
1/31

Part X.Part X.
NormalNormal Forms Forms andand
Properties of CProperties of CFLFLss



Chomsky Normal Form (CNF)
Definition: Let G = (N, T, P, S) be a CFG. 
G is in Chomsky normal form if every rule in
P has one of these forms
• A → BC, where A, B, C ∈ N;
• A → a, where A ∈ N, a ∈ T;
Example:
G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → CB, C → AS, S → AB, A → a, B → b}
is in Chomsky normal form.
Note: L(G) = {anbn: n ≥ 1}

2/31



Greibach Normal Form (GNF)
Definition: Let G = (N, T, P, S) be a CFG. 
G is in Greibach normal form if every rule in 
P is of this form

• A → ax, where A ∈ N, a ∈ T, x ∈ N*

Example:
G = (N, T, P, S), where N = {B, S}, T = {a, b},
P = {S → aSB, S → aB, B → b}
is in Greibach normal form.
Note: L(G) = {anbn: n ≥ 1}

3/31



Generative Power of Normal Forms
Theorem: For every CFG G, there is an 

equivalent grammar G’ in
Chomsky normal form.

Proof: See page 348 in [Meduna: Automata and Languages]

4/31

Theorem: For every CFG G, there is an 
equivalent grammar G’ in
Greibach normal form.

Proof: See page 376 in [Meduna: Automata and Languages]
Note: Main properties of CNF and GNF:
CNF: if S ⇒n w; w ∈ T* then n = 2|w| – 1
GNF: if S ⇒n w; w ∈ T* then n = |w|



General Parsing Methods
5/31

The family of 
LL languages

The family 
of CFLs

The family of 
LR languages

Illustration:

• General Parsing methods (GP) are applicable to 
all context-free languages (CFLs)

General Parsing
Methods

LL Methods LR Methods

• Note: The family of LR languages =
the family of a deterministic CFL



GP Based on Chomsky Normal Form
6/31

S[1, n]

a1 a2 a3 an…
A → a1 B → a2 C → a3

S[1, 1] S[2, 2] S[3, 3] S[n, n]

E → BC

F → AE

if S ∈ S[1, n] then 
S ⇒* a1 … an

…

…

Idea:

• Input string:

…S[1, 2] S[2, 3] S[n-1, n]

S[1, 3] … S[n-2, n]

A ∈ B ∈ C ∈

E ∈

F, G ∈
D → AB

D ∈

G → DC



Algorithm: GP Based on CNF
• Input: G = (N, T, P, S) in CNF, w = a1…an
•Output: YES if w ∈ L(G)   

NO if w ∉ L(G)

7/31

• Method:
• for each ai, i = 1, …, n do

S[i, i] := {A : A → ai ∈ P}
• Apply the following rule until no S[i, k] can

be changed:
if A → BC ∈ P, B ∈ S [i, j], C ∈ S [j+1, k], 
where 1 ≤ i ≤ j < k ≤ n then add A to S[i, k]

• if S ∈ S[1, n] then write (’YES’)
else write (’NO’)



GP Based on CNF: Example 1/5
8/31

G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

a a c b b

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}
A → a A → a S → c B → b B → b



GP Based on CNF: Example 2/5
9/31

G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅
? → AA ? → AS C → SB ? → BB

a a c b b



GP Based on CNF: Example 3/5
10/31

G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S → AC

S[1, 1] S[2, 2] S[3, 3] S={A} ={A} ={S} =

S[1, 2] S[2, 3] S[3, 4]=∅ =∅ ={

S[1, 3] S[2, 4] S=∅ ={S}

[4, 4] S{B} =

S[4, 5]C} =

[3, 5]= ∅

[5, 5]

∅

{B}

a a c b b



GP Based on CNF: Example 4/5
11/31

G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅

S[1, 3] S[2, 4] S[3, 5]=∅ ={S} = ∅

C → SB
S[1, 4] S[2, 5]=∅ ={C}

a a c b b



GP Based on CNF: Example 5/5
12/31

G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅

S[1, 3] S[2, 4] S[3, 5]=∅ ={S} = ∅

S → AC

S[1, 4] S[2, 5]=∅ ={C}

S [1, 5]={S} S ∈ S[1, 5] YES

a a c b b



• Let L be CFL. Then, there exists k ≥ 1 such that: 
if z ∈ L and |z| ≥ k then there exist u, v, w, x, y so
z = uvwxy and 
1) vx ≠ ε 2) |vwx| ≤ k 3) for each m ≥ 0, uvmwxmy ∈ L

Pumping Lemma for CFL
13/31

Example:
G = ({S, A}, {a, b, c}, {S → aAa, A → bAb, A → c}, S) 
generate L(G) = {abncbna : n ≥ 0},  so L(G) is CFL.
There is k = 5 such that 1), 2) and 3) holds:
• for z = abcba: z ∈ L(G) and |z| ≥ 5:

uvwxy uv0wx0y = ab0cb0a = aca ∈ L(G)
uv1wx1y = ab1cb1a = abcba ∈ L(G)

uv2wx2y = ab2cb2a = abbcbba ∈ L(G)...|vwx| = 3: 1 ≤ 3 ≤ 5
vx = bb ≠ ε

...• for z = abbcbba: z ∈ L(G) and |z| ≥ 5:



Pumping Lemma: Illustration
• L = any context-free language:

14/31

k
∈ Lz

k
z ∈ L nothing interesting

wu v
k

= zyx
≠ ε1) ≠ εor

≤ k2)
∈ L3)

∈ L
∈ L…

wu v yx
u w y

wu v yxv x



Pumping Lemma: Application
• Based on the pumping lemma for CFL, we often make a proof 
by contradiction to demonstrate that a language is not a CFL.

15/31

Assume that L is a CFL.

Consider the PL constant k and select z ∈ L, whose
length depends on k so |z| ≥ k is surely true.

For all decompositions of z into uvwxy: vx ≠ ε, |vwx| ≤ k, show that
there exists m ≥ 0 such that uvmwxmy ∉ L;
from the pumping lemma,   uvmwxmy ∈ L contradiction

false assumption Therefore,
L is not a CFL



Pumping Lemma: Example 1/2
16/31

Prove that L = {anbncn : n ≥ 1} is not CFL.
1) Assume that L is a CFL. Let k ≥ 1 be the pumping

lemma constant for L. 
2) Let z = akbkck: akbkck ∈ L, |z| = |akbkck| = 3k ≥ k
3) All decompositions of z into uvwxy; vx ≠ ε, |vwx| ≤ k:

aaaaa…aabb…bb…bbcc…ccccc
k k k

a) vwx ∈ {a}*{b}*,
vx ≠ ε

b) vwx ∈ {b}*{c}*,
vx ≠ ε



u vwx y

Pumping Lemma: Example 2/2
a) vwx ∈ {a}*{b}*:

• uv0wx0y = uwy =

a a…aabb …b bcc …cc
k  k k

• Pumping lemma: 
uv0wx0y ∈ L

u w y
a a …aabb…b bcc …cc ∉ L

Note: uwy contains k cs, but fewer than k as or bs. 

u vwx y

b) vwx ∈ {b}*{c}*:

• uv0wx0y = uwy =

aa…aab b …bbcc …c c
k  k k

ywu
aa …aab b…bbcc …c c ∉ L

• Pumping lemma: 
uv0wx0y ∈ L

17/31

All these decompositions lead to a contradiction!
4) Therefore, L is not a CFL.

Note: uwy contains k as, but fewer than k bs or cs. 



Closure properties of CFL

The family of CF 
languages

Illustration:
• The family of CF languages is closed under union.

It means:

Definition: The family of CFLs is closed 
under an operation o if the language resulting
from the application of o to any CFLs is a 
CFL as well.

L1 L2∪ = L3

18/31



• Input: Grammars G1 = (N1, T, P1, S1) and
G2 = (N2, T, P2, S2);

• Output: Grammar Gu = (N, T, P, S) such that
L(Gu) = L(G1) ∪ L(G2)

Algorithm: CFG for Union
19/31

• Method:
• let S ∉ N1∪ N2, let  N1∩ N2 = ∅:

• N := {S} ∪ N1∪ N2;
• P := {S → S1, S → S2} ∪ P1∪ P2;



• Input: G1 = (N1, T, P1, S1) and
G2 = (N2, T, P2, S2);

• Output: Gc = (N, T, P, S) such that
L(Gc) = L(G1) . L(G2)

Algorithm: CFG for Concatenation
20/31

• Method:
• let S ∉ N1∪ N2, let  N1∩ N2 = ∅:

• N := {S} ∪ N1∪ N2;
• P := {S → S1S2} ∪ P1∪ P2;



• Input: G = (N1, T, P1, S1)
• Output: Gi = (N, T, P, S) such that L(Gi) = L(G)*

Algorithm: CFG for Iteration
21/31

• Method:
• let S ∉ N1:

• N := {S} ∪ N1;
• P := {S → S1S, S → ε} ∪ P1;



Proof:

Theorem: The family of CFLs is closed under
union, concatenation, iteration.

Closure properties

• Let L1, L2 be two CFLs.
• Then, there exist two CFGs G1, G2 such that

L(G1) = L1, L(G2) = L2;
• Construct grammars

• Gu such that L(Gu) = L(G1) ∪ L(G2)
• Gc such that L(Gc) = L(G2) . L(G2)
• Gi such that L(Gi) = L(G1)*

by using the previous three algorithms
• Every CFG denotes CFL, so
• L1 L2, L1∪ L2, L1

* are CFLs.

22/31



Intersection: Not Closed
23/31

Proof:

Theorem: The family of CFLs is not closed 
under intersection.

• The intersection of some CFLs is not a CFL:

• L1 = {ambncn: m, n ≥ 1} is a CFL
• L2 = {anbncm: m, n ≥ 1} is a CFL
• L1 ∩ L2 = {anbncn : n ≥ 1} is not a CFL 
(proof based on the pumping lemma) QED



Complement: Not Closed
24/31

Proof by contradiction:

Theorem: The family of CFLs is not closed 
under complement.

• Assume that family of CFLs is closed under
complement.

• L1 = {ambncn: m, n ≥ 1} is a CFL
• L2 = {anbncm: m, n ≥ 1} is a CFL
• L1, L2 are CFLs
• L1 ∪ L2 is a CFL (the family of CFLs is closed under union)
• L1 ∪ L2 is a CFL (assumption)
• DeMorgan’s law implies L1 ∩ L2 = {anbncn: n ≥ 1} is a CFL
• {anbncn: n ≥ 1} is not a CFL ⇒ Contradiction



Main Decidable Problems
25/31

1. Membership problem:
• Instance: CFG G, w ∈ Σ*;Question: w ∈ L(G)?

2. Emptiness problem:
• Instance: CFG G; Question: L(G) = ∅?

3. Finiteness problem:
• Instance: CFG G; Question: Is L(G) finite?



Algorithm: Membership
• Input: CFG G = (N, T, P, S) in Chomsky 

normal form; w ∈ T+

• Output: YES if w ∈ L(G)   
NO if w ∉ L(G)

• Method I:
• if S ⇒n w, where 1 ≤ n ≤ 2|w| – 1, then write (’YES’)

else write (’NO’)
• Method II:
• See: The general parsing method based on CNF

The membership problem for CFLs is decidable
Summary:

26/31



Definition: Let G = (N, T, P, S) be a CFG. A symbol 
X ∈ N ∪ T is accessible if there exist u, v ∈ Σ* such 
that S ⇒* uXv; otherwise, X is inaccessible.

Example:
Note: Each inaccessible symbol can be removed from CFG

Accessible Symbols
Gist: Symbol X is accessible if S ⇒* …X…, 

where S is the start nonterminal.

G = ({S, A, B}, {a, b}, {S → SB, S → a, A → ab, B → aB }, S)

27/31

S - accessible: for u = ε, v = ε: S ⇒0 S
A - inaccessible: there is no u, v ∈ Σ* such that S ⇒* uAv
B - accessible: for u = S, v = ε: S ⇒1 SB
a - accessible: for u = ε, v = ε: S ⇒1 a
b - inaccessible: there is no u, v ∈ Σ* such that S ⇒* ubv



Definition: Let G = (N, T, P, S) be a CFG. A symbol 
X ∈ N ∪ T is terminating if there exists w ∈ T* such 
that X ⇒* w; otherwise, X is nonterminating

Example:

Note: Each nonterminating symbol can be removed 
from any CFG.

Terminating Symbols
Gist: Symbol X is terminating if X derives a terminal string. 

G = ({S, A, B}, {a, b}, {S → SB, S → a, A → ab, B → aB }, S)

28/31

Symbol S - terminating: for w = a: S ⇒1 a
Symbol A - terminating: for w = ab: A ⇒1 ab
Symbol B - nonterminating: there is no w ∈ T* such that B ⇒* w
Symbol a - terminating: for w = a : a ⇒0 a
Symbol b - terminating: for w = b : b ⇒0 b



Algorithm: Emptiness
• Input: CFG G = (N, T, P, S);
• Output: YES if L(G) = ∅

NO if L(G) ≠ ∅

29/31

• Method:
• if S is nonterminating then write (’YES’)

else write (’NO’)

Summary:
The emptiness problem for CFLs is decidable



Algorithm: Finiteness
• Input: CFG G = (N, T, P, S);
• Output: YES if L(G) is finite    

NO if L(G) is infinite
• Method:
• Let k = 2card(N)

• if there exist z ∈ L(M), k ≤ |z| < 2k then write (’NO’)
else write (’YES’)

The finiteness problem for CFLs is decidable
Summary:

30/31



Main Undecidable Problems
31/31

1. Equivalence problem:
• Instance: CFGs G1, G2;Question: L(G1) = L(G2)?

2. Ambiguity problem:
• Instance: G; Question: Is G ambiguous?

Note:
It is mathematically proved that there 
exists no algorithm, which solve these 
problems in finite time.


	Part X.Normal Forms and Properties of CFLs
	Chomsky Normal Form (CNF)
	Greibach Normal Form (GNF)
	Generative Power of Normal Forms
	General Parsing Methods
	GP Based on Chomsky Normal Form
	Algorithm: GP Based on CNF
	GP Based on CNF: Example 1/5
	GP Based on CNF: Example 2/5
	GP Based on CNF: Example 3/5
	GP Based on CNF: Example 4/5
	GP Based on CNF: Example 5/5
	Pumping Lemma for CFL
	Pumping Lemma: Illustration
	Pumping Lemma: Application
	Pumping Lemma: Example 1/2
	Pumping Lemma: Example 2/2
	Closure properties of CFL
	Algorithm: CFG for Union
	Algorithm: CFG for Concatenation
	Algorithm: CFG for Iteration
	Closure properties
	Intersection: Not Closed
	Complement: Not Closed
	Main Decidable Problems
	Algorithm: Membership
	Accessible Symbols
	Terminating Symbols
	Algorithm: Emptiness
	Algorithm: Finiteness
	Main Undecidable Problems

