Formal description of creating a
central controller

Zdenék Piikryl
TID, 2007



I Content

 What is a “Central controller”

* Language ISAC

* Creation of the central controller from the
language ISAC

e Conclusion

I * |[ntroduction



Introduction

Vendors of SoCs and embedded systems demand new
processors in very short time

One needs reliable tool for fast description and creation
Processors

Developers wants to describe the first prototype of

processor in some high level abstraction language
— after successful instruction accurate simulations,
developers take care about HW realization and performs
cycle accurate simulations
Even for an instruction accurate simulation one needs
some controller and decoder
- we will focus on the central controller



Central controller 1/2

» A controller is a device which monitors and affects
the operational conditions of a given dynamical
system. The operational conditions are typically
referred to as output variables of the system which
can be affected by adjusting certain input variables.

- distributed controller is divided in separate
functional units which are placed in different parts on
a chip and communicate between each other by
signals

- central controller is one functional unit which is
placed somewhere in a chip




I Central controller 2/2

* The controller needs information about what will he
I has to do in future
- for example:
e activate unit 1 on every tenth clock cycle
e activate decode unit on next clock cycle
» Usually this information is stored in only one state
variable

* A Decoder is a device which accepts an encoded
iInstruction in a byte code and try to decode the
sense

— decoder can affect the controller



fetch

HHlustration

unit

fetched instruction @

decoder

g

additional
unit 1

decoded instruction ﬂ

execute

_

central controller

unit

executed instruction @

write-back

unit

additional
unit 2




Language ISAC

* High level abstraction language developed for the
project LISSOM
- language is inspired by the language LISA
» Two basic constructions for instruction set
- Operation — denotes an instruction in assembly
language (Assembler section) and machine
language (Coding section)
- Group — aggregates similar operations
* Four basic constructions for timing model
- Activation — when and what will be done
- Coding Root — when and what will be decoded
- Pipe Line

- % number — explicit delay
* when is identified by a pipe line state or by a explicit delay



I Creation of the central controller
I from the language ISAC 1/4

 Initialization
- Let > is an event
I - Let Sbe aset S c Yy x2=N

- Let act be a queue of events
* Insert event main

— Let cr be a queue of operations in an instruction set

- For every Pipe Line construction / create:
. P: St— N, where St is the set which contains names

of states of the pipe line, N. = {1,...,|St]}
« Other used notation in the algorithm

ev — an Event crev — Coding Root Event
st — State of a pipe line, in which is GR - Goup

an operation accomplished OP - Operation
ACT - Activation CR - Coding Root

COD - Coding section of the operation



Creation of the central controller
from the language ISAC 2/4

» Creating
- while(act is not empty)
e get ev from act and set st as the state of the pipe line
e if (ev has ACT)
- do get variants(ev) c 2=N
o if (ev has CR)
- insert events into cr
» while(cr is not empty)
- get crev from cr
- do get _variants_cr(crev) < 2'
 create relations in S between ev and values from
getl variants, get variants cr

> XIN)



Creation of the central controller
from the language ISAC 3/4

Y XIN)

~ Let temp be temp < 2
— get variants
o for each event in ACT
- for evin ACT and compute delay and set st as the
state of the pipe line
» delay = explicit + delay from pipe line
 create couple (ev, delay) and insert it into temp
* insert ev into act
» for each conditional activation in ACT
- recursive do get variants on all variants of
conditional activation and do combinate results
and temp
e result is in temp



Creation of the central controller
from the language ISAC 4/4

Y XIN)

~ Let temp be temp < 2
- get variants cr
o if (crevis GR)
- recursive do get variants cr severally for all
members in the group
- returned values insert into temp
o if (crevis OP)
- each member in COD section insert into cr
- if (crev has ACT)
» do get variants
e combinate each member of temp which each
member of the result of get variants
e result is in temp



lllustration 1/3

fetch {
BEH {...}

decode {
CR { inc(mem[pc]) }

execute {
BEH {...}

wb |
BEH {...}

main {

ACT { fetch
decode
execute
wb }

S = {(main, {(fetch, 0), (decode, 1),
(execute, 2), (wb, 4)})}



lllustration 2/3

e OP ax {
ASM { “aX” }

COD { 0bOO }

}
OP bx {

ASM { \\bX// }
COD { O0bO0O1 }

}
GR reg

OP inc {
ASM { “inc” reqg }
COD { 0Ob0Ol reg }

temp = {{(ev1, 1)}, {(ev2, 1)}}



lllustration 3/3

S = {(main, {(fetch, 0), (decode, 1), (execute, 2), (wb, 4)}), (decode {(ev1, 1)}),
(decode, {(ev2, 1)})}



Conclusion

Fast and simply algorithm

No dynamic planning

Easy transformation into language C or HDL
Central controller is used for simulation

* Central controller can be synthesized into
HW



