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Part V.
Properties of Regular
Languages
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Pumping Lemma for RLS

Gist: Pumping lemma demonstrates an infinite
Iiteration of some substring in RLSs.

e Let L be a RL. Then, there is k > 1 such that
If z € L and |z| > k, then there exist u,v,w: z =uvw,
1)v=e2)|uv| <k 3) foreachm >0, uv™w e L

Example: for RE r = ab“c, L(r) is regular.
There 1s k = 3 such that 1), 2) and 3) holds.
eforz=abc:z e L(r) & |z| = 3:uv®w = ab% = ac € L(r)
J VW uviw = ablc = abc e L(r)
uvew = ab?c = abbc e L(r)
Ve, |uv[=2<3 :
e for z = abbc:z e L(r) & |z| > 3:uvw = abb% = abc e L(r
L et &[] uviw = abblc = bCeL((z)
uv uvaw = abb?c = abbbc e L(r)
vzeg, |uv|=2<3 :
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Pumping Lemma: Illustration

e L =any regular language:

r | € | ‘nothmg Interesting
K
[ K | eL
Tk ~l—
(U T v ] W |
1) —
“ =&
2) <k
) u | W le L
| u | v | W le L
l u | v | v | W e L
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Proof of Pumping Lemma 1/3

e Let L be a regular language. Then, there exists
DFA M=(Q,%,R,s, F),and L = L(M).

e For z € L(M), M makes |z| moves and M ViIsIts
z| + 1 states:

eforz=a,a,...a,
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Proof of Pumping Lemma 2/3
o Let k =card(Q) (the number of states).
Foreachz e Land |z| >k, M visits k + 1 or
more states. As k + 1 > card(Q), there exists a

state g that M visits at least twice.
e For z exist u, v, w such that z = uvw:

oF
suba QW f
| | i
"@"l _rsafls_ || ! _reiags_V\i _ @
Summary:

sz=suvw |- gqvw |- gqw|-f, feF
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Proof of Pumping Lemma 3/3

e There exiIst moves:

@Osul-aq; @avl-'q; Guw|-"f,feF, so

e form =0, uv™v = uvOw = uw,

S W@ qw@*f, feF

e for each m > 0,

S vmW@ qvmv% qv™ 1&) ? qw@ f, feF

Summary:
1)gvl-'g ; therefore, [v[>1,s0v#¢
2) SUV |- qv I-'q, ; therefore, |Uv| <k

3) For each m > 0: suv™w |-~ f, f € F, therefore uvmw € L
QED
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Pumping Lemma: Application |

* Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language is not regular

...................... >| Assume that L iS regular ‘
5 v

Consider the PL constant k and select z € L, whose
length depends on k so |z| > k is surely true.

v

For all decompositions of z into uvw, v = ¢, |uv| <k, show:
: | there exists m > 0 such that uv™w ¢ L

. [from the pumping lemma, uvw < L contradiction

v

| . Therefore,
false assumption ‘ - L is not regular
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Pumping Lemma: Example

Prove that L = {&a"b": n > 0} Is not regular:

1) Assume that L is regular. Let k > 1 be the

pumping lemma constant for L.
2) Let z = akbk: akbk e L, |z| = |akb¥| = 2k > k
3) All decompositions of z into uvw, v = ¢, |uv| < k:

K K : o0
A * pumping lemma: uv®w € L
HE]fbb...bY) ki <
oV s w . ltuvlw=uw = bb...bble L
ﬁ—J « ~ J
luv| <k J— [ W

Contradiction!

4) Therefore, L is not regular
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Note on Use of Pumping Lemma
 Pumping lemma:
then

‘EXIS'[ k>0 and .. ‘

Main application of the pumping lemma:
 proof by contradiction that L is not regular.

 However, the next implication Is incorrect:
if [existks Dane——way—JLis

* We cannot use the pumping lemma to
prove that L Is regular.

If ‘L is regular‘

egular
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Pumping Lemma: Application I1. 1/3

« We can use the pumping lemma to prove
some other theorems.

Illustration:

* Let M be a DFA and k be the pumping lemma

constant (k Is the number of states in M). Then,

L(M) is infinite < there exists z € L(M), k < |z| < 2K

Proof:
1) there exists z € L(M), k < |z| < 2k = L(M) is infinite:

Ifz e L(M), k <|z|, then by PL.:
Z =uvw, V # g, and for each m > 0: uv™w e L(M)
ﬁ—l ) - Zs

T L(M) s infinite |‘;
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Pumping Lemma: Application Il. 2/3

2) L(M) is Infinite = there exists z € L(M), k < |z| < 2k:

 \We prove by contradiction, that

[ L(m) is infinite |2 there exists z < L(M), |z] > k]
b)¥

‘there exists z e L(M), k< z| < Zk‘

a) Prove by contradiction that

e L(M) is infinite = there exists z € L(M), |z| > k
Assume that L (M) is infinite and there existsno z € L(M), |z| 2 k

/ forall z € L(M) noldd Z| < k
v

‘Contradiction ! ‘4/ o — L(M) is finite
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Pumping Lemma: Application I1. 3/3

b) Prove by contradiction

e thereexistsz € L(M), |zZ| 2k =

there exists z € L(M), k <

Assume that there is z € L(M),
and thereisnoz e L(M), k< |z

Z| < 2k

zl>k kK 2K
< 2k %-e-e-e-é';t

Let 7, be the shortest string satisfying z, € L(M), |z,| = k
FBecause there exists no z € L(M), k <|z| < 2k, so

If z, € L(M) and |z,| = k, the PL implies: z5 = uvw,
, and for each m > 0, uv™w e L(M)

luw| =17 - v = K form=0: uw"w =UW € L(M)
Summary: uw € L(M), luw| >k and |uw| < |z

Zy 1S not the shortest string satisfying z1 e L(M), |zo| = k

> Contradiction !
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Closure properties 1/2

Definition: The family of regular languages
IS closed under an operation o If the language
resulting from the application of o to any
regular languages is also reqular.

Illustration:
* The family of regular languages iIs closed under union.

It means:

The family of
regular languages
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Closure properties 2/2

Theorem: The family of regular languages Is
closed under union, concatenation, iteration.

Proof:
e LetL,, L, be two regular languages

* Then, there exist two REs ry, r,: L(ry) =Ly, L(r,) = L,;
By the definition of regular expressions:
*r,.I, 1s a RE denoting L, L,
*r, +r,1saREdenoting L, U L,
r,” isa RE denoting L,
* Every RE denotes regular language, so
L, L, L,u L, L, arearegular languages
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Algorithm: FA for Complement
 Input: Complete FA:M=(Q, X2, R, s, F)
e OQutput: Complete FA: M’ =(Q, X, R, s, F’),
L(M") = L(M)
e Method:
e =Q-F
Example:

M m@ -}

L(M) = {x bisa substrlng of x}; L(M ) {x ubstrlng of x}
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FA for Complement: Problem

* Previous algorithm requires a complete FA
 If M is incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

Example: —
Incomplete DFA: ‘ L(|V| ’) #L(M)! -c e L(M), c e L(M,) ‘

=) b
S @ % ' ; L(Mz) L(M)\
2’:

Complete DFA:
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Closure properties: Complement

Theorem: The family of regular languages Is
closed under complement.

Proof:
 Let L be a regular language
* Then, there exists a complete DFAM: L(M)=L
* We can construct a complete DFAM’: L(M’) =L
by using the previous algorithm
* Every FA defines a regular language, so
L Is a regular language
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Closure properties: Intersection

Theorem: The family of regular languages Is
closed under intersection.

Proof:
e LetL,, L, be two regular languages

» L, L, are regular languages

(the family of regular languages Is closed under complement)
oL, UL, Isaregular language

(the family of regular languages is closed under union)

L, UL, is a regular language

(the family of regular languages Is closed under complement)

e L, nL,=0C, UL, isaregular language (DeMorgan’s law)
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Boolean Algebra of Languages

Definition: Let a family of languages be
closed under union, intersection, and
complement. Then, this family represents a
Boolean algebra of languages.

Theorem: The family of regular languages Is
a Boolean algebra of languages.

Proof:
 The family of regular languages is closed
under union, intersection, and complement.
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Main Decidable Problems

1. Membership problem:
 Instance: FA M, w € X7; Question: w € L(M)?

2. Emptiness problem:
* Instance: FA M,; Question: L(M) = ©?

3. Finiteness problem:
e Instance: FA M; Question: Is L(M) finite?

4. Equivalence problem:
* Instance: FA M, M,; Question: L(M,) =L(M,)?
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Algorithm: Membership Problem

 Input: DFA M=(Q, %, R, s, F);we X"
e Qutput: YES If w € L(M)
NO ifw ¢ L(M)

e Method:
oif sw|-"f, f € Fthenwrite CYES’)
else write CNO’)

Summary:

The membership problem for FAs Is decidable
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Algorithm: Emptiness Problem

e Input: FA M=(Q, X, R, s, F);
e Output: YESIfL(M) =
NO iIf L(IM) # &

e Method:
e If s IS nonterminating then write CYES’)
else write CNQO’)

Summary:

The emptiness problem for FAs Is decidable
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Algorithm: Finiteness Problem
e Input: DFA M =(Q, %, R, s, F);
e Output: YES If L(M) Is finite
NO _if L(M) is infinite

* Method:

o Let k = card(Q)

o if there exist z € L(M), k < |z| < 2k then write "NQO”)
else write CYES’)

Note: This algorithm is based on
L(M) is infinite < there exists z: z € L(M), k< |z] < 2k

Summary:
The finiteness problem for FAs is decidable
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Decidable Problems: Example

. b
OG0

Question: ab € L(M) ?

sab|-sb|-f, fe F

Answer: YES because sab |- f, f e F
Question: L(M) = ?

Qo = {f}

l.ga’ >f,qgeQ;a’ e sh>f,fa>f

Q, ={fYu {s, f} = {f, s} ... sis terminating
Answer: NO because s is terminating
Question: Is L(M) finite? k = card(Q) =2
All strings z € =*: 2 <|z| < 4: 24, bbb € L(M), ...
Answer: NO because there exist z € L(M), k < |z| < 2k
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Algorithm: Equivalence Problem

* Input: Two minimum state FA, M,and M,
» Output: YES If L(M,) = L(M,)

NO if L(M,) #L(M,)
* Method:

* if M, coincides with M, except for the name of states
then write (' YES’)
else write NQO’)

Summary:

The equivalence problem for FA is decidable
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Equivalence Problem: Example
Question: L(M,;) = L(M,)?

>
o B

minl:

) e —

A minimum state FA

M

Answer: YES because M_.;,; coincides with M

min2
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