String-Partitioning Systems

Rudolf Schonecker

April 4, 2006



SPS definition

String partitioning system - basics

Definition (SPS)
is a quadruple M = (Q, X, s,R), where Q is a finite set of
states, ¥ is an alphabet containing a special symbol, #, called
abounder,s € Qisastartstateand R C Q x| x {#} xQ x *
is a finite relation whose members are called rules, for some
set of positive integers .

Definition (Rules)

Arule (g,n,#,p,X) € R,wherenel,q,peQandx € * is
written as q # — px hereafter.

A




SPS definition

String partitioning system - basics

occur (w, W) - the nr. of occurrences of symbols from W in w

Definition (k-limited configuration)

is any string x € QX* such that occur (x, #) <k

Definition (derivation step)

Let pu#v, quxv be two k-limited configuration u,v € ¥*,
occur(u,#)=n—1and p# — gx € R.
@ M makes a derivation step from pu#v to quxv by using
p it — gx, symbolically written
PU#V g= quxv [p # — gx] in M and
©@ M makes a reduction step from quxv to pu#tv by using
P it — gx, symbolically written quxv (= pu#Vv[p i# — 0X]
in M.




SPS definition

String partitioning system - basics

Let y=* and ;=* denote the transition and reflexive closure of
4= and (=, respectively.

Definition (SPS language)

The language derived by M, L(M, 4=), is defined as
L(M, ¢=) = {w | s#4="qw, g € Q,w € (X — {#})*}.

The language reduced by M, L(M, =), is defined as
LM, =) ={w [ qw =" s#, g € Q,w € (X — {#})"}.




SPS definition

String partitioning system - example

M = ({s,p,q,f},{a,b,c,#},s,R), where R contains:

Q s# —p##
Q p# — qa#b
Q qz# —p#c
Qp#—fab
efl#—>fc

LM, g=) =L(M, =) ={a"b"c" |n>1}, Ind(M)=2




SPS definition

String partitioning system - example

Example (Example of derivation of string  aaabbbccc)
s#a= p##[1] o= qa#b [2] 4= pa#bi#c [3] 4=
gaa#bb#c [2] y= paa#bb+cc [3] = faaabbb#cc [4] 4=
faaabbbccc [5].

Example (Example of reduction of string  aaabbbccc)

faaabbbccc (= faaabbb#cc [5] ;= paa#bb#cc[4] ;=
qaa#tbbtc [3] = pa#bc [2] = ga#b# (3] =
p## [2] 1= s# [1].




PG and Finite index definition

PG definition

Definition (Programmed grammar)

is a quadruple, G = (V,T,P,S), where
@ V is atotal alphabet

@ T CV is an alphabet of terminals
© S € (V —T)is the start symbol

Q P is afinite set of rules of the form q: A — v, g(q)

@ (: A — vV is a context free rule labeled by g

@ g(q) is a set of rule labels associated with this rule

e after g-application a rule labeled by a label from g(q)
has to be applied




PG and Finite index definition

Finite index definition

Definition ( G = (V,T,P,S),N=V —T)

ForD:S=w; =Wy = ---=w,=wecT* forweT*inG:
@ Ind(D,G) = max{occur(w;,N) | 1 <i <r}
@ Ind(w,G) = min{Ind(D,G) | D is a derivation for w in G}
@ Ind(G) =sup{Ind(w,G) |w € L(G)}
For a language L in the family £(X) of languages generated by
grammars of some type X, we define:
@ Indx (L) =inf{Ind(G) | L(G) =L, G is of type X}
For a family £(X), we set
@ Liy(X)={L|Le L(X)andIndy(L) <k}, k>1

@ Lin(X) = L>Jl|—n(x)




PG and Finite index definition

PG generative power

Summary (Generative power)

For programmed grammars stands:
@ L£(2)c L(P,CF) C L(1)
For programmed grammars of index k stands:
@ Ly(P,CF) C Lyy1(P,CF), forallk > 1
@ L(CF) — Lsin(P,CF) £ 0
@ Liin(P,CF) is incomparable towards £(CF)




Results

Lemma (Lx(P,CF) C Lk (SPS, 4=))

For every programmed grammar of index k, G, there is a
string-partitioning system of index k, H, such that
Lk(G) = Lk(H, a=).

Lemma ( Lk (SPS, ¢=) € Lk(P,CF))

For every string-partitioning system of index k, H, exists
equivalent programmed grammar of index k, G, such that
L« (G) = Lk(H, a=).

Ly (SPS, 4=) = Lk(P,CF), for every k > 1.




Results

Infinite hierarchy of languages
Ly (SPS,CF) C Lx,1(SPS,CF), holds for all k > 1.

Because of L (P,CF) C Lx.1(P,CF), forallk > 1, and
Lk (SPS, 4=) = Lk(P,CF), for every k > 1.




