1/50

Part VII.
Models for Context-Free
Languages

2/50

Context-Free Grammar (CFG)

Gist: A grammar Is based on a finite set of
grammatical rules, by which it
generates strings of its language.

lllustration: | start nonterminal |

Grammar G: | Rule: S — AB
Nonterminals] A, B,[S]| AB
. Rule: A — ab
Terminals: ‘a, b, c,d ‘ B
Rules: S — AB, E,Rule: B — bBa
ﬁ" aﬁb’ abbBa
—v e J] Rule: B — ba
B—> bBa, Bﬂ—
B _ ba abbbaa e L(G)

3/50

Context-Free Grammar: Definition

Definition: A context-free grammar (CFG) Is a

quadruple G=(N, T, P, S), where

* N Is an alphabet of nonterminals

* T Is an alphabet of terminals, NN T =

P is a finite set of rules of the form A — X,
where Ae N,xe (NUT)”

* S € N Is the start nonterminal

Mathematical Note on Rules:
e Strictly mathematically, P is a relation from Nto (NuU T)”

e Instead of (A, x) € P,wewrite A—>x P

* A — x means that A can be replaced with x
« A — ¢is called &rule

4/50

Convention

e A, ..., F, S :nonterminals

e S . the start nonterminal

* a,...,0 . terminals

e U,...,Z :membersof (NUT)

°* U, ...,Z : members of (N U T)”

. . sequence of productions
A subset of rules of the form:

A—>X,A=>X%X,....,A>X
can be simply written as:
A— X | X] ... | X

n

n

5/50

Derivation Step

Gist: A change of a string by a rule.

Definition: Let G=(N, T, P, S) be a CFG. Let
u,ve (NuT) and =A — x € P. Then, uAv
directly derives uxv according to in G, written
as UAV = uxv [] or, simply, UAV = uxv.

Note: If uAv = uxv Iin G, we also say that G makes a
derivation step from uAv to uxv.

LAl

RU'GA%X// /mx \\

6/50

Sequence of Derivation Steps 1/2

Gist: Several consecutive derivation steps.

Definition: Letu e (N U T)". G makes a
zero-step derivation from u to u; in symbols,
u="u[g] or, simply, u=°u

Definition: Let u,,...,u, e (NUT)", n>1, and
U, = U [p], pie P, forall1=1,..., n; that is

Up = Uy [p] = Uy [P,] ... = Uy, [Py]

Then, G makes n derivation steps from u, to u,,
U, =" U, [py... p,] Or, sSimply, u; ="u,

7150

Sequence of Derivation Steps 2/2

If u, =" u, [x] for some n > 1, then u, properly
derives u, in G, written as u, =* u, [r].

If u, =" u, [r] for some n > 0, then u, derives
u.in G, written as u, =" u, [x].

Example: Consider
aAb — aaBbb [1. A — aBb], and
aaBbb = aacbb [2: B — c].
Then, aAb =2 aachb [1 2],
aAb =* aacbb [1 2],
aAb = aacbb [1 2

8/50

Generated Language

Gist: G generates a terminal string w by a
sequence of derivation steps from S to w

Definition: Let G=(N, T, P, S) be a CFG. The
language generated by G, L(G), Is defined as
L(G)={w:w e T,S="w}

[llustration:
G=(N,T,P,S), letw=aa,...a,;a,e Tfori=1.n

If S=...=..=>aa,...a, thenw e L(G);

otherwise, w ¢ L(G)

9/50

Context-Free Language (CFL)

Gist: A language generated by a CFG.

Definition: Let L be a language. L Is a context-
free language (CFL) iIf there exists a context-free
grammar that generates L.

Example:
G=(N,T,P,S), where N={S}, T ={a, b},

P={l. S—>aSb .S > ¢}
S=¢ [— > L(G)={a"b": n >0}
S=aSh[l]=ab [7]

S=aSb[l] = aaSbb[1] = aabb[”]

‘ L:{c';lnb”: n>0}isaCFL. ‘

10/50

Rule Tree
* Rule tree graphically represents a rule
A A
DAl] | 2AXxX. X | AT
£ X Xy oo X
* Derivation tree corresponding to a derivation
S= ... S

= U,U,..U AV,V,..V |
= U,U,..U.xV.\,.V.|~T /
1~2 m 1Vv2 nU1U2...Um

Rule tree
corresponding
to A —> X

11/50

Derivation Tree: Example

G=(N,T,P,E),whereN={E, F, T}, T={i, +, *, (,)},

P={ 1:E— E+T, E—>T, T > T*F,
T > F, F—>(E), 6:F—>I 1

Derivation: Derivation tree:
E=E+T 1] E

S E+T*F [3 E/\"

=>E+F*F |

:>E+i*:

=T+ 1*F [/] | |/\

= T+1*1 [6] - F | F

=>F+1*1[4 | | |

= | + |

12/50

|_eftmost Derivation

Gist: During a leftmost derivation step, the
leftmost nonterminal 1s rewritten.

Definition: Let G=(N, T, P, S) be a CFG, let

ueT,ve(NUT).Letp=A—>XxecPbea

rule. Then, uAv directly derives uxv in the

leftmost way according to p in G, written as
UAV = uxv [p]

Note: We define =" and =," by analogy with =*
and =7, respectively.

13/50

Leftmost Derivation: Example

G=(N,T,P,E),whereN={E, F, T}, T={i, +, *, (,)},

P={ 1:E > E+T, E—>T, T —> T*F,
T > F, F—>(E), 6:F—>I 1
Leftmost derivation: Derivation tree:
E :>Im E + T] E
=Im I + T E/\-_

Yy
=T
+I++

| +T*F |
:Imi'l'E*:: F F F
= 1t 1T E] | | |
i+ i* T | + | * |

14/50

Rightmost Derivation

Gist: During a rightmost derivation step, the
rightmost nonterminal Is rewritten.

Definition: Let G=(N, T, P, S) be a CFG, let

ue(NUT),veT.Letp=A—>XxecPbea

rule. Then, uAv directly derives uxv in the

rightmost way according to p in G, written as
UAV —__ Uxv [p]

Note: We define =,..* and =, by analogy with =*
and =7, respectively.

15/50

Rightmost Derivation: Example

G=(N,T,P,E),whereN={E, F, T}, T={i, +, *, (,)},

P={ 1:E - E+T,

T —>F,

E—>T, T —> T*F,
F—>(E), 6:F—>I 1

Rightmost cerlvatlon

E =, E+]
:rmE_l_
:rmE_l_

T *

=>m ETE™
=>mE+t 1™

=

=>m E+ 1™

x*
:>rml+l

=]
e
i
i
i
i
i

Derivation tree:
E

16/50

Derivations: Summary

e LetA > x e Pbearule.

1) Derivation:

Letu,ve (NUT)” UAV = uxv
Note: Any nonterminal Is rewritten

2) Leftmost derivation:

LetueT,ve (NUT)" :UAV= UXV
Note: Leftmost nonterminal IS rewritten

3) Rightmost derivation:

Letue (NUT),veT :UAV=__ UXV
Note: Rightmost nonterminal Is rewritten

17/50

Reduction of the Number of Derivations

Gist: Without any loss of generality, we can

consider only leftmost or rightmost
derivations.

Theorem: LetG=(N, T, P, S) be a CFG.
The next three languages coincide

(D) {w:weT,S=, W}
2){w:weT,S=_"w}

B {w:weT,S="w}=L(G)

18/50

Introduction to Ambiguity
exprl — (N T, P, E) h
N {E,F, T}, T= {|W+eie()}, R

P={ L:E>E+T, ZE->T, |.5
T>T*F, 4T->F, '||' '||'
. F—> (B), F—>i}
[Treory: & cpractoes 0] | |
| + 1 * |
Georz = (N, T, P, E), where E E

N={E} T={I,+ % ()}
P={1:E - E+E, 2: E — E*E, E E

E

E—>(E), 4 E—>i }E/I\E ‘ ‘ E/FE

I

[Theory: O Practicer @] { v i+

Note: L(Gexpr) = L(Geypra) ~ Improper durmg compilation

19/50

Grammatical Ambiguity

Definition: Let G=(N, T, P, S) be a CFG.
If there exists x € L(G) with more than one
derivation tree, then G Is ambiguous;
otherwise, G Is unambiguous.

Definition: A CFL, L, is inherently ambiguous
If L 1S generated by no unambiguous grammar.

Example:

* G,,,r1 IS UNambiguous, because for every x e L(G
there exists only one derivation tree

* Gg,or2 IS @mbiguous, because for 1+1*1 € L(G
there exist two derivation trees

* Loor = L(Gepr) = L(Geyprp) is ot inherently ambiguous

expr

because G,,,, IS unambiguous

exprl)

expr2)

20/50

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.
Finite
—»| State
Read-write head Control
Read head
Pushdown: v Input tape: v
A, A, | A ala | .. ai e | A,

move of head
top

21/50

Pushdown Automata: Definition

Definition: A pushdown automaton (PDA) Is

a/-tupleM=(Q, % TI,R,s,S, F), where

 Q Is a finite set of states

3 IS an input alphabet

 [" Is a pushdown alphabet

* R Is a finite set of rules of the form: Apa — wq
whereAel,p,geQacXuf{e,wel”

e s € Q Is the start state

e S e I' Is the start pushdown symbol

 F — Q Is aset of final states

22/50

Notes on PDA Rules

Mathematical note on rules:

o Strictly mathematically, R 1s a relation
fromIlxQxCu{e)tol xQ

e Instead of (Apa, wqg) € R, however, we write
Apa > wg € R

e Interpretation of Apa — waq: If the current
state Is p, current input symbol Is a, and the
topmost symbol on the pushdown is A, then M
can read a, replace A with w and change state p
to Q.

* Note: if a = g, no symbol Is read

23/50

Graphical Representation

@) represents g € Q
»@ represents the initial state s € Q

represents a final state f € F

@22 ,@) denotes Apa—>wq € R

24/50

Graphical Representation: Example

M=(Q,2,T,R,s,S, F)
where: T

*Q={s,p,q, T}

o> ={a, b},

o ['={a, S},

R ={Ssa —» Sap,
apa — aap,
apb — q,
agb — q,
Sq — f}

- F={1}

25/50

PDA Configuration

Gist: Instantaneous description of PDA

Definition: LetM=(Q, X, T', R, s, S, F) be a PDA.
A configuration of M is a string y € I"QX"

Finite State
- Control —

= current state

Read-write head

Pushdown: v Input tape: yRead head
Al . (A]A, a |a,| ... |a| .. ad

S— y
Yﬁ\figuraﬁon

26/50

Move

Gist: A computational step made by a PDA
Definition: Let xApay and xway be two configurations
of a PDA, M, where

x,wel ,Ael,p,geQ,acXu{e} andy e X",
Let = Apa—> wg € R be arule. Then, M makes

a move from xApay to xwaqy according to , written as
XApay [-xway [] or, simply, xApay |- xway.

Note: If & = ¢, no Input symbol is read

Configuration: ‘ | : ‘A ‘@‘ a ‘ :y:

Rl ApHWM/ //JV W - //

New configuration] TxT [1w ‘@‘ Y

27150

Sequence of Moves 1/2
Gist: Several consecutive computational steps
Definition: Let y be a configuration. M makes
zero moves from y to ; in symbols,

x |=° % [e] or, simply, x [-° x
Definition: Let y,, %4, ---» X, D€ @ sequence of
configurations,n>1,and y;; |-y [r:], I, € R,
forall1=1, ..., n; that is,

Xo I=xa [Nl =%z [ral - =2 [Fl
hen M makes n moves from y, to v,
Xo I=" %n [F1-. Fpl OF, simply, %, =" %,

28/50

Sequence of Moves 2/2

If %o |-" %, [p] fOr some n > 1, then
Yo =" xnlplor, simply, %, |- %,

If %o |-" %, [p] fOor some n > 0, then
Yo |= %alplor, simply, xo |- x,

Example: Consider
AApabc |- ABgbc [1: Apa — Bqg], and
ABqgbc |- ABCrc [2: Bgb — BCrl].
Then, AApabc |-2 ABCrc [1 2],
AApabc |-t ABCrc [1 2],
AApabc |-" ABCrc [1 2]

29/50

Accepted Language: Three Types

Definition: LetM = (Q, Z,I', R, s, S, F) be a PDA.

1) The language that M accepts by final state,
denoted by L(M),, Is defined as
L(M); ={w:w e X7, Ssw |- zf,z e ", f € F}

2) The language that M accepts by empty pushdown,
denoted by L(M).,, Is defined as
L(M), ={w:w e X%, Ssw |- zf, z = ¢, f € Q}

3) The language that M accepts by final state and
empty pushdown, denoted by L(M)y., Is defined as
L(M).={w:w e X%, Ssw |-" zf, z = ¢, f € F}

30/50

PDA: Example

M=(Q, 2, I,R,s, S, F)| Question: aabb € L(M);.?
where: [S]I®[ala]b]b]
e Q={s,p,q,f} Rule Ssa — Sap
02:{a,b}; @Ialblbl
T = {a S}' Rule ?psl — aap
e [STalal®[b]b]

* R={Ssa — Sap, Rule: apb — q

apa — aap, @E

apg — {, Rule: agh — ¢

d :

Sg :)) ?} — RugDI]—n‘ ‘ Final state
e F = {f} pushdown A’Héﬂ Answer: YES

Ssaabb |- Sapabb |- Saapbb |- Sagb |- Sq |- f

Note: L(M); = L(M)_=L(M),. ={a"b™ n>1}

31/50

Three Types of Acceptance: Equivalence

Theorem:

e L = L(My), fora PDA M; < L = L(M,),, for a PDA M,
L=L(M,), foraPDAM, <L =L(M,),,fora PDA M,
e L =L(My), fora PDA M; < L =L(M,), fora PDA M,

Note: There exist these conversions:

PDA M, that accept L
by final state and
empty pushdown

PDA M; that accept L
by final state

PDA M, that accept L
by empty pushdown

32/50

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than
one move from any configuration.

Definition: LetM=(Q, X, I', R, s, S, F) be a
PDA. M is a deterministic PDA If for each rule
Apa — wg € R, 1t holds that R — {Apa —> wqg}
contains no rule with the left-hand side equal
to Apa or Ap.

Illustration: Configuration:
| | | |

Lo [Al@lal 1y, |
AP /— W0,
pa — Wy(,

No more that one rule of the forms

33/50

PDAs are Stronger than DPDAS

Theorem: There exists no DPDA M, that accepts
L={xy: X,y € X7,y = reversal(x)}

Proof: See page 431 in [Meduna: Automata and Languages]

IHlustration: ‘ L={xy:x,y € ', y = reversal(x)} ‘
The family of deterministic The family of

CFLs—the languages (_ | languages accepted
accepted by DPDAs by PDAS

34/50

Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a

string rather than a single symbol.
Definition: An Extended Pushdown automaton
(EPDA)isa 7-tupleM=(Q, 2, T, R, s, S, F),
where Q, 2, T, s, S, F are defined as in an PDA and
R Is a finite set of rules of the form: vpa — wq,

wherev,weI",p,qe Q,acXu{c}

lHlustration:
Pushdown of PDA: Pushdown of EPDA:
| | | | | |
‘ | X | ‘ A ‘ ‘ | X | ‘ | Vv |

= —
PDA has a single symbols as the EPDA has a string as the
pushdown top pushdown top

35/50

Move In EPDA

Definition: Let xvpay and xwqy be two configurations
of an EPDA, M, where x,v,we I, p,0e Q,aec X
U {e}, andy € X°. Letr=vpa—wq € Rbearule.
Then, M makes a move from xvpay to xwqy according
to r, written as xvpay |— XWQy [r] or xXvpay |- xway.

Conflguratlon‘ ‘@‘ d ‘ . Y, !

a\\\\\ . // //

New configuration: x : (W, ‘@‘

Note: |-", |-, |-*, L(M);, L(M), , and L(M);, are defined
analogically to the corresponding definitions for PDA.

36/50

EPDA: Example

M=(Q,%T,R, s@

where:

* Q={s, T},
o> ={a, b},
e['={a, b, S, C};
R={ sa—as,
sb — bs,
s — Cs,
aCsa — Cs,

hCsbh — Cs,
SCs —» T}

- F={1}

Sla, C

\

Question: abba e L;.(M)?

Ssabba |- Sasbba |- Sabsba
— SabCsba |- SaCsa
- SCs |-

Answer: YES

Note: L(M); = L(M), =L(M);, = {xy: X,y € ", y = reversal(x)}

37/50
Three Types of Acceptance: Equivalence

Theorem:

e L = L(My); for an EPDA M; & L = L(M,,),. for an EPDA M.,
e L=L(M,), for an EPDA M_ < L = L(M,,);, for an EPDA M,
e L = L(My); foran EFDA M < L = L(M,),_for an EPDA M,

Note: There exist these conversion:

EPDA M, that accept L
by final state and
empty pushdown

EPDA M_ that accept L
by empty pushdown

EPDA M; that accept L
by final state

38/50

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there isa PDA M’,
and L(M); = L(M’);.

Proof: See page 419 in [Meduna: Automata and Languages]
Illustration:

The family of The family of
languages accepted languages accepted
by EPDAS by PDASs

39/50

EPDAs and PDAs as Parsing Models for CFGs

Gist: An EPDA or a PDA can simulate the
construction of a derivation tree for a CFG

e Two basic approaches:
1) Top-Down Parsing ' 2) Bottom-Up Parsing

Input string \

Input string

From S towards
the input string

From the input

|
I
|
I
|
I
\ |
I
|
I
|
I -
! string towards S

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols
onto the pushdown:

Lo, [Ola] 1y, ‘foreveryan:

— — add sa — as to R;
Lox, [alOl Ly, |

2) M contains reduction rules that simulate the
application of a grammatical rule in reverse:

@‘ LY ‘foreveryA—>x6PinG:

ﬁ‘ ” ‘addxs—>AstoR;

3) M also contains the rule #5s — T that takes M to a
final state

41/50

EPDAs as Models of Bottom-Up Parsers 2/2

Bottom-up construction qf a derivation tree:

(@l
_—3

#5s > 1 e R
Rule: S— xBC Derivation tree:
#l (X,
Rule: C > 7

£
<
2
Q)
Bl

Py
- —C
X |

o
N
<<
-

£
<
Q)
<
n

X
<
.'.\l_

42/50

Algorithm: From CFG to EPDA

e Input: CFGG=(N, T, P, 9)
e Qutput: EPDAM=(Q, Z, T, R, s, #, F); L(G) = L(M);
e Method:
*Q:={s, T}
2 =T,
eI' =NUTuU{#};
e Construction of R:
e foreverya € ¥, add sa —» asto R;
o for every A > x € P, add xs > As to R;
e add #5s > T 1O R;

F={}

43/50

From CFG to EPDA: Example 1/2
«G=(N,T,P,S), where:
N={5}T={()}P={S>(5), 5S> ()}

Objective: An EPDA M such that L(G) = L(M);

M=(Q,Z%TI,R,s,#, F)where:
Q={s K Z2=T={()x T=NuUTOU{#H}={S, (,), #}

““eT “YeT S—>(S)eP S—>()eP

ugs ugs
R={s(—> (s, s)—>)s, (S)s—>Ss, ()s—>Ss, #Ss > 1}
shift rules reduction rules

F={}

44/50

From CFG to EPDA: Example 2/2
M=(Q,Z2TI,R,s,# F), where:

Q={s,hZ=T={()} T'={() S #} F={}
R={s(—>(s,s) —>)s, (S)s > Ss, ()s — Ss, #Ss —> 1 }

Question: (()) € L(M);? Rule: ()s = S

AN FIsiend <<>
Rule: s(— (s : Rule: s) -)s
FIAOLMDMD] ¢ + EAdsDI@I (())
Rule: s(— (s I Rule: (S) > S S
[Ienm ! cEel A
Rule: s) =)s ' Rule: #Ss — (())

FLIMDIGND] (()"Flnalstat‘e_ﬂg e
ANSWer:

45/50

PDASs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the
pushdown and reads the input symbol if both coincide:
|

L 1%, \a\@\a\ Yy ‘foreveryaez:

> 1 add asa — sto R;
Y, |

2) M contains expansion rules that simulate the
application of a grammatical rule:

ARO[Y7 JforeveryA—sa,..a, PinG,

add As > a,,...a;Sto R;
lag el Ly, | = reversal(@, ...a,)

46/50

PDASs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

T by o[l F.l

.abB
ClBfay: - T by T Tcl. k]
B | Chp-- Cml Derivation tree:
B — b,..b
[C] by N CH N
C—cy.C,
YV [Cr- i o]
Empty

pushdown

47/50

Algorithm: From CFG to PDA

e Input: CFGG=(N, T, P, 9)
e Qutput: PDAM=(Q, %, T, R, s, 5, F); L(G) = L(M),
e Method:

* Q:={s};
> =T,
e[=NUT;

 Construction of R:
e forevery a € ¥, add asa > sto R;
o forevery A —> x € P,add As —» ysto R,
where v = reversal(x);
F =0,

48/50

From CFG to PDA: Example 1/2

«G=(N,T,P,S), where:
N={S} T={()},P={S—>(5).,5—> ()}

Obijective: An PDA M such that L(G) = L(M),

M=(Q,Z%2TI,R,s, S, F)where:
Q={sk X=T={()} T=NUT={5()}

“eT “YeT S—>(S)eP S—>()eP
i 018 e
R={(s(—>s,)s)—>s Ss—>)S(s Ss—)(s}

poppmg rules expansmn rules

F=0

49/50

From CFG to PDA: Example 2/2
M=(Q,%2TI,R,s, S, F), where:

Q={},2=T={()}T={().S}LF=0
P={(s(—s,)s)—>s, Ss—)S(s, Ss—)(s}

Question: () € LM pue (e A

[SIOMND] s IIIII@IIIII((S‘)>
Rule: Ss —)S(s ' Rule:)s) > s N
NEIAEMMNM) mem A
TEemm el R
Rule: Ss —)(s R ﬂ A

Empty (())
pushdown | Answer: YES

DDhTAeLDD] /3

50/50

Models for Context-free Languages

Theorem: For every CFG G, there Is an PDA
M such that L(G) = L(M)..

Proof: See the previous algorithm.

Theorem: For every PDA M, there is a CFG
G such that L(M), = L(G).

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for

context-free languages are
1) Context-free grammars 2) Pushdown automata

	Part VII.Models for Context-Free Languages
	Context-Free Grammar (CFG)
	Context-Free Grammar: Definition
	Convention
	Derivation Step
	Sequence of Derivation Steps 1/2
	Sequence of Derivation Steps 2/2
	Generated Language
	Context-Free Language (CFL)
	Rule Tree
	Derivation Tree: Example
	Leftmost Derivation
	Leftmost Derivation: Example
	Rightmost Derivation
	Rightmost Derivation: Example
	Derivations: Summary
	Reduction of the Number of Derivations
	Introduction to Ambiguity
	Grammatical Ambiguity
	Pushdown Automata (PDA)
	Pushdown Automata: Definition
	Notes on PDA Rules
	Graphical Representation
	Graphical Representation: Example
	PDA Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language: Three Types
	PDA: Example
	Three Types of Acceptance: Equivalence
	Deterministic PDA (DPDA)
	PDAs are Stronger than DPDAs
	Extended PDA (EPDA)
	Move in EPDA
	EPDA: Example
	Three Types of Acceptance: Equivalence
	EPDAs and PDAs are Equivalent
	EPDAs and PDAs as Parsing Models for CFGs
	EPDAs as Models of Bottom-Up Parsers 1/2
	EPDAs as Models of Bottom-Up Parsers 2/2
	Algorithm: From CFG to EPDA
	From CFG to EPDA: Example 1/2
	From CFG to EPDA: Example 2/2
	PDAs as Models of Top-Down Parsers 1/2
	PDAs as Models of Top-Down Parsers 2/2
	Algorithm: From CFG to PDA
	From CFG to PDA: Example 1/2
	From CFG to PDA: Example 2/2
	Models for Context-free Languages

