (T U{Z})*, then
S =* wi$wkh(ws) =* h(w3) in G. O

In the following two theorems, we decrease the number of nonterminals and the number of
conditional productions disregarding the index.

Theorem 27. Every recursively enumerable language is generated by a generalized forbidding
grammar of degree two and index nine with no more than eight conditional productions and ten
nonterminals.
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Proof. Let L be a recursively enumerable language. Then, there is a grammar
G = ({S,A,B,C},T,PU{ABC — €},S)
in the first Geffert normal form such that L = .#(G;). Construct the grammar
G=({S,8,2,A,B,C,A",B' ,C" #},T,PPUP"S),
where P’ contains productions of the form

(S — ZS/Z,@),

(S — uS'ZaZ,0) if S — uSa € P,
(8" = uS'v,0) ifS—uSvePr,
(S — uv,0) ifS—uveP,

and P” contains the following eight conditional productions:
1. (A—#A {#S}),

2. (B— B {B #5'))

(98]

C—C {C.#/S5'}),
A — e {A'}{A,B,C,C',Z}),

C — e {A,BYU{A,B,C,Z}{C)),

- (
- (
4. (
5. (B'—¢,{B'}{A,B,C,Z} U{A,B,C,C',Z}{B'}),
6. (
7. (#—€,{A,B.C'}),

- (

8. (Z—¢€,{S,A,A BB ,CC}).

To prove that £ (G1) C Z(G), consider a derivation S =* wABCw'v = ww'v in G| by produc-
tions from P and the only one application of the production ABC — €, where w,w’ € {A,B,C}* and
v € T*. Then, S =* ZwABCw'ZV' in G by productions from P’, where v € (T U{Z})* is such that
h(v') = v, for a homomorphism & : (T U{Z})* — T* defined as h(a) = a, fora € T, and h(Z) = €.
By productions 3,2, 1,4, 5, 6, and 7,

ZwABCWZV = ZwABC'WZV
ZwAB'C'WZV
ZwHA'B'C'W zv
Zw#B'C'WZV
ZwHC'wW' ZV'
ZwHw'ZV

= Zww'ZV.

R

The inclusion follows by induction and, eventually, by production 8.

To prove that Z(G;) 2 Z(G), observe that if there is a string of the form Z{B',C’'} as a
substring of a sentential form, then neither of productions 5 and 6 is applicable to the rightmost
nonterminal of this string—there is Z before the nonterminal. Thus, we can assume that

S =" ZwiwrZws
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in G, by productions from P’, and that
ZwiwaZws =" h(ws),

where w € {A,AB}*, w, € {BC,C}*, and w3 € (T U{Z})*. Notice that before S and S’ are elimi-
nated, there is no occurrence of ABC in the sentential form (see [17]), and, moreover, no production
from P” can be applied. Then, S =* wyw,h(w3) in G by productions from P. We prove that

W1W2h(W3) =% h(W3) .

By induction on the length of wjws, we prove that wiwy = wABCw), for some w) € {A,AB}*
and w), € {BC,C}*, or wyw, = €. In any derivation step, there is no more than one A’, B, C’, and no
X', for X € {A,B,C}, is generated while there is # in the sentential form (see productions 1, 2, 3).
Moreover, # is eliminated after all primed nonterminals are eliminated (see production 7). We prove
that A, B, and C are in sub(wwy), for wiw;, # €.

1. A € sub(wyw;): to eliminate A, A has to be rewritten to A’. Then, B’ has to follow A’ (by
production 4) and C’ has to follow B’ (by production 5).

2. B € sub(wiws): to eliminate B, B has to be rewritten to B’. Then, A’ or # has to be before B/
and C’ has to follow B’ (by production 5).

3. C € sub(wiwy): to eliminate C, C has to be rewritten to C’. Then, # has to be before C’ (by
production 6)—that is, A € sub(wwy); otherwise, this case is analogical to 1.

In all above cases, ABC € sub(wiwy). Thus, wiwy = wiABCw), for some w| € {A,AB}* and
wh € {BC,C}*.

We prove that while ABC is eliminated, no other nonterminal is eliminated, and then # is re-
moved.

First, only productions 1, 2, and 3 are applicable.

(i) If production 1 is applied, then productions 2 and 3 are not applicable because there is # in
the sentential form. Also, production 4 is not applicable because A’ is followed by A, B, C, or Z.
Thus, the derivation is blocked.

(ii) Assume that production 2 is applied first. Then, there is B in the sentential form. Notice
that production 5 is not applicable because B’ is followed by A, B, C, or Z. Thus, only productions 1
and 3 are applicable. To apply production 5, # or A’ has to be before B’ and C’ has to follow B'.
If production 1 is applied, then production 3 is not applicable—C’ cannot be generated. Moreover,
if there is #A’B'{A,B,C,Z} as a substring of the sentential form, then A’ can be eliminated (by
production 4). However, no other production is applicable. Thus, the sequence of productions in
the derivation is 2, 3, and 1.

(iii) Assume that production 3 is applied first. Then, there is C’ in the sentential form. Notice
that production 6 is not applicable because A, B, C, or Z is before C’. To apply production 6, #
has to be before C'. Thus, only productions 1 and 2 are applicable. If production 1 is applied, then
production 2 is not applicable. To eliminate A’, A" has to be followed by B’ (see production 4)—a
contradiction; there is no B’ in the sentential form. Therefore, production 2 had to be applied before
production 1. Thus, the sequence of productions in the derivation is 3, 2, and 1.

After the sequence of productions 2, 3, 1, or 3, 2, 1, productions 4 and 5 are applicable if and
only if #4’B'C’ is a substring of the sentential form (see productions 4 and 5). Notice that no other
productions are applicable. Thus,

Wi ABCWhh(w3) =2 wiAB'C'whh(w3) = wi#A'B'C'whh(w3).
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After the application of productions 4 and 5 (in this order, otherwise A’ cannot be eliminated),
Wi#A'B'C'Wyh(w3) = W #B'C'wyh(w3) = wi#C'Whh(ws3),
only production 6 is applicable,
WHC' W R(w3) = wi#nwhh(ws).

If wiw) # &, then only production 7 is applicable because there is no A’, B/, C’ in the sentential
form. If wjw) = &, then also production 8 is applicable. However, it is easy to see that it does not
matter whether some Zs are eliminated before # is removed. Then,

wiHwyh(ws) = wiwhh(ws).
As aresult, by the induction hypothesis,
wWiABCWSh(w3) =" wiwhh(ws) =% h(ws).

Thus, if S =* ZwiwyZws =* h(ws) in G, where w; € {A,AB}*, w, € {BC,C}*, and w3 €
(T U{Z})*, then S =* wiwah(w3) =* h(ws3) in G. Hence, the other inclusion holds. O

If we allow the index to have no limit, then the number of nonterminals can be decreased.
To prove this, we first need to modify Lemma 9. More precisely, only the homomorphism # is
modified.

Lemma 10. Let L € RE, L = £(G), G, is a grammar in the second Geffert normal form. Then,
there is a grammar

G=({S,0,1,$},7,PU{0%$0 — $,1$1 — $,$ — €},S)
with P containing only context-free productions of the form

S — h(u)Sa if S — uSa in Gy,
S — h(u)Sh(v) if S — uSvin Gy,
S— h(w)$h(v) if S —uvin Gy,

where h: {A,B,C,D}* — {0,1}* is a homomorphism defined as
h(A) = h(B) =00, h(C) =01, and h(D) = 10,
such that £ (G) = Z(G)).
Now, we can prove the following theorem.

Theorem 28. Every recursively enumerable language is generated by a generalized forbidding
grammar of degree two and unlimited index with no more than nine conditional productions and
eight nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G=({S,0,1,$},7,PU{030 — $,1$1 — $.$ — €},9)

such that L = .Z(G) and P contains productions of the form shown in Lemma 10. Construct the
grammar
G =({5,5,0,1,0/,1',$,#},T,P UP".S'),

where P’ contains productions of the form
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(8" — 111811,0),

(S —uS1la,0) if S — uSac P,

(S — uSv,0) if S — uSv e P,

(S — u$v,0) ifS—uveP,
and P” contains following nine conditional productions:

1. (0—-0,{0, 1 #}),
2. (1 =1 {01 #}),
(0= 01, {1'.#}),
(1—10,{0,#}),
(0 — &,{8,5}).
(1" —&{8,5}),
(#—$,{0,1'}),

(

$—€,{0,0'}),

8.
9.

To prove that .Z(G) C .Z(G'), consider a derivation S =* w$w®v in G using only productions
from P, where w € {00,01}* and v € T*. This can be derived in G’ by productions from P’ as
S =* 111w$nwR 11V, where v/ € (T{11})* and h(V') = v for a homomorphism A : (T U{1})* — T*
defined as h(a) = a, fora € T, and h(1) = €. If w = &, then

II1$11V = 11111V =% v,
by productions 9, and repeating productions 2 and 7. If w = w0, then

1Iw0sowR1Y = 111w 0'sow11Y
111w 0'$0' 1wk 11V
111w 0'#0' 'wR1 1Y/
LLIw'#0' U'wR 11
Lw'#1'wR11Y
Liw'#wR11
11w'$wk11y/

R O

4

by productions 1, 3, 5, 6, 6, 7, and 8. The case of w = w’'l is analogous. The inclusion follows by
induction.
To prove that £ (G) 2 .Z(G’), consider a terminal derivation in G’

S =* 111W1$W21 1wz

by productions from P’, and
111w $wy1 1wy =¥ w,

where w; € {00,01}*, wy € {00,10}*, and w € T*.
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Assume that € € {w,w,} and w; # w;. Then,
111w $wollws € {111$wp 11wz, 111w $11ws}.

First, assume that
111$wal1ws = 111$xwh 11w,

where x € {00,10}. As in the proof of Theorem 25, only productions 1, 2, 3, and 4 can be applied.
Moreover, production 1 (or 2) is applied before production 3 (or 4), and if production 1 is applied,
then only production 3 is applicable, and, similarly, if production 2 is applied, then only produc-
tion 4 is applicable. According to production 5, 1$ is rewritten by production 2 or 4. Therefore, 1
is rewritten by production 2 and x is rewritten by production 4, or vice versa. Thus, x = 10 and

111$10wh11ws =7 11$0wh 11ws.
Similarly, assume that 111w $11w3 = 111wjx$11ws, x € {00,01}. Then, x = 01 and
111w,01$11ws =" 111w, 081ws.

In both cases, the derivation is blocked.
Assume that w; = wy = ¢, i.e. §' =" 111$11ws, where w3 = aw’;, for some a € T, or w3 = €.
Then,
111$11ws =" a,

where
a € {111$11ws3, 11$1ws, 1$aws, 18} .

In all cases, to remove $, production 9 is applied. However, production 9 is applicable if and only
if there is no 0 in ws. Clearly, $w = w in G.

Analogously to the proof of Theorem 25, by induction on the length of w{, we can prove that
w1 = Wg.

Thus, we have proved that 0 & sub(w3), i.e. w = h(w3), and, moreover, if

S =% 11w $wi 11wz =* h(ws)
in G', where w; € {00,01}*, then
S =" wiSwih(ws) =* h(ws3)

in G. OJ

5.2.3 Semi-Conditional Grammars

A semi-conditional grammar is a context-conditional grammar, where both permitting and for-
bidding contexts contain no more than one element. These grammars are introduced and studied

in [79].

Definition 36. A semi-conditional grammar, G, is a quadruple G = (N, T, P,S), where
e N is a nonterminal alphabet,
e T is a terminal alphabet such that NNT =0,

e § € N is the start symbol, and
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e P is a finite set of productions of the form
(X — o,u,v)

withX e N,a € (NUT)*, and u,v € (NUT)T U{0}, where 0 ¢ NUT is a special symbol.
If u # 0 or v # 0, then the production (X — a,u,v) € P is said to be conditional.

G has degree (i, j) if for all productions (X — o, u,v) € P,
u # 0 implies |u| <i

and
v # 0 implies |v| < j.

For x1,x, € (NUT)*, x1Xx, directly derives x) ax; according to the production (X — o, u,v) € P,
denoted by x1 Xx, = xjax;, if

u # 0 implies that u € sub(x)

and
v # 0 implies that v & sub(x) .

As usual, = is extended to =/, for i > 0, =1, and =*. The language generated by a semi-
conditional grammar, G, is defined as

L(G)={weT":S="w}.

We now prove the main result concerning the descriptional complexity of semi-conditional
grammars.

Theorem 29. Every recursively enumerable language is generated by a semi-conditional grammar
of degree (2,1) with no more than seven conditional productions and eight nonterminals.

Proof. Let L be a recursively enumerable language. There is a grammar
G = ({S,A,B,C},T,PU{ABC — €},S)
in the first Geffert normal form such that L = Z’(G). Construct the grammar
G'=({S,A,B,C,A",B',C',$},T,P"UP".S),

where
P ={X—a,0,0):X —acP},

and P” contains following seven conditional productions:
1. (A—$4",0,9%),

2. (B— B ,A",B),
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C—C'$,A'B.,C),

4

N
- (
. (B —¢€,B'C,0),
N

(9

C' —€,A'C')0),
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6. (A — g,A'$,0),
7. ($—€,0,A").
To prove that £ (G) C Z(G’), consider a derivation
S =" wABCwW'v = ww'v

in G by productions from P with only one application of the production ABC — &, where w,w' €
{A,B,C}* and v € T*. Then,
S =* wABCw'v

in G’ by productions from P’. Moreover, by productions 1,2, 3,4, 5, 6,7, 7, we get

wABCw'v = w$A'BCw'v
w$A'B'Cw'v
w$A'B'C'$w'v
w$A'C'$w'v
wSA'$w'v
wsSw'v

w$w'v

4

A

WW/ V.

The inclusion follows by induction.
To prove that .Z(G) 2 £ (G'), consider a terminal derivation. Let X € {A,B,C} be in a senten-
tial form of this derivation. To eliminate X, there are following three possibilities:

1. If X = A, then there must be C and B (by productions 6 and 3) in the derivation;
2. If X = B, then there must be C and A (by productions 4 and 3) in the derivation;
3. If X = C, then there must be A and B (by productions 5 and 3) in the derivation.

In all above cases, there are A, B, and C in the derivation. By productions 1, 2, 3, and 7, there
cannot be more than one A’, B/, and C’ in any sentential form of this terminal derivation. Moreover,
by productions 3 and 4, A’B'C’ is a substring of a sentential form of this terminal derivation, and
there is no terminal symbol between any two nonterminals; otherwise, there will be a situation in
which (at least) one of productions 3 and 4 will not be applicable. Thus, any first part of a terminal
derivation in G’ is of the form

S =*wABCwyw =3 w;$A'B'C'$wow (5.1)

by productions from P’ and productions 1, 2, and 3, where w; € {A,B}*, w, € {B,C}*,and w € T*.
Next, only production 4 is applicable. Thus,

= w$A'C'$wow.
Besides a possible application of production 2, only production 5 is applicable. Thus,

=1 wiSA $whw,
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where w| € {A,B,B'}*, w, € {B,B',C}*. Besides a possible application of production 2, only
production 6 is applicable. Thus,

=T wi$Swiw,
where w{ € {A,B,B'}*, w) € {B,B’,C}*. Finally, only production 7 is applicable, i.e.,
=2 wiwiw.
Thus, by productions 1, 2, 3, or 1, 3, if production 2 has already been applied, we get

=% uvw.

Here,
uww € {u$SA'B'C'Suyw : uy € {A,B}",u; € {B,C}*}

or uv = €.

Thus, the substring ABC and only this substring was eliminated during the previous deriva-
tion. By induction (see (5.1)), the inclusion holds. This derivation can be performed in G with an
application of the production ABC — &, too. O

Note that it is well-known that every recursively enumerable language is generated by a semi-
conditional grammar of degree (1, 1) (see Theorems 6 and 11(b) in [50]). In this case, however, no
limit of the number of nonterminals or conditional productions is known.

5.2.4 Simple Semi-Conditional Grammars

A simple semi-conditional grammar is a semi-conditional grammar, where for each production,
either the permitting or the forbidding context does not contain any element. These grammars are
introduced in [27].

Definition 37. Let G = (N,T,P,S) be a semi-conditional grammar. If (X — a,u,v) € P implies
that
0€ {u,v},

then G is said to be a simple semi-conditional grammar.

The last known result concerning the descriptional complexity of simple semi-conditional gram-
mars is the content of the following theorem proved in [92].

Theorem 30. Every recursively enumerable language is generated by a simple semi-conditional
grammar of degree (2,1) with no more than ten conditional productions and twelve nonterminals.

We improve this result as follows.

Theorem 31. Every recursively enumerable language is generated by a simple semi-conditional
grammar of degree (2,1) with no more than nine conditional productions and ten nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G = ({S,A,B,C},T,PU{ABC — €},S)
in the first Geffert normal form such that L = Z(G;). Construct the grammar
G=({S,A,B,C,A",B'.C".$,B",C"},T,P"UP".S),

where
P'={(S— a,0,0):S— acP}

and P” contains the following nine conditional productions:
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1. (A—A’,0,A"),
B—B0,B),
c—C,0,0),

(
(
4. (B —B",A'B',0),
(
(
(

5. (C'—C",B"C’,0),
6. (B" — ¢,B"C",0),
7. (A — $,A'C",0),
8. (C" —¢,$,0),
9. ($—¢,0,C").

To prove that £ (G;) C .Z(G), consider a derivation S =* wABCw'v = ww'v in G| by produc-
tions from P with only one application of the production ABC — &, where w,w’ € {A,B,C}* and
v € T*. Then, S =* wABCw'v in G by productions from P. By productions 3, 2, 1, 4, 5, 6, 7, 8,
and 9,

wABC'w'v
wAB'C'w'v
wA'B'C'w'v
wA'B"C'w'y
wA'B"C"w'y
wA'C"w'v
w$C'w'v

w$w'v

wABCwW'v

R T T R A

/
ww .

The inclusion follows by induction.
To prove that Z(G;) D .Z(G), consider a terminal derivation. Let X € {A,B,C} be in a sen-
tential form. To eliminate X, there are following three possibilities:

1. if X = A, then there has to be C (by production 7) and B (by production 5) in the sentential
form;

2. if X = B, then there has to be A (by production 4) and C (by production 6) in the sentential
form;

3. if X = C, then there has to be B (by production 5) and A (by production 8) in the sentential
form.

In all above cases, there are A, B, and C in the sentential form. By productions 1, 2, and 3, there can
be no more than one A’, B’, and C’ in the sentential form. By productions 4 and 5, A’ is before B’ and
C’ follows this B’. We prove that in any terminal derivation, there is no terminal symbol between
any two nonterminals. More precisely, there is no substring of the form 7{BC,C}. Assume that
aB, for some a € T, is a substring of the sentential form. Then, B is rewritten to B’ and B’ cannot
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be rewritten to B” because A’ is before aB’. Similarly, if there is aC in the sentential form, for
some a € T, then C is rewritten to C’ and aC’ cannot be rewritten to aC” because there is never B”
followed by C'. Thus, any terminal derivation in G is of the form

S =" wA'waB'w3C'waw (5.2)
by productions from P and productions 1, 2, 3, and
=% w,

where wy € {A,B}*, wa,w3 € {A,B,C,S}*,ws € {B,C}*, and w € T*. We prove that S & sub(waw3).
To rewrite B’ (by production 4), w, = €. Thus,

wiA'Bwi;C'waw = wiA'B"wiC'waw (5.3)
and, also, production 2 is applicable. However, to rewrite C’ (by production 5), w3 = €. Thus,

=1 wA'B"C"wsw,

where wy € {A,B,B'}*, ws € {B,B',C}*. Thus, A'B'C’ is a substring of wiA'w,B'w3C'waw, and
A'B'C’ was obtained from ABC.

Next, we prove that no other nonterminal is eliminated while ABC is eliminated. Besides a
possible application of productions 2 and 3, only production 6 is applicable. Thus,

=1 wA'C"waw,

where wy € {A,B,B'}*, wy € {B,B’,C,C'}*. Besides a possible application of productions 2 and 3,
only production 7 is applicable. Thus,

=1 wi$C waw,

where w; € {A,B,B'}*, ws € {B,B’,C,C'}*. Besides a possible application of productions 1, 2, 3,
and 4, only production 8 is applicable. Thus,

=T w1 Swaw,

where wy € {A,A",A'B" B,B'}*, wy € {B,B',C,C'}*. Besides a possible application of produc-
tions 1, 2, 3, and 4, only production 9 is applicable. Thus,

=T wiwgw,
where wy € {A,A",A’B" B,B'}*, ws € {B,B’,C,C'}*. Thus,
=" uvw
by productions 1, 2, and 3, if they are applicable. Then,
uvw € {uiA'B'C'ugw : uy € {A, B} ,us € {B,C}*}
U{mA'B"C'v4w: v, € {A,B,B'}",v4 € {B,B',C}"}

or uv = €.

Thus, the string ABC, and only the string, was eliminated. By induction (see (5.2) and (5.3)),
the inclusion holds. This derivation can be performed in G with an application of the production
ABC — &, too. OJ

In [74], the question what is the generative power of simple semi-conditional grammars of
degree (1,1) is formulated as an open problem. Recently, we have proved that simple semi-
conditional grammars of degree (1,1) characterize the whole family of recursively enumerable
languages (see [45]).
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Chapter 6

Conclusion

This thesis discusses the study of formal languages and automata. Its main contribution consists in
the following results proved in this thesis and published (or submitted) in [41, 42, 46, 48, 44, 45,
, 111

(I) The first part of this thesis, Chapter 4, introduces and studies two variants of self-regulating
finite automata, which have a close relation to some parallel grammars, and which with respect to
the number of turns made during their computations define an infinite proper hierarchy of language
families in the family of context-sensitive languages.

In the conclusion of the chapter, self-regulating pushdown automata are mentioned and stud-
ied. A proof that the hierarchy of language families accepted by n-turn all-move self-regulating
pushdown automata, for n € Ny, collapses on n = 1 is given. In that case, it is shown that one-
turn all-move self-regulating pushdown automata possess the power of Turing machines, whereas
it is easy to see that zero-turn all-move (and, in the same way, first-move) self-regulating push-
down automata possess exactly the power of pushdown automata. However, as far as first-move
self-regulating pushdown automata are concerned, the question whether the hierarchy of language
families accepted by n-turn first-move self-regulating pushdown automata, for n € Ny, collapses as
well or not and what is the power of k-turn first-move self-regulating pushdown automata, for some
k € N, is an open problem.

More specifically, based on the number of turns, Chapter 4 of this thesis proves that

1. n-turn first-move self-regulating finite automata give rise to an infinite proper hierarchy of
language families coinciding with the hierarchy resulting from (n + 1)-parallel right linear
grammars;

2. n-turn all-move self-regulating finite automata give rise to an infinite proper hierarchy of
language families coinciding with the hierarchy resulting from (n + 1)-right linear simple
matrix grammars;

3. all-move self-regulating pushdown automata do not give rise to any infinite hierarchy analog-
ical to hierarchies resulting from the self-regulating finite automata.

Moreover, it is shown that while zero-turn all-move self-regulating pushdown automata define
the family of context-free languages, one-turn all-move self-regulating pushdown automata
define the family of recursively enumerable languages.

Although this thesis has solved the main problems concerning self-regulating finite and push-
down automata, there still remain some problems open. Perhaps the most important open problems
are included in 1 through 3 given next.
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1. What is the language family accepted by n-turn first-move self-regulating pushdown au-
tomata, when n € N?

2. By analogy with the standard deterministic finite and pushdown automata, introduce the de-
terministic versions of self-regulating finite and pushdown automata. What is their power?

3. Discuss the closure properties under other language operations, such as the reversal.

(II) The second part of this thesis, Chapter 5, studies the descriptional complexity of partially
parallel grammars and grammars regulated by context conditions, which are regulated context-free
grammars. Results concerning the descriptional complexity of these grammars are supplemented
and improved in this thesis. It is shown that very limited number of nonterminals and special
(conditional) productions is needed.

First, recall the known results that every recursively enumerable language is generated

(1) by a scattered context grammar with no more than five nonterminals and two non-context-free
productions;

(2) by a multisequential grammar with no more than six nonterminals;
(3) by a multicontinuous grammar with no more than six nonterminals;

(4) by a context-conditional grammar (without any limit to the number of conditional productions
and nonterminals);

(5) by a simple context-conditional grammar (without any limit to the number of conditional pro-
ductions and nonterminals);

(6) by a generalized forbidding grammar of degree two with no more than thirteen conditional
productions and fifteen nonterminals;

(7) by a semi-conditional grammar (without any limit to the number of conditional productions and
nonterminals); and

(8) by a simple semi-conditional grammar of degree (2, 1) with no more than ten conditional pro-
ductions and twelve nonterminals.

This thesis improves the previous results and proves that every recursively enumerable language
is generated

(A) by a scattered context grammar with no more than four non-context-free productions and four
nonterminals;

(B) by a multisequential grammar with no more than two selectors and two nonterminals;
(C) by a multicontinuous grammar with no more than two selectors and three nonterminals;

(D) by a context-conditional grammar of degree (2, 1) with no more than six conditional produc-
tions and seven nonterminals;

(E) by a simple context-conditional grammar of degree (2, 1) with no more than seven conditional
productions and eight nonterminals;

(F) by a generalized forbidding grammar of degree two and index six with no more than ten con-
ditional productions and nine nonterminals;
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(G) by a generalized forbidding grammar of degree two and index four with no more than eleven
conditional productions and ten nonterminals;

(H) by a generalized forbidding grammar of degree two and index nine with no more than eight
conditional productions and ten nonterminals;

(I) by a generalized forbidding grammar of degree two and unlimited index with no more than nine
conditional productions and eight nonterminals;

(J) by a semi-conditional grammar of degree (2, 1) with no more than seven conditional produc-
tions and eight nonterminals; and

(K) by a simple semi-conditional grammar of degree (2,1) with no more than nine conditional
productions and ten nonterminals.

However, the question whether these results achieved in this thesis can be established for fewer
nonterminals or conditionals productions with the same (or even less) degree is open.
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