

Deterministic translation of LL(1) languages using reduced pushdown automata

Adam Husár, ihusar@fit.vutbr.cz, FIT, BUT, 11/12/07.

Contents

- Introduction, motivation,
- global index grammar inspired grammars (GIGIG),
- reduced pushdown automata (RPDA),
- step 1 transformation CFG -> GIGIG,
- step 2 transformation GIGIG with right-linear rules -> GIGIG with right-regular rules,
- step 3 transformation GIGIG -> CFG,
- deterministic RPDA,
- attributed translation,
- substitution of RPDA into a finite automaton,
- conclusions.

Introduction, motivation

- Assembler input language can be divided into 3 grammars describing:
 - assembler file structure and directives,
 - o expressions and
 - o instruction set.
- Needed to "regularize" context-free grammar to use a modification of finite automata that will be able to translate expressions.
- Result: algorithm that allows us to transform any CFG into an equivalent reduced pushdown automaton.

Global Index Grammar Inspired Grammars (GIGIG)

- G = (N, T, I, S, #, P),
- N, T, S are defined as usually,
- I is the set of indices (stack symbols),
- # is the starting stack symbol,
- *P* is the set of productions of the following forms

a.
$$A \rightarrow \alpha$$
 (epsilon),

b.
$$A \rightarrow \alpha$$
 (push),

c.
$$A \xrightarrow{\bar{x}} \alpha$$
 (pop),

where $x \in I, y \in I \cup \{\#\}, A \in N, \alpha \in (N \cup T)^*$.

GIGIG – derivation relation, example

Derivation relation ⇒ is defined as follows:

if rule is of the form:

a.
$$A \underset{\varepsilon}{\rightarrow} \alpha$$
, then $\delta \# \beta A \gamma \underset{\varepsilon}{\Rightarrow} \delta \# \beta \alpha \gamma$,

b.
$$A \rightarrow_x \alpha$$
, then $\delta \# \beta A \gamma \Rightarrow_x x \delta \# \beta \alpha \gamma$,

c.
$$A \underset{\bar{x}}{\rightarrow} \alpha$$
 , then $x \delta \# \beta A \gamma \underset{\bar{x}}{\Longrightarrow} \delta \# \beta \alpha \gamma$.

- Generated language: $L(G) = \{w \mid \#S \rightarrow^* \#w, w \in T^*\}$.
- Example: let's have a GIGIG with following rules:

$$S \xrightarrow{i} aSd$$
, $S \rightarrow B$, $B \xrightarrow{\bar{i}} bBc$, $B \rightarrow \varepsilon$,

then a derivation sequence of sentential forms for string aabbccdd would be the following:

$$\#S \underset{i}{\Rightarrow} i \#aSd \underset{i}{\Rightarrow} i \#aaSdd \Rightarrow i i \#aaBdd \underset{i}{\Rightarrow} i \#aabBcdd \underset{i}{\Rightarrow} \#aabbBccdd \Rightarrow aabbccdd$$

Reduced Pushdown Automata (RPDA)

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$
- $Q, \Sigma, \Gamma, q_0, z_0, F$ are defined in the same way as for pushdown automata,
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times (\Gamma \cup \{\varepsilon\})}$, where for any $q \in Q, a \in (\Sigma \cup \{\varepsilon\})$ holds:

if
$$(q', z') \in \delta(q, a, z)$$
,
then $(z = \varepsilon \land z' = \varepsilon) \lor (z \in \Gamma \land z' = \varepsilon) \lor (z = \varepsilon \land z' \in \Gamma)$.

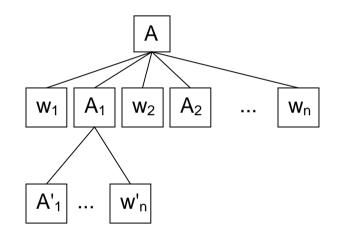
 When a transition is made, either we do not manipulate with the pushdown, one symbol is pushed onto the pushdown or one symbol is popped.

Step 1 - Transformation CFG -> GIGIG

• Let's have a CFG G = (N, T, P, S), an equivalent GIGIG is $G' = (N \cup I \cup \{X\}, T, I, S, \#, P')$, where the production set P' and index set I is constructed in this way:

For every rule p, $p \in P$, of the form $A \to w_1 A_1 w_2 A_2 ... A_{n-2} w_{n-1} A_{n-1} w_n$ add to P' following rules:

$$\begin{array}{lll} A \underset{A_{1}^{p}}{\longrightarrow} w_{1}A_{1} \,, & X \underset{\overline{A_{1}^{p}}}{\longrightarrow} A_{1}^{p} \,, \\ A_{1}^{p} \underset{A_{2}^{p}}{\longrightarrow} w_{2}A_{2} \,, & X \underset{\overline{A_{2}^{p}}}{\longrightarrow} A_{2}^{p} \,, \\ \dots & \dots & \dots \\ A_{n-2}^{p} \underset{A_{n-1}^{p}}{\longrightarrow} w_{n-1}A_{n-1}^{p} \,, & X \underset{\overline{A_{n-1}^{p}}}{\longrightarrow} A_{n-1}^{p} \,, \\ A_{n-1}^{p} \longrightarrow w_{n} \,, & A_{n-1}^{p} \longrightarrow w_{n} \,X \, \text{ and } \end{array}$$



to I add $A_1^p, A_2^p, ..., A_{n-1}^p$, where $A_i \in N, n \ge 1, 1 \le i \le n-1$, $w_j \in T^*, 1 \le j \le n$

Result of the step 1 is a tuple (G', X).

Step 2 - Transformation GIGIG with right-linear rules -> GIGIG with right-regular rules

- Classical algorithm for conversion of right-linear grammar to right-regular grammar with one small modification would be used.
- If a rule manipulates with the pushdown, this action would be associated with the first rule created from it.

Step 3 - Transformation GIGIG -> RPDA

- Let's have tuple (G, X) obtained from a CFG using steps 1 and 2.
 - G = (N, T, I, S, #, P) and X is a special nonterminal, $X \in N$.
- An equivalent reduced pushdown automaton is

$$M = (N \cup \{f\}, T, I \cup \{\#\}, \delta, S, \#, \{f\})$$
, where the transition function

$$\delta: N \times (T \cup \{\varepsilon\}) \times (I \cup \{\varepsilon\}) \rightarrow 2^{(N \cup \{f\}) \times (I \cup \{\varepsilon\})}$$
 is constructed in this way:

For every rule $p, p \in P$ of the form

a)
$$A \to aB$$
, let $(B, \varepsilon) \in \delta(A, a, \varepsilon)$,

b)
$$A \rightarrow aB$$
, let $(B, z) \in \delta(A, a, \varepsilon)$,

c)
$$A \xrightarrow{\bar{z}} B$$
, let $(B, \varepsilon) \in \delta(A, \varepsilon, z)$ and

d)
$$A \rightarrow a$$
, let $(X, \varepsilon) \in \delta(A, a, \varepsilon)$.

Further, let $(f, \varepsilon) \in \delta(X, \varepsilon, \#)$.

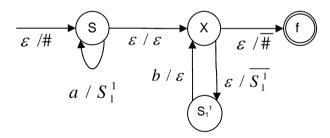
Result of step 3 is a RPDA that translates original CFG.

Example 1

- Let's have a CFG with following rules: 1: $S \to aSb$, 2: $S \to \varepsilon$.
- Using step 1 and step 2, we obtain GIGIG with following regular rules:

1:
$$S \xrightarrow{s_1^1} aS$$
, $X \xrightarrow{s_1^1} S_1^1$, $S_1^1 \rightarrow b$, $S_1^1 \rightarrow bX$, 2: $S \rightarrow \varepsilon$, $S \rightarrow X$.

• Then the step 3 is applied and we get this RPDA:



• For input string *aabb*, this automaton goes throught the following sequence of configurations:

$$(S, aabb, \#) \mapsto (S, abb, S_1^1 \#) \mapsto (S, bb, S_1^1 S_1^1 \#) \mapsto (X, bb, S_1^1 S_1^1 \#) \mapsto (S_1^1, bb, S_1^1 \#) \mapsto (X, b, S_1^1 \#) \mapsto (S_1^1, b, \#) \mapsto (X, \varepsilon, \#) \mapsto (f, \varepsilon, \varepsilon)$$

Deterministic RPDA

- Any RPDA $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,F)$, where for the transition function δ holds $|\delta(q,a,z)| \le 1$ for $\forall q \in Q, \forall a \in \Sigma \cup \{\varepsilon\}, \forall z \in \Gamma \cup \{\varepsilon\}$, can be transformed to a deterministic RPDA.
- A step relation for deterministic RPDA first tries to use a transition that uses a symbol from the input or a symbol from the pushdown. Only in the case that none of these can be used, an epsilon transition $(\delta(q, \varepsilon, \varepsilon))$ can be applied.

Theorem 1

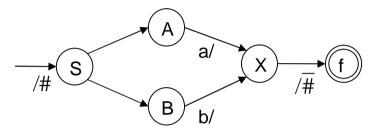
For a reduced pushdown automaton M_1 , created from context-free grammar G_1 using steps 1, 2 and 3, holds $L(M_1) = L(G_1)$.

Theorem 2

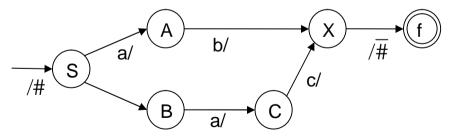
If a reduced pushdown automaton M_2 , created from LL(1) grammar G_2 using steps 1, 2 and 3, can be transformed to a deterministic pushdown automata M_{2D} , then L(M_{2D}) = L(G_2) holds.

Theorem 2, explanations

- \bullet Let's have a grammar with rules $S \to A \,|\, B, A \to a, B \to b$,
 - o is LL(1), but the created automaton is not deterministic.



- Another grammar with rules $S \to aA \mid B, A \to b, B \to aC, C \to c$,
 - o is not LL(1) (in fact is LL(2)), the created automaton is deterministic (in the way we have defined determinism for deterministic RPDA), but does not accept the same language.



Note: The ZAP course project grammar.

Example 2

- Let's have a CFG with following rules:
 - $1: E \to FD$
 - $2: D \rightarrow +FD$
 - $3: D \to \varepsilon$
 - $4: F \rightarrow (E)$
 - $5: F \rightarrow i$

- Then an equivalent GIG will have these rules:
- lacktriangle

1:
$$E \xrightarrow{E_1^1} F$$
, $X \xrightarrow{E_1^1} E_1^1$,

$$E_1^1 \xrightarrow{E_2^1} D$$
, $X \xrightarrow{E_2^1} E_2^1$,

$$E_2^1 \rightarrow \varepsilon$$
, $E_2^1 \rightarrow X$,

2:
$$D \xrightarrow{D_1^2} + F$$
, $X \xrightarrow{D_1^2} D_1^2$,

$$D_1^2 \xrightarrow{D_2^2} D$$
, $X \xrightarrow{D_2^2} D_2^2$,

$$D_2^2 \to \varepsilon$$
, $D_2^2 \to X$,

3:
$$D \rightarrow \varepsilon$$
, $D \rightarrow X$,

4:
$$F \xrightarrow{F_1^4} (E, X \xrightarrow{F_1^4} F_1^4,$$

$$F_1^4 \rightarrow), \qquad F_1^4 \rightarrow)X,$$

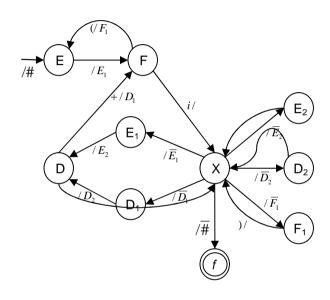
5:
$$F \rightarrow i$$
, $F \rightarrow iX$.

Example 2, continued

 We have a GIGIG with these rules:

1:
$$E \underset{E_1^1}{\rightarrow} F$$
, $X \underset{E_1^1}{\rightarrow} E_1^1$, $E_1^1 \underset{E_2^1}{\rightarrow} D$, $X \underset{E_2^1}{\rightarrow} E_2^1$, $E_2^1 \underset{E_2^1}{\rightarrow} \mathcal{E}$, $E_2^1 \xrightarrow{} X$, 2: $D \underset{D_1^2}{\rightarrow} + F$, $X \underset{D_2^2}{\rightarrow} D_1^2$, $X \underset{D_2^2}{\rightarrow} D_2^2$, $D_2^2 \xrightarrow{} \mathcal{E}$, $D_2^2 \xrightarrow{} X$, 3: $D \xrightarrow{} \mathcal{E}$, $D \xrightarrow{} X$, $D \xrightarrow{} X$, 4: $F \underset{F_1^4}{\rightarrow} (E, X \underset{F_1^4}{\rightarrow})X$, $F \xrightarrow{} iX$.

• Using step 3 we get following RPDA:



 This automaton translates the language generated by the original grammar.

(Upper indices representing rule numbers are omitted.)

Attributed Translation

- We need to deal with attributes and semantic actions during translation.
- For this, we add to a RPDA a new stack onto which we will store attribute values.
- Operations on this attribute stack are these:
 - o st[n] –access to the *n*-th value below the top of the stack,
 - o push(a) pushes value a onto the stack and
 - o pop(m) removes m items (values) from the top of the stack.
- Further, there are two types of semantic actions associated with rules:
 - o 1. for terminals push attribute value when a terminal symbol is encountered,
 - o 2. for rules they are executed when a rule expansion is finished, consist of three steps: 1) new value calculation, 2) popping of not anymore needed attribute values from the attribute stack and 3) pushing of a new value.

Example 3 - Attributed Translation

Let's have a grammar with assigned semantic actions:

```
\begin{array}{ll} 1: E \to FD & \{ \ a := st[0]; \ pop(2); \ push(a); \ \} \\ 2: D \to + \{ \ push(\bot); \ \} \ FD & \{ \ a := st[3] + st[1]; \ pop(3); \ push(a); \ \} \\ 3: D \to \varepsilon & \{ \ a := \bot; \ pop(0); \ push(a); \ \} \\ 4: F \to ( \ \{ \ push(\bot); \ \} \ E \ ) \ \{ \ push(\bot); \ \} & \{ \ a := st[1]; \ pop(3); \ push(a); \ \} \\ 5: F \to i \ \{ \ push(i.value); \ \} & \{ \ a := st[0]; \ pop(1); \ push(a); \ \} \end{array}
```

 Then we get a GIGIG containing rules with semantic actions, GIGIG rules for original rule 2 are shown:

2:
$$D \xrightarrow{D_1^2} + \{ push(\bot); \} F$$
, $X \xrightarrow{D_1^2} D_1^2$,
 $D_1^2 \xrightarrow{D_2^2} D$, $X \xrightarrow{D_2^2} D_2^2$,
 $D_2^2 \to \varepsilon$ $\{ a := st[3] + st[1]; pop(3); push(a); \},$
 $D_2^2 \to X$ $\{ a := st[3] + st[1]; pop(3); push(a); \}.$

Example 3 - Attributed Translation, continued

• Now we can try to translate string *i+i*, where the first *i* has attribute value 1 and the second *i* has attribute value 2.

Step	State	Input	RPDA	Attribute	Executed semantic	Original rule
			pushdown	pushdown	actions	
1	E	i+i	#			
2	F	i+i	E ₁ ,#			
3	X	+i	E ₁ ,#	1	push(i.value);	
				1	a:= st[0]; pop(1); push(a);	$F \rightarrow i$
4	<i>E</i> ₁	+i	#	1		
5	D	+i	E ₂ ,#	1		
6	F	i	$D_1, E_2, \#$	⊥,1	$push(oldsymbol{\perp});$	
7	X		$D_1, E_2, \#$	2, ⊥ <i>,</i> 1	push(i.value);	
				2, ⊥ <i>,</i> 1	a := st[0]; pop(1); push(a);	$F \rightarrow i$
8	D_1		E ₂ ,#	2, ⊥ ,1		
9	D		$D_2, E, \#_2$	2, ⊥ ,1		
10	X		$D_2, E_2, \#$	⊥ <i>,</i> 2,⊥ <i>,</i> 1	$a := \bot; pop(0); push(a);$	$D \rightarrow \varepsilon$
11	D_2		E ₂ ,#	⊥,2,⊥,1		
12	X		E ₂ ,#	3,1	a := st[3] + st[1]; pop(3);	$D \rightarrow +FD$
					push(a);	
13	E_2		#	3,1		
14	X		#	3	a := st[0]; pop(2); push(a);	$E \to FD$
15	f			3		

Conclusions, further work

- Global index grammar inspired grammars, non-deterministic and deterministic reduced pushdown automata.
- Presented algorithm allows us to transform in a straightforward way any contextfree grammar to a reduced pushdown automaton. Also, if the original grammar was LL(1), we can obtain a deterministic RPDA.
- Is it possible to transform any LR(k) grammar to a deterministic RZA?
- Find a simple algorithm that transforms any nondeterministic CFG to a deterministic pushdown automaton with multiple stacks?
- Applications in hardware?
- Classes of languages accepted deterministically by presented automata, their hierarchy. (Similarly to LL(1), LL(2), ...)
- Notes: LL(1) translation table creation, left parse generation.

Final remark

- Finite automata without any stack = Regular Languages
- Finite automata with 1 stack = Context-Free Languages
- Finite automata with 2 stacks = Recursively Enumerable
 Languages
- Where do the context-sensitive/recursive/Turing-decidable languages fit in?
- What impacts do have undecidable problems on finite automata with two stacks?
- If we impose the same restriction as for linear bounded automata on finite automata with 1 stack, what will we receive?

Thank you for your attention

Acronym RPDA by The Free Dictionary

RPDA Remote Power Distribution Assembly

RPDA Ruggedized Personal Digital Assistant

Rugged - drsný, nerovný, hrbolatý, kostrbatý, neotesaný, mrzutý, náročný, namáhavý, zbrázděný, rozeklaný, nevlídný (podle slovník.seznam.cz).

References

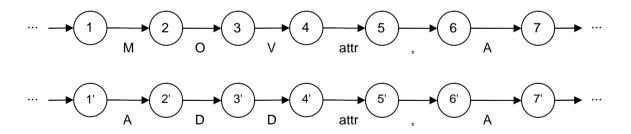
- [Cas04] Castano, J. M.: *Global Index Languages*. PhD. Thesis, The Faculty of the Graduate School of Arts and Sciences, Brandeis University, 2004. Document available on the WWW: http://www.cs.brandeis.edu/~jcastano/thesis3.pdf>.
- [Ces92] Češka, M.: *Gramatiky a jazyky*. FIT VUT v Brně, 1992. Document available on the WWW: http://www.fit.vutbr.cz/study/courses/TI1/public/Texty/ti.pdf>.

Substitution of RPDA into a finite automaton

- To use such an expression translating automaton, we need to substitute it into the finite automaton used in assembler to translate input.
- Example: let's have two operations with following assembler sections:

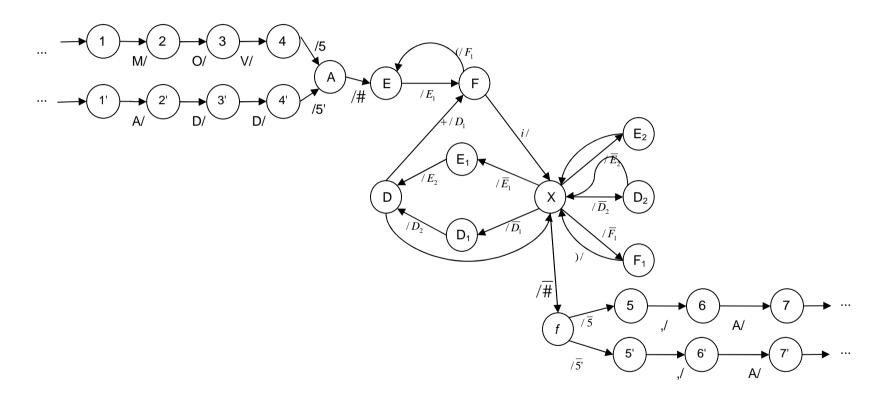
```
ASSEMBLER { "MOV" attr "," "A" },
ASSEMBLER { "ADD" attr "," "A" }.
```

• From the instruction set description we obtain an automaton that translates this instruction set. Only parts relevant for this example are shown here:



Substitution of RPDA into a finite automaton, continued

 Now we will substitute RPDA created from expression generating grammar to the finite automata obtained from instruction set description.



Note: substituted RPDA accepts input without needing to consume it completely.