Yacc

Ji¥i Techet Tomas Masopust Alexander Meduna

Department of Information Systems
Faculty of Information Technology
Brno University of Technology
BoZet&chova 2, Brno 61266, Czech Republic

Modern Formal Language Theory, 2007

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 1/25

Yacc

tool for generating parsers

parser described by context-free productions in a definition file
scanner has to be provided (written manually or generated by Lex)
Yacc processes the definition file and outputs a parser written in C

this parser can be compiled by a C compiler to produce an executable

the executable performs (LALR) bottom up parsing of its input and
performs associated actions to produce its output

Scanner

Definition file —> Parser in C —> Executable
Input ———| Executable| Output

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 2/25

Structure of Definition File |

Structure of Definition File

hi
Prologue

h}

Yacc declarations

%o
Grammar rules

ot

Epilogue

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 3/25

Structure of Definition File Il
m Yacc definition file divided into 3 parts which are separated by %%

Parts of Definition File

prologue and declarations
m prologue
m enclosed within %{ %}
B contains any C code needed in actions (macros, function prototypes)
m several prologues can be mixed with Yacc declarations

m declarations

m specification of nonterminals, tokens, operator precedence, value types
and others

grammar rules

m specification of grammar rules and associated actions performed when
a rule is used in a reduction

epilogue
m any other code (typically definitions of main(), yylex(), yyerror())

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 4/25

Token Types

m defined by %token, %left, Jright, or %nonassoc in the declarations
part

m by convention, token name should be upper case
%token NUM

m internally represented as C macros which assign a numerical code to
every token type

m literal character tokens (’+’) and literal string tokens ("<=") do not
have to be declared

m associativity defined by %left, %right and %nonassoc
m precedence defined by the order of their definition, lowest first

hleft -7 4 /* lowest precedence */
hleft %2 /2

%left NEG

hright >°° /* highest precedence */

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 5/25

Attributes

Attribute Types

if all tokens (and all semantic values) have the same type of their
attributes, YYSTYPE macro can be used

Wi
#define YYSTYPE double
%}

%token NUM
if there are more types, all possible types defined by union

%union {
double val;
symrec *tptr;

3

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 6 /25

Attribute Type Assignment

Terminal Type Assignment
m each token is assigned its attribute type by putting <type> in its
definition
%union {
double val;

symrec *tptr;

}
Y%token <val> NUM

Nonterminal Type Assignment

m if Junion is used, each nonterminal has to be assigned the type of its
semantic value

htype <val> exprl expr2

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 7/25

Other Declarations |

%initial-action
m allows to perform some initial actions before yyparse is called

m $$, @$ and arguments of Y,parse-param can be used

Example

%parse-param { char const *file_name };
%initial-action

{

@$.initialize (file_name);

};

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 8/25

Other Declarations |l

%destructor

m called when symbols are discarded to properly deallocate the memory
(during error recovery, when the parser succeeds)

%destructor { code } symbols

m 3 designates the semantic value associated with the discarded symbol
m invoked when user actions cannot change the memory

stacked symbols popped during the first phase of error recovery

incoming terminals during the second phase of error recovery

the current look-ahead and the entire stack when the parser returns
immediately

B the start symbol, when the parser succeeds

%union { char *string; 7
%type <string> STRING
%destructor { free($$); } STRING

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 9/25

Other Declarations Il

%defines

m write a header file containing macro definitions for token type names
defined in the grammar

m used by yylex if it is in another file

m if parser output file is name.c then the header file is name.h

Y%start

m possible to specify the start symbol
%start S

m by default, the first rule's left-hand side is the start symbol

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 10/ 25

Grammar Rules
m consider the following context-free rules:

eEXp — €

exp — exp + exp
exp — exp — exp
exp — exp * exp
exp — exp/exp

m in definition file, these rules are represented as follows

exp: /* empty line = empty string */
| exp ’+’ exp /* | means alternative rhs */
| exp -’ exp /* for the same lhs */
| exp %’ exp
|

exp ’/’ exp
; /* end of rule *x/

m actions can be scattered among the symbols of the right-hand side
m rules in the grammar should be left recursive

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 11/25

Context-Dependent Precedence

%prec Modifier

m used to set priority when one operator is used for several functions
(e.g. unary minus X binary minus)
Yleft ’+> -7
hleft ’x’
%left UMIN
/* dummy operator with the highest priority */

exp: exp '+’ exp {3
| exp ’-’ exp {7}
| exp ’*’ exp {1}
| ’-’ exp %prec UMIN { %}

/* in this context ’-’ has the same priority as UMIN */

I

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 12/25

Actions

m actions appear between { } anywhere on the right-hand side of a rule
m usually at the end of a rule

Semantic Values of Rule Components

$$ semantic value of the nonterminal on the left-hand side

$n semantic value of the nth symbol on the right-hand side

m default action is $$ = $1

m if there are different types of semantic values (specified by %union),
$<type>$ and $<type>n have to be used

Example
exp: NUM /* default action: $$ = $1 */
| exp ’+> exp { $$ = $1 + $3; 2 ;

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 13/25

Locations |

m used to track locations of currently processed tokens in the input file

m useful for generating error messages

YYLTYPE structure

m for each token, the scanner has to save its position to the variable
yylloc which is of the type YYLTYPE

typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;
} YYLTYPE;

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 14 /25

Locations |l

Location Values of Rule Components

m in parser, access similar to semantic values:

@$ location of the nonterminal on the left-hand side
@n location of the nth symbol on the right-hand side

Default Action for Locations

m executed each time a rule is matched

m by default, it sets the beginning of @$ to the beginning of the first
symbol, and the end of @$ to the end of the last symbol on the rule’s
right-hand side — sufficient for most parsers

m can be redefined by YYLLOC_DEFAULT macro

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 15 /25

Generated Parser
int yyparse()

m parses the input file

m returns O if parsing was successful, 1 if there was a syntax error, 2 if
memory was exhausted

m in actions, YYACCEPT can be used to return O and YYABORT to return 1

int yylex(Q)

m has to be provided by the user (written manually or by using Lex)

m returns token type
m attribute is stored in the global variable yylval

m when using multiple attribute types (specified by %union), the
corresponding member has to be used

yylval.intval = value; /* put value onto Yacc stack */
return INT; /* return the type of the token */

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 16 / 25

Error Reporting and Recovery

void yyerror(char const *s)

m has to be provided by the user
m usually of the following form:

void yyerror (char const *s)

{
fprintf (stderr, "%s\n", s);
}

Error Recovery

m special token error which is generated when no rule can be used
m if there is a rule with the error token, parsing can recover

m can be explicitly invoked by YYERROR macro

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 17 /25

Error Recovery

Example

stmnts: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’ { yyerrok; }

3

m if there is an error in exp, recovery is performed as follows:

tokens from exp which are already on the stack are discarded
error is shifted
input symbols are discarded until >\n’ is the current input token

m by default, error messages are suppressed until 3 tokens successfully
shifted — to avoid this yyerrok can be used

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 18 /25

Command Line Options

bison [OPTION]... FILE

Selected Parameters
-o outf output file name

-p pref specifies other prefix than yy for Yacc functions
-d same as /defines

Options Within Definition File

®m many options can be specified within the declarations part of the
definition file

%defines

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 19 /25

Example |

Example
/* Reverse polish notation calculator. */

Wi
#define YYSTYPE double
#include <math.h>
#include <ctype.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

h}
%token NUM

%% /* Grammar rules and actions follow. */

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 20 /25

Example |l

Example

input:

line:

exp:

Techet, Masopust, Meduna

/* empty */
input line

:\n)

exp ’\n’

NUM

exp exp '+’
exp exp -’
exp exp ’*’
exp exp '/’
exp exp ’7’
exp ’'n’

(FIT, BUT)

{ printf ("\t%.10g\n", $1); }

AN Am s A A S
0D D B B D D B
D D B P BB B

Yacc

$1;

$1 +
$1 -
$1 *
$1 /

$2;
$2;
$2;
$2;

S s e

¥

pow ($1, $2); }
-$1; } /* Unary minus */

Modern FLT, 2007

21 /25

Example I

Example
%% /* Epilogue follows. */

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric
code of the character read if not a number. It skips
all blanks and tabs, and returns O for end-of-input. */

int yylex (void)
{

int c;

/* Skip white space. */
while ((c = getchar ()) ==’ || c == ’\t’)

b

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 22 /25

Example IV
Example

/* Process numbers. */
if (c == .7 || isdigit (c))
{
ungetc (c, stdin);
scanf ("}1f", &yylval);
return NUM;
}
/* Return end-of-input. */
if (c == EOF)
return O;
/* Return a single char. */
return c;

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 23 /25

Example V

Example

/* Called by yyparse on error. x*/
void yyerror (char const *s)

{
fprintf (stderr, "%s\n", s);
}

int main (void)
{
return yyparse ();

¥

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 24 /25

Bibliography

[4 Bison documentation.
http://www.gnu.org/software/bison/manual/index.html.

Techet, Masopust, Meduna (FIT, BUT) Yacc Modern FLT, 2007 25 /25

http://www.gnu.org/software/bison/manual/index.html

	Introduction
	Definition File
	Structure
	Token Types
	Attributes
	Other Declarations
	Grammar Rules
	Context-Dependent Precedence
	Actions
	Locations

	Generated Parser
	Error Reporting and Recovery

	Command Line Options
	Program Example
	Bibliography

