1/29

Part I11.
Models for Regular
Languages

2129

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that
denote concatenation, union, and

Iteration, respectively.

Definition: Let X be an alphabet. The regular
expressions over X and the languages they denote
are defined as follows:
e JIs a RE denoting the empty set
e ¢ IS a RE denoting {c}
* a2, Where a € %, Is a RE denoting {a}
 Let r and s be regular expressions denoting the
languages L, and L, respectively; then

 (r.s)isaRE denoting L =L, L,

e (r+s)isaREdenotingL =L, U L

o (r')isaRE denotingL =L,

3/29

Regular Expressions: Example

Question: Is (¢ + (a.(b™))) the regular expression
over X ={a, b} ?

v v EllsaREoverZ. ‘
g a b |

v
A -
(a '(b*)) ANswer:

(e + (a.(b))) is

.
(e + (a.(b))) E)> | the RE over ¥

4/29

Simplification

1) Reduction of the number of parentheses by

Precedences: = > . > +
2) Expression r.s Is simplified to rs
3) Expression rr-or r'r is simplified to r*

Example:
((a.(@”)) + ((b").b)) can be writtenas,a.a” + b".b,

—

Y "
and a.a + b".b can be written as a* + b*

5/29

Regular Language (RL)

Gist: Every RE denotes a regular language

r that denotes L.

Definition: Let L be a language. L Is a regular
language (RL) If there exists a regular expression

Denotation: L(r) means the language denoted by r.

Examples:

r, =ab + ba 0
r,=a'b" 0
r,=ab(a+b)” C

r,=(a+b)ab(a+Db)" d

enotes
enotes
enotes
enotes

_, = {ab, ba}
L, ={a"b™ n>1 m=>=0}
|, = {x: ab is prefix of x}

_, = {X: ab Is substring of x}

‘ L., L,, Ls, L, are regular languages over Z‘

6/29

Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and
computational rules.

| Final states /—ICurrent state |

‘ Start state H)I;inite State Control

v Read head
Inputtape:|a; |a, | ... ai‘ .| a,

move of head

7129

Finite Automata: Definition

Definition: A finite automaton (FA) Is a 5-tuple:
M=(Q, %, R, s, F), where
* Q Is a finite set of states
3 IS an input alphabet
* R iIs a finite set of rules of the form: pa — ¢,
wherep,g e Q,a e X U {c}
e s € Q Is the start state

 F — Q Is aset of final states

Mathematical note on rules:
o Strictly mathematically, R is a relation from Q x (£ U {&}) to Q

* Instead of (pa, q), however, we write the rule as pa — g
e p2 — (means that with 2, M can move from p to g
e if 2 =&, no symbol is read

8/29

Graphical Representation

(@) denotes astate g € Q
»@ denotes the start state s € Q

denotes a final state f € F

@®—2—+(@@) denotespa—>q e R

9/29

Graphical Representation: Example

M=(Q, 2, R,s, F),
where:
*Q={s,pa T}
> ={a, b, c}
eR={sa—s,
S —p,
pb — p,
pb — T,
S —0,
gc —q,
qgc — f,
fa—> T}
+F={f}

10/29

Tabular

Representation

e Columns:
e Rows:
e First row:

e UNC

erscored:

Member of X U {c}
States of Q

The start state

~1nal states

a

e

t(p, @)

- |:

‘t(p,a):{q: pa—>qeR}‘

11/29

Tabular Representation: Example

M — (Q1 21 R1 81 F)1
where:

a b C g

s| {s} | & O 1{p, q}
p| © Hp T} O %,
gl 9 | @ |{o,f} @
fl{}| o | 9| @

12/29

Configuration

Gist: Instance description of FA

Definition: Let M = (Q, Z, R, s, F) be a FA.
A configuration of M is a string y € QX~

@)
O

/

Finite State Control

*
.
*

@)

'I Current state ‘

Input tape:

v Read head

a;

a

al ... |a,

Confi

2 T
guration

h 4

13/29

Move

Gist: Computational step of FA

Definition: Let p x and gx be two configurations
of M, wherep,qe Q, eXu{e} andx e X"
Let =p — g e Rbearule. Then M makes a
move from p X to gx according to , written as

D X|—-agx][]or, simply, p X|-0x

Note: If & =g, no Input symbol IS read

Configuration:

Rule: p2 — g J/ X//

New configuration: @\

14/29

Sequence of Moves 1/2
Gist: Several consecutive computational steps
Definition: Let y be a configuration. M makes
zero moves from y to ; in symbols,

x |=°x [e] or, simply, x |-°x
Definition: Let y,, %4, ---» X, D€ @ sequence of
configurations,n>1,and y;; |-y [r:], I, € R,
forall1=1, ..., n; that is,

Xo I=xa [Nl =%z [ral - =2 [Fl
hen M makes n moves from y, to y,.:
YXo I=" %o [Fy-. rol Or, sImply, %o =",

15/29

Sequence of Moves 2/2

If %o |-" %, [p] fOr some n > 1, then

Yo =" %n Pl
If %o |-" %, [p] fOor some n > 0, then
Xo |- %Pl

Example: Consider

pabc |- gbc [1: p2a — q], and gbc |- rc [2: gb — 1].
Then, nabe |-2 re [1 2],
pabe |- re [1 2],
nabe |-"rc [1 2]

16/29

Accepted Language

Gist: M accepts w if it can completely read
w by a sequence of moves from s to a
final state

Definition: Let M = (Q, Z, R, s, F) be a FA.
The language accepted by M, L(M), Is defined
as:

LIM)={w:w e X, sw|-f, feF}

M=(Q, 3 R,s, F):\ if g, e Fthen e L(M);

otherwise, ¢ L(M)

S?laz. . .anll_qlaz. . .a.n |_ . |— qn-lan — qn

17/29

FA: Example 1/3

M=(Q, %, R,s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb —> s}, F={s}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

‘ sab

‘?Read head
a

b sab

Input tape:

18/29

FA: Example 2/3

M=(Q, %, R,s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb —> s}, F={s}
Question: ab € L(M) ?

Finite Automaton M
Finite State Control:

Current Configuration:

TN

Inputtape: [a | b sab |_qb

19/29

FA: Example 3/3

M=(Q, %, R,s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb —> s}, F={s}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

]

ANSwWer:
| YES, ab € L(M),
w Read head| because s € F

Inputtape: [a | b sab |- qb - S

20/29

Equivalent Models

Definition: Two models for languages, such
as FAs, are equivalent if they both specify the
same language.

Question: Is M, equivalent to M, ?

Answer: M, and M, are equivalent because
L(M,) = L(M,) ={a": n > 0}

21/29

Conversion of RE to FA: Basics 1/5

Gist: Algorithm that converts any RE to an
equivalent FA (lex in UNIX).

* For a RE r = &, there Is an equivalent FA M.

Proof: M, : »@

* For a RE r = ¢, there Is an equivalent FA M. .

Proof: M.: *@ <

e ForaRETr=2a,a e X, there is an equivalent FA M., .

Proof: M. : »@

22129

RE to FA: Concatenation 2/5

e LetrbeaREoverXand M =(Q,, %, R, s, {f.}) be
an FA such that L(M,) =L(r).

e LettbeaRE over Z and M, = (Q,, X, R, S;, {f;}) be
an FA such that L(M,) =L(t).
 Then, for the RE r.t, there exists an equivalent FA M.,

Proof: Let Q,n Q,=&.

Construction:
M= (Q,uQu Z, RRUR UA{f,— s}, 5, {1i})

Lef®l-[ei®

23/29

RE to FA: Union 3/5

e LetrbeaREoverXand M =(Q,, %, R, s, {f.}) be
an FA such that L(M,) =L(r).

e Lettbe RE over Z and M, = (Q,, %, Ry, S;, {f;}) be
an FA such that L(M,) =L(t).

« Fora RE r + 1, there exists an equivalent FA M,

Proof: LetQ,n Q,=J,s,f ¢ Q,U Q,

Construction

M =(QuUQuU{sf}, X RURU{sS—S,
sss, f. >t f,—>1} s,{f})

Mesi: o [M: 30

24/29

RE to FA: Iteration 4/5

eletrbeaREoverXand M,=(Q,, Z, R,, s, {f,}) be
an FA such that L(M,) =L(r).
* For the RE r7, there exists an equivalent FA M ..

Proof: Lets, f¢ Q,.

Construction:

M.=(Q,u{s f},Z,RRu{s—>s,f>f,
f.—>s,s—f} s,{f})

25/29

RE to FA: Completion 5/5

e Input: RE r over X
» Qutput: FA M such that L(r) = L(M)

e Method:

 From “inside” of r, repeatedly use the next
rules to construct M:
* for RE 4, construct FA M,
« for RE ¢, construct FA M, — (see 1/5)
o for RE a € %, construct FA M,
e let for REs r and t, there already exist FAs M, and
M,, respectively; then,

e for
e for
e for

RE r.t, construct FA M, (see 2/5)
RE r +t, construct FA M, , ; (see 3/9)

RE r” construct FA M. (see 4/5)

26/29

RE to FA: Example 1/3

Transform RE r = ((ab) + (cd))” to an equivalent FA M

For RE a: ForREb:
T i
For RE b:| | (@)@ bb
ForREc: For RE :
T i
ForRE i | (@) >@-2

217129

RE to FA: Example 2/3

For RE b: | @)@ @@

For RE cd: 'V'C:C OXNO

= I I

C M b'
For RE @ G

Mb*él ‘ .8 .b.
o] @) >
46%{ 0@

28/29

RE to FA: Example 3/3

For RE
b + cd:

For a final RE (ab + cd)™: '

M b+cys

8

(&

29/29

Models for Regular Languages

Theorem: For every RE r, there Is an FA M
such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA M, thereisan RE r
such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for

regular languages are
1) Regular expressions 2) Finite Automata

	Part III.Models for Regular Languages
	Regular Expressions (RE): Definition
	Regular Expressions: Example
	Simplification
	Regular Language (RL)
	Finite Automata (FA)
	Finite Automata: Definition
	Graphical Representation
	Graphical Representation: Example
	Tabular Representation
	Tabular Representation: Example
	Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language
	FA: Example 1/3
	FA: Example 2/3
	FA: Example 3/3
	Equivalent Models
	Conversion of RE to FA: Basics 1/5
	RE to FA: Concatenation 2/5
	RE to FA: Union 3/5
	RE to FA: Iteration 4/5
	RE to FA: Completion 5/5
	RE to FA: Example 1/3
	RE to FA: Example 2/3
	RE to FA: Example 3/3
	Models for Regular Languages

