TECHMNICKE
\/ RRMF
D™

FAKULTA
NFORMACNICH
TECHNOLOG

Deterministic translation of LL(1) languages using reduced

pushdown automata

Adam Husar,
Ihusar@fit.vutbr.cz,
FIT, BUT, 11/12/07.

/20

Contents

¢ Introduction, motivation,

e global index grammar inspired grammars (GIGIG),

e reduced pushdown automata (RPDA),

e step 1 - transformation CFG -> GIGIG,

e step 2 — transformation GIGIG with right-linear rules -> GIGIG with right-
regular rules,

e step 3 - transformation GIGIG -> CFG,

e deterministic RPDA,

e attributed translation,

e substitution of RPDA into a finite automaton,

e conclusions.

2/20

Introduction, motivation

e Assembler input language can be divided into 3 grammars describing:
o assembler file structure and directives,
0 expressions and

O instruction set.

e Needed to "regularize" context-free grammar — to use a modification of finite

automata that will be able to translate expressions.

e Result: algorithm that allows us to transform any CFG into an equivalent

reduced pushdown automaton.

3/20

Global Index Grammar Inspired Grammars (GIGIG)

G=(N,T,1I, S, # P),

N, T, S are defined as usually,

| is the set of indices (stack symbols),

is the starting stack symbol,

P is the set of productions of the following forms

a. A—>a (epsilon),

b. A>a (push),
c. A2a (pop),

where xel,yel U{#},AeN,a e (NUT)",

4/20

GIGIG — derivation relation, example

e Derivation relation — is defined as follows:

if rule is of the form:

a. A>a, then O#PAy = 6#Pay
b. A—>a, then O# SRy = Xo# fay |

c. Ao« then X5#ﬂA7:X>5#ﬂ057.

e Generated language: L(G) ={w#S — #w,weT}.
e Example: let's have a GIGIG with following rules:

S—»asd S—»B B-obBc B g,

then a derivation sequence of sentential forms for string aabbccdd would be the following:

#S—i#ad =ii#aaSdd = ii#aaBdd = i#aabBcdd =#aabbBccdd = aabbccdd

5/20

Reduced Pushdown Automata (RPDA)

o M= (Q’Z’F’5’q0’20’ F) ,
e Q2,1,0y,%,F are defined in the same way as for pushdown automata,

5 Qx(Eu{e)) x(Tufe}) —» 290D \where for any geQ,ae (X u{e}) holds:

if (d,2)ed(q,a,2),

then (z=eAnZ=¢)v (zeT'AZ=¢)Vv (z=ecrnZeT)

When a transition is made, either we do not manipulate with the pushdown,

one symbol is pushed onto the pushdown or one symbol is popped.

6/20

Step 1 - Transformation CFG -> GIGIG

e LetshaveaCFG G = (N, T, P, S), an equivalent GIGIG isG'= (NuU 1 U{X}, T, I,
S, #, P'), where the production set P' and index set | is constructed in this way:

For every rule p, P € P, of the form A—> WAW,A,...A ,W, ;A W, add to P’
following rules:

A—>WA X>A

A o A

Al XA N T
W | A || Wa || A2 | ... | Wy

AL WhaAls, XAl A

Ahp—l — Wy, Al ... | W

A, = W, X and
toladd A°, A...., ", where A eN,n>11<i<n-1 w, eT 1< j<n
e Result of the step 1 is a tuple (G', X).

7120

Step 2 - Transformation GIGIG with right-linear rules ->

GIGIG with right-regular rules

e Classical algorithm for conversion of right-linear grammar to right-regular

grammar with one small modification would be used.

¢ |f a rule manipulates with the pushdown, this action would be associated with

the first rule created from it.

8/20

Step 3 - Transformation GIGIG -> RPDA

e Let's have tuple (G, X) obtained from a CFG using steps 1 and 2.
G=(N,T,1I,S,# P)and X is a special nonterminal, X € N
e An equivalent reduced pushdown automaton is
M=(NU{f}, T, U{#},5,S#{ f}), where the transition function
5 Nx (T u{e})x (I U{e}) > 2N ATAD g constructed in this way:
For every rule p, P € P of the form

a) A—>aB let (B,e)ed(Aae),
b) A>3B et (B,2) e 5(Aa,s),

c) A B let (B,s) e 5(As,2) and
d) A= a,let (X,g)eo(Aac¢).

Further, let (f,e) e 6(X,&,#) .
e Result of step 3 is a RPDA that translates original CFG.

9/20

Example 1

e Let's have a CFG with following rules: 1: S— a0, 2: S—¢.
e Using step 1 and step 2, we obtain GIGIG with following regular rules:
1: S—»aS, X-8,
S s
S—>b S-bX,
2: S—)81 S—> X]

Then the step 3 is applied and we get this RPDA:

e [or input string aabb, this automaton goes throught the following sequence of
configurations:

(S,aabb,#) - (S,abb, S'#) — (S,bb, S'S'#) > (X,bb, S'S'#) — (S,bb, S#) > (X,b, S#) >
(Sll,b,#) = (X, e,#) > (f,g,¢8)

10/20

Deterministic RPDA

e Any RPDA M =(Q,X,T',5,0,,2%,,F), where for the transition function 0 holds
|6(0,8,2) K1 for VqeQ,Vae X u{eg},Vzel U{e},

can be transformed to a deterministic RPDA.
e A step relation for deterministic RPDA first tries to use a transition that uses a

symbol from the input or a symbol from the pushdown. Only in the case that

none of these can be used, an epsilon transition (0(0,£,£)) can be applied.

11/20

Theorem 1

For areduced pushdown automaton My, created from context-free

grammar G, using steps 1, 2 and 3, holds L(M;) = L(Gy).

Theorem 2

If a reduced pushdown automaton M,, created from LL(1) grammar
G, using steps 1, 2 and 3, can be transformed to a deterministic

pushdown automata M,p, then L(M,p) = L(G,) holds.

12/20

Theorem 2, explanations

e |et's have a grammar with rules S— Al B, A—>aB—b :

o is LL(1), but the created automaton is not deterministic.

(&)
/# ° /# @
G b/

e Another grammar with rules S —> @A|B,A—b,B—aC,C —c,

0 isnot LL(1) (in fact is LL(2)), the created automaton is deterministic (in the way we have

defined determinism for deterministic RPDA), but does not accept the same language.

° Note: The ZAP course project grammar.

13/20

Example 2

e |et's have a CFG with e Then an equivalent GIG will have these rules:

following rules: °

1. EoF XoF

1:E—> FD ' B =
2:D—>+FD E11_1>D’ X:)E;,
3:D—o>¢ = EL
4:F — (E) E,—>e E-X,
o:F =1 2 D+F, XD
1 Dl2 '
D’ —D X = D3
D22) D22)
D >e¢, D22—>X’
3 D-oe¢ D—>X,

4. Fo(E X=>F?*
':14 ' F14 !

Ff—>)X

14/20

Example 2, continued

e We have a GIGIG with these

rules:

1:

E->F,

E}
E —>D
E: !

E—¢
]

X->E
= '

X—>E,
E;

E—>X.

e Using step 3 we get following RPDA:

e This automaton translates the language

generated by the original grammar.

(Upper indices representing rule numbers are omitted.)

15/20

Attributed Translation

e We need to deal with attributes and semantic actions during translation.
e For this, we add to a RPDA a new stack onto which we will store attribute values.

e Operations on this attribute stack are these:
0 st[n] —access to the n-th value below the top of the stack,
o0 push(a) — pushes value a onto the stack and

o pop(m) — removes m items (values) from the top of the stack.

e Further, there are two types of semantic actions associated with rules:
o 1. for terminals - push attribute value when a terminal symbol is encountered,
o 2. for rules — they are executed when a rule expansion is finished, consist of
three steps: 1) new value calculation, 2) popping of not anymore needed

attribute values from the attribute stack and 3) pushing of a new value.

16/20

Example 3 - Attributed Translation

e Let's have a grammar with assigned semantic actions:

1:E—>FD { a:=4[0]; pop(2); push(a); }
2:D—+{ push(1); } FD { a:=4[3] + st[1]; pop(3); push(a); }
3:D>¢ { a:= L; pop(0); push(a); }

4:F —>(-{ push(1); } E){ push(.); } { a:=st[1]; pop(3); push(a); }

5:F —i{ push(i.value); } { a:= &[0]; pop(1); push(a); }

e Then we get a GIGIG containing rules with semantic actions, GIGIG

rules for original rule 2 are shown:

2: Dot { push(1);} F, X=Dr,

P3P, 20
D} ¢ {a:=st[3] + st[1]; pop(3); push(a); },

D; — X {a:= st[3] + st[1]; pop(3); push(a); }.

17/20

Example 3 - Attributed Translation, continued

¢ Now we can try to translate string i+i, where the first i has attribute value 1 and the

second | has attribute value 2.

Step | State | Input | RPDA Attribute | Executed semantic Original rule
pushdown | pushdown | actions
1 E i+i #
2 F I+ E, .#
3 X +i Ei. # 1 push(i.value);
1 a:= st[0]; pop(1); push(@); | F — i
4 E; +i # 1
5 D +i E, # 1
6 F [D,, E; # 1,1 push(1);
7 X D, E; # 2,1,1 push(i.value);
2,1,1 a := st[0]; pop(1); push(a); | F — i
8 D, E, # 2,1,1
9 D D,, E # 2,1,1
10 | X D,, E; # 1,2,1,1 |a:= 1;pop(0); push(a); Doe¢
11 | D, E, # 1,2,1,1
12 | X E, # 3,1 a ;= st[3] + st[1]; pop(3); D > +FD
push(a);
13 | E # 3,1
14 X # 3 a := st[0]; pop(2); push(a); | E — FD
15 |f 3

18/20

Conclusions, further work

¢ Global index grammar inspired grammars, non-deterministic and deterministic
reduced pushdown automata.

e Presented algorithm allows us to transform in a straightforward way any context-
free grammar to a reduced pushdown automaton. Also, if the original grammar

was LL(1), we can obtain a deterministic RPDA.

e [s it possible to transform any LR(k) grammar to a deterministic RZA?

e Find a simple algorithm that transforms any nondeterministic CFG to a
deterministic pushdown automaton with multiple stacks?

e Applications in hardware?

e Classes of languages accepted deterministically by presented automata, their
hierarchy. (Similarly to LL(1), LL(2), ...)

e Notes: LL(1) translation table creation, left parse generation.

19/20

Final remark

e Finite automata without any stack = Regular Languages
e Finite automata with 1 stack = Context-Free Languages

e Finite automata with 2 stacks = Recursively Enumerable

Languages

e Where do the context-sensitive/recursive/Turing-decidable languages
fit in?

e \What impacts do have undecidable problems on finite automata with
two stacks?

e If we impose the same restriction as for linear bounded automata on

finite automata with 1 stack, what will we receive?

20/20

Thank you for your attention

21/20

Acronym RPDA by The Free Dictionary

RPDA Remote Power Distribution Assembly
RPDA Ruggedized Personal Digital Assistant

Rugged - drsny, nerovny, hrbolaty, kostrbaty, neotesany, mrzuty, narocny,

namahavy, zbrazdény, rozeklany, nevlidny (podle slovnik.seznam.cz).

22/20

References

[CasD4] Castano, J. M.: Global Index Languages. PhD. Thesis, The Faculty of the Graduate
School of Arts and Sciences, Brandeis University, 2004. Document available on the
WWW: <http://www.cs.brandeis.edu/~jcastano/thesi s3.pdf >.

[Ces92] Cedka, M.: Gramatiky a jazyky. FIT VUT v Brng, 1992. Document available on the
WWW: <http://www.fit.vutbr.cz/study/courses/T11/public/Texty/ti.pdf>.

23/20

http://www.cs.brandeis.edu/~jcastano/thesis3.pdf
http://www.fit.vutbr.cz/study/courses/TI1/public/Texty/ti.pdf

Substitution of RPDA Into a finite automaton

e To use such an expression translating automaton, we need to substitute it
into the finite automaton used in assembler to translate input.
e Example: let's have two operations with following assembler sections:
ASSEMBLER { "MOV' attr "," "A" },
ASSEMBLER { "ADD' attr "," "A" }.

e From the instruction set description we obtain an automaton that translates

this instruction set. Only parts relevant for this example are shown here:

OO O—C—0~

attr

(OO O—O—C—0-

attr

24/20

Substitution of RPDA into a finite automaton, continued

¢ Now we will substitute RPDA created from expression generating grammar to

the finite automata obtained from instruction set description.

e e ° ° 5 G
(=)~ e
/5'
Al D/ D/

(F)
i/ e
:
(2] (x =752
@)/ /Fl

A (O—O—0
OO

Note: substituted RPDA accepts input without needing to consume it completely.

25/20

