Scattered Context Grammars

Jiří Techet Tomáš Masopust Alexander Meduna

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno 61266, Czech Republic

Modern Formal Language Theory, 2007

Scattered Context Grammar

Scattered Context Grammar

$$G = (V, T, P, S)$$

- V is a finite alphabet
- **T** is a set of terminals, $T \subset V$
- **S** is the start symbol, $S \in V T$
- **P** is a finite set of productions of the form

$$(A_1,\ldots,A_n)\to(x_1,\ldots,x_n),$$

where $A_1, \ldots, A_n \in V - T$, $x_1, \ldots, x_n \in V^*$

Propagating Scattered Context Grammar

 \blacksquare each $(A_1,\ldots,A_n) \to (x_1,\ldots,x_n)$ satisfies $x_1,\ldots,x_n \in V^+$

Derivation Step

Derivation Step

For
$$(A_1,\ldots,A_n) o (x_1,\ldots,x_n)\in P$$
 and

$$u = u_1 A_1 \dots u_n A_n u_{n+1}$$

$$v = u_1 x_1 \dots u_n x_n u_{n+1}$$

we write
$$u \Rightarrow v [(A_1, \ldots, A_n) \rightarrow (x_1, \ldots, x_n)]$$

Generated Language

$$L(G) = \{x \in T^* : S \Rightarrow^* x\}$$

Generative Power

- $\blacksquare \mathscr{L}(SC) = \mathscr{L}(RE)$
- $\mathcal{L}(CF) \subset \mathcal{L}(PSC) \subseteq \mathcal{L}(CS)$

Example I

Example

Propagating scattered context grammar

$$G = (\{A, B, C, S, a, b, c\}, \{a, b, c\}, P, S)$$

with

$$P = \{(S) \rightarrow (ABC), \\ (A, B, C) \rightarrow (aA, bB, cC), \\ (A, B, C) \rightarrow (a, b, c)\}$$

Example of derivation

$$S \Rightarrow ABC \Rightarrow aAbBcC \Rightarrow aaAbbBccC \Rightarrow aaabbbccc$$

Generated language

$$L(G) = \{a^n b^n c^n : n \ge 1\}$$

Example II

Example

Propagating scattered context grammar

$$G = (\{S, W, X, Y, Z, A, a\}, \{a\}, P, S),$$

where

$$P = \{1 : (S) \to (a), S \Rightarrow WAXY [3] \\ 2 : (S) \to (aa), \Rightarrow aWXA^{2}Y [4] \\ 3 : (S) \to (WAXY), \Rightarrow a^{2}WAA^{2}XY [5] \\ 4 : (W, A, X, Y) \to (a, W, X, AAY), \Rightarrow a^{3}WAAXA^{2}Y [4] \\ 5 : (W, X, Y) \to (a, W, AXY), \Rightarrow a^{4}WAXA^{4}Y [4] \\ 6 : (W, X, Y) \to (Z, Z, a), \Rightarrow a^{5}WXA^{6}Y [4] \\ 7 : (Z, A, Z) \to (Z, a, Z), \Rightarrow a^{6}WA^{7}XY [5] \\ 8 : (Z, Z) \to (a, a)\} \Rightarrow a^{6}ZA^{7}Za [6] \\ \Rightarrow^{7}a^{6}Za^{7}Za [7] \\ L = \{a^{2^{n}} : n \ge 0\} \Rightarrow a^{16} [8]$$

Reduction – Definitions

Production length

$$\blacksquare \operatorname{len}((A_1,\ldots,A_n) \to (x_1,\ldots,x_n)) = |A_1\ldots A_n| = n$$

Definitions

nonterminal complexity is the number of nonterminals in G degree of context-sensitivity dcs(G) is the number of context-sensitive productions in G

maximum context sensitivity mcs(G) is the greatest number in

$$\{ \operatorname{len}(p_i) - 1 : 1 \le i \le |P| \}$$

overall context sensitivity ocs(G) is the sum of all members in

$$\{ \operatorname{len}(p_i) - 1 : 1 \le i \le |P| \}$$

Reduction – Results I

Lemma

There exists a scattered context grammar G such that G defines a non-context-free language and dcs(G) = mcs(G) = ocs(G) = 1.

Proof

Consider a scattered context grammar

$$G = (\{S, A, B, C, D\}, \{a, b, c\}, P, S)$$

with

$$P = \{(S) \rightarrow (AC),$$

 $(A) \rightarrow (aAbB),$
 $(A) \rightarrow (\varepsilon),$
 $(C) \rightarrow (cCD),$
 $(C) \rightarrow (\varepsilon),$
 $(B, D) \rightarrow (\varepsilon, \varepsilon)\}$
 $L(G) = \{a^n b^n c^n : n \ge 0\}$
 $L(G) = \{a^n b^n c^n : n \ge 0\}$

Reduction - Results II

Theorem

There are context-sensitive languages which cannot be described by a scattered context grammar G = (V, T, P, S) satisfying |V - T| = 1.

Theorem

Every recursively enumerable language is generated by a scattered context grammar G = (V, T, P, S) satisfying

$$|V - T| = 2$$
, $dcs(G) = \infty$, $mcs(G) = \infty$, $ocs(G) = \infty$.

Theorem

Every recursively enumerable language is generated by a scattered context grammar G = (V, T, P, S) satisfying

$$|V - T| = 5$$
, $dcs(G) = 2$, $mcs(G) = 3$, $ocs(G) = 6$.

Reduction - Results III

Theorem

Every recursively enumerable language is generated by a scattered context grammar G = (V, T, P, S) satisfying

$$|V - T| = 8$$
, $dcs(G) = 6$, $mcs(G) = 1$, $ocs(G) = 6$.

Theorem

Every recursively enumerable language is generated by a scattered context grammar G = (V, T, P, S) satisfying

$$|V - T| = 4$$
, $dcs(G) = 4$, $mcs(G) = 5$, $ocs(G) = 20$.

Economical Transformations

Context-Free and Context-Sensitive Productions

For a scattered context production p, if len(p)

- = 1 then the production is context-free
- \geq 2 then the production is context-sensitive

Theorem

Let H = (M, T, R, S) be a phrase-structure grammar in Kuroda normal form. Then, there exists a scattered context grammar, G = (V, T, P, E), that satisfies

- **1** L(G) = L(H),
- |V| = |M| + 5,
- **3** *P* contains 4 new context-sensitive productions,
- 4 P contains 1 new context-free production.

Leftmost Derivations

Leftmost Derivation Step

For
$$(A_1,\ldots,A_n) o (x_1,\ldots,x_n)\in P$$
 and

$$u = u_1 A_1 \dots u_n A_n u_{n+1}$$

$$v = u_1 x_1 \dots u_n x_n u_{n+1},$$

where $A_i \notin \text{alph}(u_i)$ for all $1 \leq i \leq n$, we write

$$u_{lm} \Rightarrow v[(A_1,\ldots,A_n) \rightarrow (x_1,\ldots,x_n)]$$

Theorem

Every context-sensitive language can be generated by a propagating scattered context grammar which uses only leftmost derivations.

Extended Propagating Scattered Context Grammars

Extended Propagating Scattered Context Grammar

An extended propagating scattered context grammar is a scattered context grammar

$$G = (V, T, P, S)$$

in which every

$$(A_1,\ldots,A_n)\to(x_1,\ldots,x_n)\in P$$

satisfies $|x_1 \dots x_n| \ge n$

Theorem

Every context-sensitive language can be generated by an extended propagating scattered context grammar.

Unordered Scattered Context Grammar

Unordered Scattered Context Grammar

- scattered context grammar in which the order of context-free productions in a scattered context production is unimportant
- for $(A_1, ..., A_n) \rightarrow (x_1, ..., x_n) \in P$, a permutation $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$, and

$$u = u_1 A_{\pi(1)} \dots u_n A_{\pi(n)} u_{n+1}$$

 $v = u_1 x_{\pi(1)} \dots u_n x_{\pi(n)} u_{n+1}$

we write
$$u \Rightarrow v [(A_1, \ldots, A_n) \rightarrow (x_1, \ldots, x_n)]$$

Generative Power

- $\blacksquare \mathcal{L}(USC) = \mathcal{L}(P, \varepsilon)$
- $\blacksquare \mathcal{L}(PUSC) = \mathcal{L}(P) \subset \mathcal{L}(PSC)$

Open Problems

Open Problem

Are propagating scattered context grammars powerful enough to characterize all context-sensitive languages?

Open Problem

Can every recursively enumerable language be described by a scattered context grammar containing only a single context-sensitive production?

Bibliography I

🔋 E. Csuhaj-Varjú and Gy. Vaszil.

Scattered context grammars generate any recursively enumerable language with two nonterminals.

H. Fernau.

Scattered context grammars with regulation.

Information Processing Letters, 110:902–907, 2010.

Annals of Bucharest University, Mathematics-Informatics Series, 45(1):41–49, 1996.

J. Gonczarowski and M. K. Warmuth.

Scattered versus context-sensitive rewriting.

Acta Informatica, 27:81-95, 1989.

S. Greibach and J. Hopcroft.

Scattered context grammars.

Journal of Computer and System Sciences, 3:233–247, 1969.

Bibliography II

Regulated Formal Models and Their Reductions.

PhD thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, 2007.

📄 A. Meduna.

Economical transformation of phrase-structure grammars to scattered context grammars. Acta Cybernetica, 13:225-242, 1998.

- A. Meduna.
 - Generative power of three-nonterminal scattered context grammars. Theoretical Computer Science, 246:276–284, 2000.
- A. Meduna and J. Techet.

Maximal and minimal scattered context rewriting. In FCT 2007 Proceedings, volume 2007, pages 412–423, Budapest, 2007. Springer Verlag.

Scattered Context Grammars

Bibliography III

J. Techet.

A note on scattered context grammars with non-context-free components.

In *MEMICS 2007 Proceedings*, pages 225–232, Znojmo, 2007. Ing. Zdenek Novotny, CSc.

Gy. Vaszil.

On the descriptional complexity of some rewriting mechanisms regulated by context conditions.

Theoretical Computer Science, 330:361-373, 2005.

V. Virkkunen.

On scattered context grammars.

Acta Universitatis Ouluensis, Series A, Mathematica 6:75-82, 1973.