
Turing Machines and Two-Pushdown Automata
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Turing Machines

Turing Machine

A Turing machine is a quintuple

M = (Q,Σ,R, s,F )

where

Q is a finite set of states

Σ is a tape alphabet, Σ ∩ Q = ∅,
I ⊂ Σ is an input alphabet,
t ∈ Σ− I is the blank symbol

R ⊆ QΣ× QΣ is a finite set of rules,
R = Rs ∪ Rr ∪ Rl (stationary, right, and left moves)

s ∈ Q is the start state

F ⊆ Q is a set of final states
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Turing Machines – Notation

Stationary move

(qX , pY ) ∈ Rs is symbolically written as

qX →s pY

Right move

(qX , pY ) ∈ Rr is symbolically written as

qX →r pY

Left move
(qX , pY ) ∈ Rl is symbolically written as

qX →l pY
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Turing Machines – Computational Step

Configuration

χ ∈ Σ∗QΣ∗{t}

Move
If at least one of the following holds,

Stationary move χ = xpUy , χ′ = xqV y , and r : pU →s qV ∈ R,

Right move χ = xpUy , χ′ = xVqy ′, and r : pU →r qV ∈ R,
y ′ = y if y 6= ε, and y ′ = t if y = ε

Left move χ = xXpUy , χ′ = xqXVy , and r : pU →l qV ∈ R,
for some X ∈ Σ

then
χ ⇒ χ′ [r ]
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Turing Machines – Accepted Language

Accepted Word

Turing machine M accepts w ∈ I ∗ if

sw t ⇒∗ uf v

for some configuration uf v with f ∈ F

⇒∗ denotes the reflexive and transitive closure of ⇒

Accepted Language

The set of all words M accepts is the language of M, denoted by L(M),
thus

L(M) = {w ∈ I ∗ : sw t ⇒∗ uf v , f ∈ F}
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Turing Machines – Example

Example

M = ({q0, q1, q2, q3, q4}, {a, b,t},R, q0, {q4})

where

R = {1 : q0a →r q1t, 5 : q1 t →l q2t,
2 : q1a →r q1a, 6 : q2b →l q3t,
3 : q1b →r q1b, 7 : q3a →l q3a,
4 : q3 t →r q0t, 8 : q3b →l q3b, 9 : q0 t →s q4t}

q0aabb t ⇒ t q1abb t [1] ⇒ t aq1bb t [2] ⇒ t abq1b t [3]
⇒ tabbq1 t [3] ⇒ t abq2b t [5] ⇒ t aq3b t t [6] ⇒ t q3ab t [8]
⇒ q3 t ab t [7] ⇒ t q0ab t [4] ⇒ ttq1b t [1] ⇒ t bq1 t [3]
⇒ tq2b t [5] ⇒ q3 t t t [6] ⇒ t q0 t [4] ⇒ t q4 t [9]

L(M) = {anbn : n ≥ 0}
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Church’s Thesis

Church’s Thesis
For every algorithm that exits there is an equivalent Turing Machine.

Recursively Enumerable Language

A language L is recursively enumerable if there is a Turing machine M
such that L(M) = L.

Recursive Language

A language L is recursive if there is a Turing machine M that always halts
such that L(M) = L.

Techet, Masopust, Meduna (FIT, BUT) Turing Machines and Two-PDAs Modern FLT, 2007 7 / 15



Deterministic Turing Machine

Deterministic Turing Machine

Turing machine M is deterministic if every rule r ∈ R satisfies

lhs(r) /∈ {lhs(r ′) : r ′ ∈ R − {r}}

Theorem
A language L is recursively enumerable if there is a deterministic Turing
machine M such that L(M) = L.

Theorem
A language L is recursive if there is a deterministic Turing machine M that
always halts such that L(M) = L.
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Linear Bounded Automata

Linear Bounded Automaton
A linear bounded automaton is a Turing machine M that never extends its
tape.

Consequence

With an input word w , M uses no more than the first |w | tape squares.

Theorem
A language L is context-sensitive if and only if there is a linear bounded
automaton M such that L(M) = L.

Open Problem

Are deterministic linear bounded automata as powerful as linear bounded
automata?
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Two-Pushdown Automata

Two-Pushdown Automaton
A two-pushdown automaton is a quintuple

M = (Q,Σ,R, s,F )

where

Q, s, F have the same meaning as in the definition of Turing machine

Σ is an alphabet, Σ ∩ Q = ∅, Σ = {|} ∪ I ∪ PD , where
| is a special symbol, | /∈ I ∪ PD ,
I is an input alphabet, PD is a pushdown alphabet, S ∈ PD is a
start pushdown symbol

R is a finite set of rules of the form

A|Bpa → u|vq

where A,B ∈ PD , p, q ∈ Q, a ∈ I ∪ {ε}, u, v ∈ P∗D
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Two-Pushdown Automata – Computational Step

Configuration

χ ∈ P∗D{|}P∗DQI ∗

Move
If

r : A|Bpa → u|vq ∈ R,

χ = yA|xBpaz ,

χ′ = yu|xvqz ,

then
χ ⇒ χ′ [r ]
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Two-Pushdown Automata – Accepted Language

Accepted Language by Final State

Lf (M) = {w ∈ I ∗ : S |Ssw ⇒∗ x |yf , f ∈ F}

Accepted Language by Empty Pushdown

Le(M) = {w ∈ I ∗ : S |Ssw ⇒∗ |q, q ∈ Q}

Accepted Language by Final State and Empty Pushdown

Lfe(M) = {w ∈ I ∗ : S |Ssw ⇒∗ |f , f ∈ F}

⇒∗ denotes the reflexive and transitive closure of ⇒
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Two-Pushdown Automata – Example

Example

M = ({s, p, q, f }, {S , a, b, c , |},R, s, {f }),

where

R = {1 : S |Ssa → S |Sas, 4 : b|aqb → bb|q,
2 : S |asa → S |aas, 5 : b|Sqc → |Sp,
3 : S |asb → Sb|q, 6 : b|Spc → |Sp, 7 : S |Sp → |f }

Then,

S |Ssaabbcc ⇒ S |Sasabbcc [1] ⇒ S |Saasbbcc [2] ⇒ Sb|Saqbcc [3]
⇒ Sbb|Sqcc [4] ⇒ Sb|Spc [5] ⇒ S |Sp [6] ⇒ |f [7]

Lf (M) = Le(M) = Lfe(M) = {anbncn : n ≥ 1}
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Two-Pushdown Automata – Results

Determinism
M is deterministic if each r ∈ R with lhs(r) = A|Bpq satisfies

{r} = {r ′ ∈ R : A|Bpa = lhs(r ′) or A|Bp = lhs(r ′)}

Theorem
All acceptance modes (f , e, fe) are equivalent.

Theorem
The following models are equivalent:

Turing machines

deterministic Turing machines

two-pushdown automata

deterministic two-pushdown automata
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