
Formal description of creating a Formal description of creating a
central controllercentral controller

Zdeněk Přikryl
TID, 2007

Content

● Introduction
● What is a “Central controller”
● Language ISAC
● Creation of the central controller from the

language ISAC
● Conclusion

Introduction

● Vendors of SoCs and embedded systems demand new
processors in very short time

● One needs reliable tool for fast description and creation
processors

● Developers wants to describe the first prototype of
processor in some high level abstraction language
– after successful instruction accurate simulations,

developers take care about HW realization and performs
cycle accurate simulations

● Even for an instruction accurate simulation one needs
some controller and decoder
– we will focus on the central controller

Central controller 1/2

● A controller is a device which monitors and affects
the operational conditions of a given dynamical
system. The operational conditions are typically
referred to as output variables of the system which
can be affected by adjusting certain input variables.

– distributed controller is divided in separate
functional units which are placed in different parts on
a chip and communicate between each other by
signals

– central controller is one functional unit which is
placed somewhere in a chip

Central controller 2/2

● The controller needs information about what will he
has to do in future
– for example:

● activate unit 1 on every tenth clock cycle
● activate decode unit on next clock cycle
● ...

● Usually this information is stored in only one state
variable

● A Decoder is a device which accepts an encoded
instruction in a byte code and try to decode the
sense

– decoder can affect the controller

Illustration

decoder

fetched instruction

decoded instruction

central controller

fetch
unit

execute
unit

write-back
unit

executed instruction

additional
unit 1

additional
unit 2

Language ISAC

● High level abstraction language developed for the
project LISSOM
– language is inspired by the language LISA

● Two basic constructions for instruction set
– Operation – denotes an instruction in assembly

language (Assembler section) and machine
language (Coding section)

– Group – aggregates similar operations
● Four basic constructions for timing model

– Activation – when and what will be done
– Coding Root – when and what will be decoded
– Pipe Line
– % number – explicit delay

● when is identified by a pipe line state or by a explicit delay

Creation of the central controller
from the language ISAC 1/4

● Initialization
– Let ∑ is an event
– Let S be a set S ⊆ ∑2(∑ℕ)

– Let act be a queue of events
● insert event main

– Let cr be a queue of operations in an instruction set
– For every Pipe Line construction i create:

● P
i
: St

i


N

i
, where St

i
 is the set which contains names

of states of the pipe line, N
i
 = {1,...,|St

i
|}

● Other used notation in the algorithm
ev – an Event crev – Coding Root Event
st – State of a pipe line, in which is GR – Goup
 an operation accomplished OP – Operation
ACT – Activation CR – Coding Root
COD – Coding section of the operation

Creation of the central controller
from the language ISAC 2/4

● Creating
– while(act is not empty)

● get ev from act and set st as the state of the pipe line
● if (ev has ACT)

– do get_variants(ev) ⊆ 2(∑ℕ)

● if (ev has CR)
– insert events into cr

● while(cr is not empty)
– get crev from cr
– do get_variants_cr(crev) ⊆ 2(∑ℕ)

● create relations in S between ev and values from
get_variants, get_variants_cr

Creation of the central controller
from the language ISAC 3/4

– Let temp be temp ⊆ 2(∑ℕ)

– get_variants
● for each event in ACT

– for ev in ACT and compute delay and set st as the
state of the pipe line

● delay = explicit + delay from pipe line
● create couple (ev, delay) and insert it into temp
● insert ev into act

● for each conditional activation in ACT
– recursive do get_variants on all variants of

conditional activation and do combinate results
and temp

● result is in temp

Creation of the central controller
from the language ISAC 4/4

– Let temp be temp ⊆ 2(∑ℕ)

– get_variants_cr
● if (crev is GR)

– recursive do get_variants_cr severally for all
members in the group

– returned values insert into temp
● if (crev is OP)

– each member in COD section insert into cr
– if (crev has ACT)

● do get_variants
● combinate each member of temp which each

member of the result of get_variants
● result is in temp

Illustration 1/3

● OP fetch {
BEH {...}

}
OP decode {

CR { inc(mem[pc]) }
}
OP execute {

BEH {...}
}
OP wb {

BEH {...}
}
OP main {

ACT { fetch
decode
execute
wb }

}

main

fetch

decode execute

wb

0

1

3

 2

S = {(main, {(fetch, 0), (decode, 1),
(execute, 2), (wb, 4)})}

Illustration 2/3

● OP ax {
ASM { “ax” }
COD { 0b00 }
ACT { %1 ev1 }

}
OP bx {

ASM { “bx” }
COD { 0b01 }
ACT { %1 ev2 }

}
GR reg = ax, bx
OP inc {

ASM { “inc” reg }
COD { 0b01 reg }

}

inc

00 reg

ax bx

00 01ev1

 1

ev2

 1

temp = {{(ev1, 1)}, {(ev2, 1)}}

Illustration 3/3

main

fetch

decode execute

wb

0

1

3

 2

ev1 ev2

1 1

S = {(main, {(fetch, 0), (decode, 1), (execute, 2), (wb, 4)}), (decode,{(ev1, 1)}),
(decode, {(ev2, 1)})}

Conclusion

● Fast and simply algorithm
● No dynamic planning
● Easy transformation into language C or HDL
● Central controller is used for simulation
● Central controller can be synthesized into

HW

