
1/29

Part III.Part III.
Models Models for for Regular Regular

LanguagesLanguages

Regular Expressions (RE): Definition
2/29

Gist: Expressions with operators ., +, and * that
denote concatenation, union, and
iteration, respectively.

Definition: Let Σ be an alphabet. The regular
expressions over Σ and the languages they denote
are defined as follows:
• ∅ is a RE denoting the empty set
• ε is a RE denoting {ε}
• a, where a ∈ Σ, is a RE denoting {a}
• Let r and s be regular expressions denoting the
languages Lr and Ls, respectively; then

• (r.s) is a RE denoting L = Lr Ls
• (r + s) is a RE denoting L = Lr∪ Ls
• (r*) is a RE denoting L = Lr

*

Regular Expressions: Example
3/29

Question: Is (ε + (a.(b*))) the regular expression
over Σ = {a, b} ?

a bε
Is a RE over Σ.

(b*)

(a .(b*))

(ε + (a .(b*)))

Answer:
(ε + (a.(b*))) is
the RE over Σ.

Precedences: * > . > +

Example:
((a.(a*)) + ((b*).b)) can be written as a .a* + b*.b ,

and a .a* + b*.b can be written as a+ + b+

3) Expression rr* or r*r is simplified to r+

1) Reduction of the number of parentheses by
Simplification

4/29

2) Expression r.s is simplified to rs

Definition: Let L be a language. L is a regular
language (RL) if there exists a regular expression
r that denotes L.

Examples:
r1 = ab + ba denotes L1 = {ab, ba}
r2 = a+b* denotes L2 = {anbm: n ≥ 1, m ≥ 0}
r3 = ab(a + b)* denotes L3 = {x: ab is prefix of x}

Denotation: L(r) means the language denoted by r.

Regular Language (RL)
Gist: Every RE denotes a regular language

r4 = (a + b)*ab(a + b)* denotes L4 = {x: ab is substring of x}

5/29

L1, L2, L3 , L4 are regular languages over Σ

Finite Automata (FA)
Gist: The simplest model of computation

based on a finite set of states and
computational rules.

6/29

…

Final states

ai ana1 a2 …
Read head

s

q1
q2 qi

qn

Finite State Control

...
...

Current state

Start state

Input tape:

move of head

Definition: A finite automaton (FA) is a 5-tuple:
M = (Q, Σ, R, s, F), where

• Q is a finite set of states
• Σ is an input alphabet
• R is a finite set of rules of the form: pa → q,

where p, q ∈ Q, a ∈ Σ ∪ {ε}
• s ∈ Q is the start state
• F ⊆ Q is a set of final states

Finite Automata: Definition

• Strictly mathematically, R is a relation from Q × (Σ ∪ {ε}) to Q
• Instead of (pa, q), however, we write the rule as pa → q

7/29

• pa → q means that with a, M can move from p to q
• if a = ε, no symbol is read

Mathematical note on rules:

Graphical Representation
8/29

denotes a state q ∈ Q

denotes the start state s ∈ Q

denotes a final state f ∈ F

q

s

f

denotes pa → q ∈ Rp qa

M = (Q, Σ, R, s, F),

pb → p,

b

pb → f,

bε
s → p,

s → q,

ε

qc → f,

c

a

fa → f };

qc → q,

c

p

q

s f

• Q = {s, p, q, f};
• Σ = {a, b, c};

a

• R = {sa → s,

where:

Graphical Representation: Example

• F = {f }

9/29

Tabular Representation
10/29

• Columns: Member of Σ ∪ {ε}
• Rows: States of Q
• First row: The start state
• Underscored: Final states

a... ... ε

s

...

...
p

f

t(p, a)t(p, a)

t(p, a) = {q: pa → q ∈ R}

εa b c

• Σ = {a, b, c};

M = (Q, Σ, R, s, F),
where:

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

Tabular Representation: Example

s

f

p
q

• Q = {s, p, q, f};

• R = {sa → s,
{s}

pb → p,

{p}

fa → f };

{f }

s → p,

{p}

pb → f,

{p, f }

qc → q,

{q}

qc → f,

{q, f }

s → q,

{p, q}

• F = {f }

11/29

Configuration

Definition: Let M = (Q, Σ, R, s, F) be a FA.
A configuration of M is a string χ ∈ QΣ*

Gist: Instance description of FA

12/29

s

q1
q2 qi

qn
Finite State Control

...

...

Current state

ai an…a1 a2 …
Input tape: Read head

Configuration
qi

Move

Definition: Let pax and qx be two configurations
of M, where p, q ∈ Q, a ∈ Σ ∪ {ε}, and x ∈ Σ*.
Let r = pa → q ∈ R be a rule. Then M makes a
move from pax to qx according to r, written as
pax |– qx [r] or, simply, pax |– qx
Note: if a = ε, no input symbol is read

Gist: Computational step of FA

13/29

ap xConfiguration:

Rule: pa → q

New configuration: q

…

x

Sequence of Moves 1/2
Gist: Several consecutive computational steps

14/29

Definition: Let χ be a configuration. M makes
zero moves from χ to χ; in symbols,

χ |– 0 χ [ε] or, simply, χ |– 0 χ

Definition: Let χ0, χ1, ..., χn be a sequence of
configurations, n ≥ 1, and χi-1 |– χi [ri], ri∈ R,
for all i = 1, ..., n; that is,

χ0 |– χ1 [r1] |– χ2 [r2] … |– χn [rn]
Then M makes n moves from χ0 to χn:

χ0 |– n χn [r1... rn] or, simply, χ0 |– n χn

Sequence of Moves 2/2
15/29

If χ0 |–n χn [ρ] for some n ≥ 1, then
χ0 |–+ χn [ρ].

If χ0 |–n χn [ρ] for some n ≥ 0, then
χ0 |–* χn [ρ].

Example: Consider

pabc |– qbc [1: pa → q], and qbc |– rc [2: qb → r].
Then, pabc |–2 rc [1 2],

pabc |–+ rc [1 2],
pabc |–* rc [1 2]

Accepted Language
16/29

Definition: Let M = (Q, Σ, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

L(M) = {w: w ∈ Σ*, sw |–* f, f ∈ F}

M accepts w if it can completely read
w by a sequence of moves from s to a
final state

Gist:

M = (Q, Σ, R, s, F):

sa1a2…an |– q1a2…an |– … |– qn-1an |– qn
w

if qn ∈ F then w ∈ L(M);
otherwise, w ∉ L(M)

a b
Read head

Input tape:

s

Finite State Control:

qa

b

M = (Q, Σ, R, s, F), where:

sab

Finite Automaton M

Q = {s, q}, Σ = {a, b}, R = {sa → q, qb → s}, F = {s}
Question: ab ∈ L(M) ?

FA: Example 1/3

Current Configuration:

17/29

sab

a b
Read head

Input tape:

s

Finite State Control:

q
b
a

M = (Q, Σ, R, s, F), where:

qb

Finite Automaton M

Q = {s, q}, Σ = {a, b}, R = {sa → q, qb → s}, F = {s}

FA: Example 2/3

Current Configuration:

Question: ab ∈ L(M) ?

18/29

sab |– qb

a bInput tape:

s

Finite State Control:

qa

b

M = (Q, Σ, R, s, F), where:

Current Configuration:

s

Finite Automaton M

Q = {s, q}, Σ = {a, b}, R = {sa → q, qb → s}, F = {s}

Read head

Answer:
YES, ab ∈ L(M),

because s ∈ F
sab |– qb |– s

FA: Example 3/3

Question: ab ∈ L(M) ?

19/29

Equivalent Models
Definition: Two models for languages, such
as FAs, are equivalent if they both specify the
same language.
Example:

M1: M2:a
s s f

a
a

20/29

Question: Is M1 equivalent to M2 ?

Answer: M1 and M2 are equivalent because
L(M1) = L(M2) = {an: n ≥ 0}

• For a RE r = ∅, there is an equivalent FA M∅.

Conversion of RE to FA: Basics 1/5
Algorithm that converts any RE to an
equivalent FA (lex in UNIX).

Gist:

21/29

• For a RE r = ε, there is an equivalent FA Mε .
Proof: M∅ : s

• For a RE r = a, a ∈ Σ, there is an equivalent FA Ma .
a

Proof: Mε :
εs f

s fProof: Ma :

Mr.t:

RE to FA: Concatenation 2/5
• Let r be a RE over Σ and Mr = (Qr, Σ, Rr, sr, {fr}) be

an FA such that L(Mr) = L(r).
• Let t be a RE over Σ and Mt = (Qt, Σ, Rt, st, {ft}) be

an FA such that L(Mt) = L(t).
• Then, for the RE r.t, there exists an equivalent FA Mr.t
Proof: Let Qr∩ Qt = ∅.

Mr.t = (Qr∪ Qt, Σ, Rr∪ Rt

fr ft...
Mr:

sr ...
Mt:

stfr ft

sr,∪ {fr→ st},

ε

{ft})

22/29

Construction:

Mr+t:

• Let r be a RE over Σ and Mr = (Qr, Σ, Rr, sr, {fr}) be
an FA such that L(Mr) = L(r).

• Let t be RE over Σ and Mt = (Qt, Σ, Rt, st, {ft}) be
an FA such that L(Mt) = L(t).

• For a RE r + t, there exists an equivalent FA Mr+t
Proof: Let Qr∩ Qt = ∅, s, f ∉ Qr∪ Qt.

s,
Mr+t = (Qr∪ Qt ∪ {s, f } , Σ, Rr∪ Rt

fr

ft

...
Mr: sr

...
Mt: st

s f
fr

ft

{f })
∪ {s→ sr,

ε

s→ st,

ε

ft→ f },

ε

fr→ f,
ε

RE to FA: Union 3/5

Construction
:

23/29

Mr*:

• Let r be a RE over Σ and Mr = (Qr, Σ, Rr, sr, {fr}) be
an FA such that L(Mr) = L(r).

• For the RE r*, there exists an equivalent FA Mr*
Proof: Let s, f ∉ Qr.

Mr* = (Qr∪ {s, f}, Σ, Rr

fr...
Mr:

srs f

{f})

ε

fr→ f,

ε

fr→ sr,

ε

s→ f }, s,

fr

∪ {s→ sr,

ε

RE to FA: Iteration 4/5

Construction:

24/29

RE to FA: Completion 5/5
• Input: RE r over Σ
• Output: FA M such that L(r) = L(M)
• Method:
• From “inside” of r, repeatedly use the next

rules to construct M:
• for RE ∅, construct FA M∅
• for RE ε, construct FA Mε
• for RE a ∈ Σ, construct FA Ma
• let for REs r and t, there already exist FAs Mr and

Mt, respectively; then,
• for RE r.t, construct FA Mr.t (see 2/5)
• for RE r + t, construct FA Mr + t (see 3/5)
• for RE r* construct FA Mr* (see 4/5)

(see 1/5)

25/29

RE to FA: Example 1/3
26/29

Transform RE r = ((ab) + (cd))* to an equivalent FA M

For RE a: as f
Ma:

For RE b: bs f
Mb:

For RE c: cs f For RE d: ds f

Mcd:

Mab: asa fa
bsb fb

Ma: Mb:

dsd fd

Md:csc fc

Mc:

For RE ab: ε

For RE cd: ε

Mab + cd:

f+s+

ε

εε

ε

For RE
ab + cd:

asa fa
bsb fb

εMab:

csc fc
dsd fd

εMcd:

For RE ab: asa fa
bsb fb

εMab:

For RE cd: csc fc
dsd fd

εMcd:

RE to FA: Example 2/3
27/29

RE to FA: Example 3/3
28/29

asa fa
bsb fb

ε

f+s+

ε
Mab + cd:

For RE
ab + cd: csc fc

dsd fd
εε

ε

ε

M(ab + cd)*: asa fa
bsb fb

ε

f+s+

ε
Mab + cd:

csc fc
dsd fd

εε

ε

ε fs
ε

ε ε

For a final RE (ab + cd)*:

ε

Models for Regular Languages
29/29

Theorem: For every RE r, there is an FA M
such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA M, there is an RE r
such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for
regular languages are

1) Regular expressions 2) Finite Automata

	Part III.Models for Regular Languages
	Regular Expressions (RE): Definition
	Regular Expressions: Example
	Simplification
	Regular Language (RL)
	Finite Automata (FA)
	Finite Automata: Definition
	Graphical Representation
	Graphical Representation: Example
	Tabular Representation
	Tabular Representation: Example
	Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language
	FA: Example 1/3
	FA: Example 2/3
	FA: Example 3/3
	Equivalent Models
	Conversion of RE to FA: Basics 1/5
	RE to FA: Concatenation 2/5
	RE to FA: Union 3/5
	RE to FA: Iteration 4/5
	RE to FA: Completion 5/5
	RE to FA: Example 1/3
	RE to FA: Example 2/3
	RE to FA: Example 3/3
	Models for Regular Languages

