Definition: Let M = (Q, S, R, s, F) be an FA.
A state q Î Q is accessible if there exists w Î S* such that sw
|–* q; otherwise, q
is inaccessible.
State s
- accesible: w = e : s |–0 s
State q1 - accesible: w = a : sa |– q1
State f
- accesible: w = ab: sab |–
q1b |– f
State q2 - inaccessible (there is no w Î S*
such that sw |–* q2)