
Lex

Jǐŕı Techet Tomáš Masopust (Alexander Meduna)

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

Modern Formal Language Theory, 2007

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 1 / 25

Lex

tool for generating scanners

scanner described by rules in a definition file
a rule is a pair

lexical pattern (described by regular expression)
action (written in C)

Lex processes the definition file and outputs a scanner written in C

this scanner can be compiled by a C compiler to produce an
executable

the executable processes its input, finds lexical patterns and executes
associated actions to produce its output

Definition file Lex Scanner in C C compiler Executable

Input Executable Output

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 2 / 25

Structure of Definition File – Example

Example

int num_lines = 0, num_chars = 0;

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
main()

{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 3 / 25

Structure of Definition File

Lex definition file divided into 3 parts which are separated by %%:

1 definitions – definitions of global user variables, name definitions and
start conditions

int num_lines = 0, num_chars = 0;

2 rules – patterns at the beginning of a line and indented actions which
are executed when the corresponding pattern is matched with the
source. Any non-matched character is copied to the resulting file

\n ++num_lines; ++num_chars;
. ++num_chars;

3 user code – any auxiliary C function used in rules and main().
yylex() is used to start the lexical analysis

main()
{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 4 / 25

Name Definitions

used to declare symbolic names for regular expressions

are of the form name definition

Example

DIGIT [0-9]
ID [a-z][a-z0-9]*

can be referenced as

{DIGIT}+"."{DIGIT}*

which is identical to

([0-9])+"."([0-9])*

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 5 / 25

Regular Expressions I

patterns described by regular expressions

Regular Expressions

x match the character x

. any character except newline

[xyz] a “character class”; the pattern matches either x, y, or z

[abj-oZ] a “character class” with a range in it; matches a, b, any letter
from j through o, or Z

[^A-Z] a “negated character class”, i.e., any character but those in the
class. In this case, any character except an uppercase letter

[^A-Z\n] any character except an uppercase letter or a newline

r* zero or more r’s, where r is any regular expression

r+ one or more r’s

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 6 / 25

Regular Expressions II

Regular Expressions

r? zero or one r’s

r{2,5} anywhere from 2 to 5 r’s

r{2,} 2 or more r’s

r{4} exactly 4 r’s

{name} the expansion of the name definition

"[xyz]\"foo" the literal string: [xyz]"foo

\x if x is a, b, f, n, r, t, or v, then the ANSI-C
interpretation of \x. Otherwise, a literal x (used to escape
operators such as *)

\0 a NUL character (ASCII code 0)

\123 the character with octal value 123

\x2a the character with hexadecimal value 2a

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 7 / 25

Regular Expressions III

Regular Expressions

(r) match an r; parentheses are used to override precedence

rs the regular expression r followed by the regular
expression s

r|s either r or s

^r an r, but only at the beginning of a line

r$ an r, but only at the end of a line

<s>r an r, but only in start condition s; <s1,s2,s3>r same,
but in any of start conditions s1, s2, or s3

<*>r an r in any start condition, even an exclusive one

<<EOF>> an end-of-file

<s1,s2><<EOF>> an end-of-file when in start condition s1 or s2

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 8 / 25

Regular Expressions IV

Operator precedence

operators described above grouped by precedence – highest first

e.g., foo|bar* is the same as (foo)|(ba(r*))

Character Class Expressions

[:alnum:], [:alpha:], [:blank:], [:cntrl:], [:digit:],
[:graph:], [:lower:], [:print:], [:punct:], [:space:],
[:upper:], [:xdigit:]

set of characters equivalent to the corresponding standard C isXXX
function (e.g., isalnum())

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 9 / 25

Input Matching

Input Matching Rules

if no match found, the next character from the input is copied to the
output

if more than one match found, the longest string is chosen

if there are more longest strings, the pattern appearing first in the
definition file is chosen

associated action is executed and the remaining input is scanned for
the next match

Global Variables

can be used in actions

yytext matched string

yyleng length of the matched string

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 10 / 25

Actions I

an action is a C code which follows the associated pattern

if no action is specified, the matched string is discarded

%%
/* replace sequence of tabs with space */
[\t]+ putchar(’ ’);
[\t]+$ /* ignore tabs at the EOL */

if multi-line action is needed, it has to be enclosed within { } or %{
%}
the action | is used to specify the same action as the action for the
next rule

Special Directives Used within Actions

ECHO copies yytext to the scanner’s output

BEGIN used to place scanner to a start position

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 11 / 25

Actions II

Special Directives Used within Actions

REJECT directs the scanner to proceed on to the second best rule which
matched the input

Example

int word_count = 0;
%%

/* call special() for ’frob’ */
frob special(); REJECT;

/* count the number of words */
[^ \t\n]+ ++word_count;

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 12 / 25

Actions III

Example

%%
a |
ab |
abc |
abcd ECHO; REJECT;

outputs abcdabcaba for the input abcd

Special Directives Used within Actions

yymore() tells the scanner that the next time it matches a rule, the
corresponding token should be appended onto the current value
of yytext rather than replacing it

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 13 / 25

Actions IV

Example

%%
mega- ECHO; yymore();
kludge ECHO;

outputs mega-mega-kludge for the input mega-kludge

Special Directives Used within Actions

yyless(n) returns all but the first n characters of the current token back
to the input stream (will be rescanned)

unput(c) puts the character c back onto the input stream. It will be
the next character scanned

input() reads the next character from the input stream

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 14 / 25

Start Conditions

mechanism for conditionally activating and deactivating rules

if a pattern is prefixed by <sc>, it will only be active when the
scanner is in the start condition named sc

Example

<STRING>[^"]* { /* eat up the string body ... */

is active only if the scanner is in the STRING start condition, and

<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */

is active only if the scanner is either in INITIAL, STRING, or QUOTE
condition

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 15 / 25

Start Condition Declaration

start conditions declared in the first section

activated by BEGIN action so rules with the given start condition will
be active and rules with other start conditions will be inactive

Types of Start Conditions

inclusive (declared with %s) – also rules with no start condition are active

exclusive (declared with %x) – only rules with the given start condition
are active (possible to define “mini-scanners” independent on
the rest of the scanner)

with the start condition INITIAL, only rules without start conditions
are active

<*> matches every start condition

current start condition can be accessed by YY START

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 16 / 25

Start Condition Example I

Example

%s example

%%
<example>foo do_something();
bar something_else();

is equivalent to

%x example

%%
<example>foo do_something();
<INITIAL,example>bar something_else();

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 17 / 25

Start Condition Example II

several start conditions can be grouped

Example

a (sub)scanner which discards C comments

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);
<comment>{
[^*\n]* /* eat anything that’s not a ’*’ */
"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */
\n ++line_num;
"*"+"/" BEGIN(INITIAL);

}

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 18 / 25

Generated Scanner

output is written to yyout (lex.yy.c by default)

it contains the routine int yylex(void) which runs the lexical
analysis

int yylex(void) can be changed by redefining YY DECL macro

Example

#define YY_DECL float lexscan(float a, float b);

defines the scanning routine lexscan which takes two float parameters
and returns float

yylex() scans the global input file yyin (stdin by default)

if it is not interrupted by a return statement (scanning can be
resumed by calling yylex() again), it continues until it reaches EOF
(returns 0)

yyrestart(FILE *) can be used to continue scanning a new file

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 19 / 25

Command Line Options

flex [-bcdfhilnpstvwBFILTV78+? -C[aefFmr] -ooutput -Pprefix
-Sskeleton] [--help --version] [file ...]

Selected Parameters

-o outf output file name

-P pref specifies prefix other than yy for Lex functions

-i case insensitive scanner

Options Within Definition File

many options can be specified within the first section of the definition
file

%option case-insensitive

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 20 / 25

Example I

Example

/* scanner for a toy Pascal-like language */

%{
/* need this for the call to atof() below */
#include <math.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 21 / 25

Example II

Example

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);

}

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 22 / 25

Example III

Example

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/"
printf("An operator: %s\n", yytext);

"{"[^}\n]*"}"
/* eat up one-line comments */

[\t\n]+
/* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 23 / 25

Example IV

Example

main(int argc, char ** argv)
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 24 / 25

Bibliography

Flex documentation.
http://flex.sourceforge.net/manual/.

Techet, Masopust, (Meduna) (FIT, BUT) Lex Modern FLT, 2007 25 / 25

http://flex.sourceforge.net/manual/

	Introduction
	Definition File
	Structure
	Name Definitions
	Regular Expressions
	Input Matching
	Actions
	Start Conditions

	Generated Scanner
	Command Line Options
	Program Example
	Bibliography

