
Bidirectional Contextual Grammars

Alexander Meduna Jǐŕı Techet

August 24, 2006

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

Abstract

The present paper introduces and discusses bidirectional contextual
grammars as a straightforward generalization of externally generating
contextual grammars without choice. In essence, besides ordinary deriva-
tion steps, the bidirectional contextual grammars can also make reduc-
tion steps, which shorten the rewritten strings. This paper demonstrates
that these grammars characterize the family of recursively enumerable
languages. In fact, this characterization holds even in terms of one-turn
bidirectional contextual grammars, which can change derivations steps to
reduction steps during the generation process no more than once.

Keywords contextual grammars, bidirectional grammars, generative power, recur-

sively enumerable languages

1 Introduction

Over its history, the language theory has always paid a special attention to the
Marcus contextual grammars because these grammars fulfill a significant role
in the generation of both natural and formal languages (see [8, 9], chapter 5
and 6 in Volume II of [18]). It thus come as no surprise that the language
theory has discussed a large variety of these grammars (see [6, 13, 14, 16, 15]).
This paper contributes to this trend by investigating another variant of these
grammars whose introduction is inspired by two grammatically oriented studies
in the formal language theory. First, more than three decades ago, this theory
used grammars with special end markers during the generation of languages (see
page 99 in [19]). Second, about two decades ago, the language theory introduced
various bidirectional grammars that both derive and reduce strings during their
generation process (see [1, 2, 3, 4, 5, 12]). These two studies have given rise to
the variant of contextual grammars discussed in this paper.

1

More specifically, this paper introduces bidirectional contextual grammars as
a straightforward generalization of the externally generating contextual gram-
mars without choice (see page 240 in Volume II of [18]). A bidirectional con-
textual grammar, G, is based on derivation and reduction rules of the form
(x, y), where x and y are strings. From a string z, G makes a derivation step
by using a derivation rule, (u, v), like in any externally generating contextual
grammars that is, it changes z to uzv by using this derivation rule. In addition,
however, by using a reduction rule, (t, w), from tzw, G makes a reduction step
so it changes tzw to z. If G can make a computation from G’s axiom, s, to z,
where $ is a special bounding symbol, z is in the language defined by G. Two
consecutive computational steps G makes are called a turn if one is a reduction
step and the other represents a derivation step. Let i be a non-negative integer.
G is an i-turn bidirectional contextual grammar if G makes no more than i
turns during every generation of string from its language.

As its main result, this paper proves that the bidirectional one-turn con-
textual grammars characterize the family of recursively enumerable languages.
This result is of some interest because externally generating contextual gram-
mars without choice define only the family of minimal linear languages (see
Lemma 2.9 on page 247 in Volume II of [18]). In fact, every recursively enumer-
able language is defined by a one-turn bidirectional contextual grammar. In the
conclusion of this paper, we suggest some open problem areas related to this
result.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [10, 17,
18, 19]). For an alphabet, V , card(V) denotes the cardinality of V . V ∗ rep-
resents the free monoid generated by V under the operation of concatenation.
The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and
alph(w) denote the length of w and the set of symbols occurring in w, respec-
tively. For L ⊆ V ∗, alph(L) = {a : a ∈ alph(w), w ∈ L}. For w ∈ V ∗ and for
a ∈ V , occur(w, a) denotes the number of occurrences of a in w. For w ∈ V ∗,
prefix(w) and suffix(w) denote the set of all w’s prefixes and suffixes, respec-
tively. For (w1, . . . , wn) ∈ V ∗

1 × . . .× V ∗
n , where V1, . . . , Vn are finite alphabets,

concat((w1, . . . , wn)) = w1 . . . wn.
A queue grammar (see [7]) is a sixtuple, Q = (V, T,W,F, s, P), where V and

W are alphabets satisfying s ∈ VW , T ⊆ V , F ⊆ W , s ∈ (V − T)(W − F),
and P ⊆ (V × (W − F)) × (V ∗ ×W) is a finite relation whose elements are
called productions. For every a ∈ V , there exists a production (a, b, x, c) ∈ P .
If u, v ∈ V ∗W such that u = arb, v = rxc, a ∈ V , r, x ∈ V ∗, b, c ∈ W ,
and (a, b, x, c) ∈ P , then u ⇒ v [(a, b, x, c)] in G or, simply, u ⇒ v. In the
standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define
⇒+ and ⇒∗. The language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ : s ⇒∗

wf where f ∈ F}.
A left-extended queue grammar is a sixtuple, Q = (V, T,W,F, s, P), where

2

V , T , W , F , s, and P have the same meaning as in a queue grammar; in
addition, assume that # /∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so that u = w#arb,
v = wa#rxc, a ∈ V , r, x, w ∈ V ∗, b, c ∈ W , and (a, b, x, c) ∈ P , then u ⇒
v [(a, b, x, c)] in G or, simply, u⇒ v. In the standard manner, extend ⇒ to ⇒n,
where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q),
is defined as L(Q) = {v ∈ T ∗ : #s ⇒∗ w#vf for some w ∈ V ∗ and f ∈ V ∗}.

3 Definitions

A bidirectional contextual grammar is a triple G = (T ∪ {$}, Pd ∪ Pr, S), where
T is an alphabet, $ a special symbol, $ 6∈ T , P ⊆ (T ∪ {$})∗ × (T ∪ {$})∗,
P = Pd ∪ Pr, and S is a finite language over T . For every x ∈ (T ∪ {$})∗
and (u, v) ∈ Pd, write x d⇒ uxv, and for every (u, v) ∈ Pr, write uxv r⇒
x; intuitively, d and r stand for a direct derivation and a direct reduction,
respectively. To express that G makes x d⇒ uxv according to (u, v), write
x d⇒ uxv [(u, v)]; uxv r⇒ x [(u, v)] has an analogical meaning in terms of r⇒.
Let y, x ∈ (T ∪ {$})∗. We say that G makes a direct computation of x from y,
symbolically written as y ⇒ x, if either y d⇒ x or y r⇒ x in G. In the standard
manner, extend ⇒ to ⇒m, where m ≥ 0; then, based on ⇒m, define ⇒+ and
⇒∗. The $-bounded language generated by G, $L(G), is defined as

$L(G) = {z : s ⇒∗ z in G, z ∈ T ∗, s ∈ S}.

A computation of the form s ⇒∗ z in G, where z ∈ T ∗ and s ∈ S, is said
to be successful. Any two-step computation, y ⇒2 x, where y, x ∈ (T ∪ {$})∗,
represents a turn if y ⇒2 x is of the form y d⇒ z r⇒ x or y r⇒ z d⇒ x, for
some z ∈ (T ∪ {$})∗; less formally, the two-step computation y ⇒2 x consists
of one direct derivation and one direct reduction. G is i-turn if any successful
computation in G contains no more than i turns.

4 Results

This section demonstrates that every recursively enumerable language is defined
by a one-turn bidirectional contextual grammar.

Lemma 1. For every recursively enumerable language, L, there is a left-
extended queue grammar, G, such that L = L(G).

Proof. See Lemma 1 in [7]. �

Lemma 2. Let Q′ be a left-extended queue grammar. Then, there exists a
left-extended queue grammar, Q = (V, T,W,F, s,R), such that L(Q′) = L(Q),
W = X∪Y ∪{1}, where X,Y, {1} are pairwise disjoint, and every (a, b, x, c) ∈ R
satisfies either a ∈ V − T , b ∈ X, x ∈ (V − T)∗, c ∈ X ∪ {1} or a ∈ V − T ,
b ∈ Y ∪ {1}, x ∈ T ∗, c ∈ Y .

Proof. See Lemma 1 in [11]. �

3

Consider the left-extended queue grammar, Q = (V, T,W,F, s,R), from
Lemma 2. Its properties imply that Q generates every word in L(Q) so that it
passes through state 1. Before it enters 1, it generates only words over V − T ;
after entering 1, it generates only words over T . In greater detail, the next corol-
lary expresses this property, which fulfills a crucial role in the proof of Theorem
1.

Corollary 1. Q constructed in the proof of Lemma 2 generates every h ∈ L(Q)
in this way

#a0q0
⇒ a0#x0q1 [(a0, q0, z0, q1)]
⇒ a0a1#x1q2 [(a1, q1, z1, q2)]

...
⇒ a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]
⇒ a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]

...
⇒ a0a1 . . . ak+m−1#xk+m−1y1 . . . ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]
⇒ a0a1 . . . ak+m−1ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)],

where k,m ≥ 1, ai ∈ V − T for i = 0, . . . , k + m, xj ∈ (V − T)∗ for j =
1, . . . , k +m, s = a0q0, ajxj = xj−1zj for j = 1, . . . , k, a1 . . . akxk = z0 . . . zk,
ak+1 . . . ak+m = xk, q0, q1, . . . , qk+m ∈ W − F and qk+m+1 ∈ F , z0, . . . , zk ∈
(V − T)∗, y1, . . . , ym ∈ T ∗, h = y1y2 . . . ym−1ym. �

Theorem 1. Let L be a recursively enumerable language. Then, there exists a
one-turn bidirectional contextual grammar, G, such that L = $L(G).

Proof. Let L be a recursively enumerable language. Let Q = (V, T,W,F, s,R)
be a left-extended queue grammar such that L(Q) = L and Q satisfies the
properties described in Lemma 2 and Corollary 1. Select a symbol, o ∈ T .
Define the injection, α, from R to {o}+ so that α is an injective homomorphism
when its domain is extended to R∗. Further, define the binary relation, f , over
V so that f(ε) = ε and f(a) = {α((a, b, c1 . . . cn, d)) : (a, b, c1 . . . cn, d) ∈ R}
for all a ∈ V . Similarly, define the binary relation, g, over W so that g(b) =
{α((a, b, c1 . . . cn, d)) : (a, b, c1 . . . cn, d) ∈ R} for all b ∈ W . In the standard
manner, extend the domain of f and g to V ∗ and W ∗, respectively. Define the
bidirectional contextual grammar,

G = (T ∪ {$}, Pd ∪ Pr, S),

with

S = {c1 . . . cn$α((a, b, c1 . . . cn, d)) : (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ T for some n ≥ 0, d ∈ F}

and Pd, Pr constructed as follows:

4

1. For every (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ T , for some n ≥ 0, d ∈
(W − F), d ∈ g(d), add
(c1 . . . cn, $$d$$α((a, b, c1 . . . cn, d))) to Pd;

2. For every (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ (V − T), for some n ≥ 0,
d ∈ (W − F), c1 ∈ f(c1), . . . , cn ∈ f(cn), d ∈ g(d), add
(c1$c2$. . . cn$, $$d$$α((a, b, c1 . . . cn, d))) to Pd;

3. For every a0 ∈ f(a0), q0 ∈ f(q0) such that s = a0q0, add
($a0$, $$q0$$) to Pd;

4. For every r ∈ R, add
($α(r), α(r)$$α(r)$$) to Pr.

Denote the set of productions introduced in step i of the construction by
iPd, for 1 ≤ i ≤ 3.

Basic Idea:

Each simulation consists of two phases. In the first phase, the simulation of
Q’s derivation is performed nondeterministically, and in the second phase, this
simulation is verified. Next, we sketch both phases in greater detail.

Simulation phase G performs the simulation ofQ in reverse. That is, the last
derivation step in Q is simulated first in G, and the first step in Q is simulated
last in G. In general, G keeps the binary code of the string over V that Q
generates as a prefix of the current sentential form while keeping the binary code
of states as its suffix. By a string from S, the Q’s production of the form p0 :
(a, b, c1 . . . cn, d), d ∈ F is simulated; it places c1 . . . cn as the prefix and the p0’s
code as the suffix of the sentential form. Then, productions p1 : (a, b, c1 . . . cn, d),
c1, . . . , cn ∈ T , d ∈ (W −F) are simulated by productions from 1Pd. They place
c1 . . . cn as the prefix and the codes of d and p1 as the suffix of the sentential form.
The suffix codes of the sentential form are always separated by $$. Productions
from 2Pd simulate productions p2 : (a, b, c1 . . . cn, d), c1, . . . , cn ∈ (V − T); they
place codes of c1, . . . , cn as the prefix and, again, d’s and p2’s code as the suffix.
The prefix codes are always separated by $. Finally, by productions from 3Pd,
the axiom s = a0q0 from Q is simulated.

Verification phase During every step of the verification phase, G makes sure
that the two suffix binary codes and the prefix binary code correspond to the
same production in Q. If they do, all these three codes are removed from the
sentential form. In this way, step by step, G verifies that the previously made
simulation phase was performed properly.

5

Rigorous proof (Sketch):

Claim 1. G generates every w ∈ $L(G) in the following way:

s ⇒+ v [ρ]
r⇒+ w [τ], (1)

where s ∈ S, v ∈ {$}pn{$}pn−1 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1

{$}{$}pn{$}{$}pn{$}{$}, n ≥ 1, where α−1(p1) ∈ R, . . . , α−1(pn) ∈ R and
w ∈ T ∗. Sequences ρ and τ denote productions from 1Pd ∪ 2Pd ∪ 3Pd ∪ Pr and
Pr, respectively.

Proof. Observe that every pd ∈ 1Pd∪2Pd∪3Pd satisfies occur(concat(pd), $) ≥ 4.
By the definition of $L(G), however, precisely two $s occur in the generated
sentence. Therefore, no production from 1Pd ∪ 2Pd ∪ 3Pd is applied in the very
last computation step. For the same reason, s /∈ $L(G), for any s ∈ S, because
occur(s, $) = 1 for every s ∈ S. Therefore,

s ⇒+ v [ρ]
r⇒+ w [τ].

Observe that an application of every production from Pd removes three iden-
tical codes α(r), r ∈ R. More specifically, one prefix code and two subsequent
suffix codes of the sentential form are removed. Furthermore, notice that the
prefix codes and the suffix codes of the sentential form have to be separated
by $ and $$, respectively. Next, we consider the following four forms of v and
demonstrate that G can generate a member of $L(G) from none of them.

1. Let v ∈ {$}pn−1 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1

{$}{$}pn{$}{$}pn{$}{$}, n ≥ 1, where α−1(p1) ∈ R, . . . , α−1(pn) ∈ R
(notice that {$}pn /∈ prefix(v)). In the case that pi−1 = pi for all 1 ≤ i ≤ n
and w = p1, the reduction phase can be preformed. After all applicable
reducing productions are used, the resulting sentence consists only from
$, which is not in $L(G).

2. Let v ∈ {$}pn−2 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1

{$}{$}pn{$}{$}pn{$}{$} (notice that {$}pn{$}pn−1 /∈ prefix(v)). In the
case that pi−2 = pi for all 1 ≤ i ≤ n, p1 = p2 and w = p3, the reduction
phase can be preformed. The resulting sentence satisfies {$}{$}p1{$}{$},
which is not in $L(G) either.

3. Let v ∈ {$}pn{$}pn−1 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1

{$}{$} (notice that pn{$}{$}pn{$}{$} /∈ suffix(v)). In the case that
pi−1 = pi for all 1 ≤ i ≤ n, the reduction phase can be preformed. In
this case, however, the reduction ends when the sentential form satisfies
{$}p1{$}w{$}, so the computation ends unsuccessfully as well.

4. All other cases, where the number of prefix codes and suffix codes of v
does not match, lead to an unsuccessful computation.

6

Hence, to generate a string w ∈ $L(G), the sentential form v has to have the
form v ∈ {$}pn{$}pn−1 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1

{$}{$}pn{$}{$}pn{$}{$}. Therefore, this claim holds.

Claim 2. Every s ⇒+ v from (1) described in Claim 1 can be expressed in
greater detail as

s d⇒∗ u [ξ]
d⇒ v [pn],

where u ∈ pn−1{$}pn−2 . . . {$}p1{$}w{$}p1{$}{$}p1{$}{$} . . . pn−1{$}{$}pn−1{$}{$}pn,
n ≥ 1 with α−1(p1) ∈ R, . . . , α−1(pn) ∈ R. Production pn ∈ 3Pd has the form
($α(rn)$, $$α(rn)$$), rn ∈ R, ξ represents a sequence of productions from
1Pd ∪ 2Pd.

Proof. First, observe that every s ∈ S satisfies $ /∈ suffix(s), and every produc-
tion pd ∈ 1Pd ∪ 2Pd satisfies $ /∈ suffix(concat(pd)). As every pr ∈ Pr satisfies
$$ ∈ suffix(concat(pr)), pr cannot be used after an application of production
from 1Pd ∪ 2Pd. As $$ ∈ suffix(concat(p3)) and $ ∈ prefix(concat(p3)) for all
p3 ∈ 3Pd, after an application of p3 productions from Pr can be used. Therefore,
the computation can be expressed as

s d⇒∗ u1 [ξ1]
d⇒ u2 [p3]
⇒∗ v [ξ2],

where ξ1 and ξ2 are sequences of productions from 1Pd ∪ 2Pd and 1Pd ∪ 2Pd ∪
3Pd ∪ Pr, respectively. Next, we show that u2 ⇒0 v and ξ1 = ξ.

Now, we demonstrate that after any application of a production from Pr,
the sentential form w satisfies $ ∈ suffix(w). In what follows, α−1(p0) ∈
R, . . . , α−1(pn) ∈ R,α−1(p′1) ∈ R, . . . , α−1(p′n+1) ∈ R for some n ≥ 0.
The generation starts from s ∈ S, which is of the form T ∗{$}p0. Pro-
ductions from 1Pd ∪ 2Pd have the form ((T ∪ {$})∗, {$}{$}p′i{$}{$}pi), 1 ≤
i ≤ n; after their n applications followed by one application of a pro-
duction from 3Pd of the form ((T ∪ {$})∗, {$}{$}p′n+1{$}{$}), we obtain
(T ∪ {$})∗T ∗{$}p0{$}{$}p′1{$}{$}p1 . . . {$}{$}p′n{$}{$}pn{$}{$}p′n+1{$}{$}.
If pi = p′i+1, 1 ≤ i ≤ n and the prefix of the sentential form satisfies some
other requirements, productions from Pr can start performing reduction so that
they erase pi{$}{$}p′i+1{$}{$} from the suffix and some other symbols from the
prefix of the sentential form. Finally, when we get by this reduction a sentential
form of the form (T ∪ {$})∗T ∗{$} no other productions from Pr can be used.
Observe that after any application of a production from Pr, the sentential form
w satisfies $ ∈ suffix(w).

The sentential form w satisfies $ ∈ suffix(w) after an application of a pro-
duction from Pr, and every production pd ∈ 1Pd ∪ 2Pd ∪ 3Pd has the form
((T ∪ {$})∗, {$}{$}(T ∪ {$})∗). Therefore, by the derivation w d⇒ w1 [pd], we
get $$$ ∈ suffix(w1) so the computation is blocked. For this reason, only pro-
ductions from Pr can be used after the application of production from 3Pd. To

7

successfully reduce the sentential form, u, observe that u has to follow the form
described in the formulation of this claim.

Putting together the previous two claims, we see that every successful com-
putation is of the form

s d⇒∗ u [ξ]
d⇒ v [p3]
r⇒∗ w [η],

where p3 ∈ 3Pd, ξ and η are sequences of productions from 1Pd ∪ 2Pd and Pr,
respectively.

The bidirectional contextual grammar, G, simulates the queue grammar, Q,
in reverse by a string from S and productions 1Pd∪2Pd∪3Pd. Productions from
Pr perform the verification of this simulation in the same order as Q makes its
derivation steps. The succession of states is checked in the suffix of the sentential
form, the queue is simulated in the prefix. As we expect Q to satisfy Lemma
2 and Corollary 1 and the succession of states is checked, we can express the
computation as a whole in a more detailed way:

s d⇒∗ y [ψ]
d⇒∗ u [ζ]
d⇒ v [p3]
r⇒∗ w [η],

where ψ and ζ denote sequences of productions from 1Pd and 2Pd, respectively.
Examine this computation and the productions to see that w ∈ $L(G) if and
only if w ∈ L(Q). �

Acknowledgements

This work was supported by GAČR grant 201/04/0441.

References

[1] D. E. Appelt. Bidirectional grammars and the design of natural language
generation systems. In Proceedings of Third Conference on Theoretical
Issues in Natural Language Processing (TINLAP-3), pages 185–191, Las
Cruces, New Mexico, 1987.

[2] P. R. J. Asveld and J. A. Hogendorp. On the generating power of regu-
larly controlled bidirectional grammars. International Journal of Computer
Mathematics, 40:75–91, 1991.

[3] H. Fernau and M. Holzer. Bidirectional cooperating distributed grammar
systems. Technical Report WSI-96-01, Wilhelm Schickard-Institut fur In-
formatik, Germany, 1996.

8

[4] J. A. Hogendorp. Controlled bidirectional grammars. International Journal
of Computer Mathematics, 27:159–180, 1989.

[5] J. A. Hogendorp. Time-bounded controlled bidirectional grammars. Inter-
national Journal of Computer Mathematics, 35:93–115, 1990.

[6] L. Ilie. A non-semilinear language generated by an internal contextual
grammar with finite choice. Annals of Bucharest Univ., Math.-Informatics
Series, 45(1):63–70, 1996.

[7] H. C. M. Kleijn and G. Rozenberg. On the generative power of regular
pattern grammars. Acta Informatica, 20:391–411, 1983.

[8] S. Marcus, editor. Algebraic Linguistics. Analytical Models. Academic
Press, New York, 1967.

[9] S. Marcus. Contextual grammars. Rev. Roum. Math. Pures Appl., 14:1525–
1534, 1969.

[10] A. Meduna. Automata and Languages: Theory and Applications. Springer-
Verlag, London, 2000.

[11] A. Meduna. Simultaneously one-turn two-pushdown automata. Interna-
tional Journal of Computer Mathematics, 80:679–687, 2003.

[12] A. Meduna. Two-way metalinear pc grammar systems and their descrip-
tional complexity. Acta Cybernetica, 16:385–397, 2004.

[13] G. Paun. Marcus contextual grammars. after 25 years. Bulletin EATCS,
52:263–273, 1994.

[14] G. Paun. Marcus contextual grammars. Kluwer Academic Publishers, Lon-
don, 1997.

[15] G. Paun, G. Rozenberg, and A. Salomaa. Mathematical Aspects of Natural
and Formal Languages, chapter Marcus Contextual Grammars: Modularity
and Leftmost Derivation. World Scientific Publ., Singapore.

[16] G. Paun, G. Rozenberg, and A. Salomaa. Contextual grammars: Paral-
lelism and blocking of derivation. Fundamenta Informaticae, 41(1):83–108,
1996.

[17] G. E. Revesz. Introduction to Formal Language Theory. McGraw-Hill, New
York, 1983.

[18] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages,
volume 1 through 3. Springer-Verlag, Berlin, 1997.

[19] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

9

