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Part X.Part X.
NormalNormal Forms Forms andand
Properties of CProperties of CFLFLss



Chomsky Normal Form (CNF)
Definition: Let G = (N, T, P, S) be a CFG. 
G is in Chomsky normal form if every rule in
P has one of these forms
• A → BC, where A, B, C ∈ N;
• A → a, where A ∈ N, a ∈ T;
Example:
G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → CB, C → AS, S → AB, A → a, B → b}
is in Chomsky normal form.
Note: L(G) = {anbn: n ≥ 1}
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Greibach Normal Form (GNF)
Definition: Let G = (N, T, P, S) be a CFG. 
G is in Greibach normal form if every rule in 
P is of this form

• A → ax, where A ∈ N, a ∈ T, x ∈ N*

Example:
G = (N, T, P, S), where N = {B, S}, T = {a, b},
P = {S → aSB, S → aB, B → b}
is in Greibach normal form.
Note: L(G) = {anbn: n ≥ 1}
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Generative Power of Normal Forms
Theorem: For every CFG G, there is an 

equivalent grammar G’ in
Chomsky normal form.

Proof: See page 348 in [Meduna: Automata and Languages]
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Theorem: For every CFG G, there is an 
equivalent grammar G’ in
Greibach normal form.

Proof: See page 376 in [Meduna: Automata and Languages]
Note: Main properties of CNF and GNF:
CNF: if S ⇒n w; w ∈ T* then n = 2|w| – 1
GNF: if S ⇒n w; w ∈ T* then n = |w|



General Parsing Methods
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The family of 
LL languages

The family 
of CFLs

The family of 
LR languages

Illustration:

• General Parsing methods (GP) are applicable to 
all context-free languages (CFLs)

General Parsing
Methods

LL Methods LR Methods

• Note: The family of LR languages =
the family of a deterministic CFL



GP Based on Chomsky Normal Form
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S[1, n]

a1 a2 a3 an…
A → a1 B → a2 C → a3

S[1, 1] S[2, 2] S[3, 3] S[n, n]

E → BC

F → AE

if S ∈ S[1, n] then 
S ⇒* a1 … an

…

…

Idea:

• Input string:

…S[1, 2] S[2, 3] S[n-1, n]

S[1, 3] … S[n-2, n]

A ∈ B ∈ C ∈

E ∈

F, G ∈
D → AB

D ∈

G → DC



Algorithm: GP Based on CNF
• Input: G = (N, T, P, S) in CNF, w = a1…an
•Output: YES if w ∈ L(G)   

NO if w ∉ L(G)
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• Method:
• for each ai, i = 1, …, n do

S[i, i] := {A : A → ai ∈ P}
• Apply the following rule until no S[i, k] can

be changed:
if A → BC ∈ P, B ∈ S [i, j], C ∈ S [j+1, k], 
where 1 ≤ i ≤ j < k ≤ n then add A to S[i, k]

• if S ∈ S[1, n] then write (’YES’)
else write (’NO’)



GP Based on CNF: Example 1/5
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G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

a a c b b

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}
A → a A → a S → c B → b B → b



GP Based on CNF: Example 2/5
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G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅
? → AA ? → AS C → SB ? → BB

a a c b b



GP Based on CNF: Example 3/5
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G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S → AC

S[1, 1] S[2, 2] S[3, 3] S={A} ={A} ={S} =

S[1, 2] S[2, 3] S[3, 4]=∅ =∅ ={

S[1, 3] S[2, 4] S=∅ ={S}

[4, 4] S{B} =

S[4, 5]C} =

[3, 5]= ∅

[5, 5]

∅

{B}

a a c b b



GP Based on CNF: Example 4/5
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G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅

S[1, 3] S[2, 4] S[3, 5]=∅ ={S} = ∅

C → SB
S[1, 4] S[2, 5]=∅ ={C}

a a c b b



GP Based on CNF: Example 5/5
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G = (N, T, P, S), where N = {A, B, C, S}, T = {a, b},
P = {S → AC, C → SB, A → a, B → b, S → c}
Question: aacbb ∈ L(G)?

S[1, 1] S[2, 2] S[3, 3] S[4, 4] S[5, 5]={A} ={A} ={S} ={B} ={B}

S[1, 2] S[2, 3] S[3, 4] S[4, 5]=∅ =∅ ={C} =∅

S[1, 3] S[2, 4] S[3, 5]=∅ ={S} = ∅

S → AC

S[1, 4] S[2, 5]=∅ ={C}

S [1, 5]={S} S ∈ S[1, 5] YES

a a c b b



• Let L be CFL. Then, there exists k ≥ 1 such that: 
if z ∈ L and |z| ≥ k then there exist u, v, w, x, y so
z = uvwxy and 
1) vx ≠ ε 2) |vwx| ≤ k 3) for each m ≥ 0, uvmwxmy ∈ L

Pumping Lemma for CFL
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Example:
G = ({S, A}, {a, b, c}, {S → aAa, A → bAb, A → c}, S) 
generate L(G) = {abncbna : n ≥ 0},  so L(G) is CFL.
There is k = 5 such that 1), 2) and 3) holds:
• for z = abcba: z ∈ L(G) and |z| ≥ 5:

uvwxy uv0wx0y = ab0cb0a = aca ∈ L(G)
uv1wx1y = ab1cb1a = abcba ∈ L(G)

uv2wx2y = ab2cb2a = abbcbba ∈ L(G)...|vwx| = 3: 1 ≤ 3 ≤ 5
vx = bb ≠ ε

...• for z = abbcbba: z ∈ L(G) and |z| ≥ 5:



Pumping Lemma: Illustration
• L = any context-free language:
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k
∈ Lz

k
z ∈ L nothing interesting

wu v
k

= zyx
≠ ε1) ≠ εor

≤ k2)
∈ L3)

∈ L
∈ L…

wu v yx
u w y

wu v yxv x



Pumping Lemma: Application
• Based on the pumping lemma for CFL, we often make a proof 
by contradiction to demonstrate that a language is not a CFL.
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Assume that L is a CFL.

Consider the PL constant k and select z ∈ L, whose
length depends on k so |z| ≥ k is surely true.

For all decompositions of z into uvwxy: vx ≠ ε, |vwx| ≤ k, show that
there exists m ≥ 0 such that uvmwxmy ∉ L;
from the pumping lemma,   uvmwxmy ∈ L contradiction

false assumption Therefore,
L is not a CFL



Pumping Lemma: Example 1/2
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Prove that L = {anbncn : n ≥ 1} is not CFL.
1) Assume that L is a CFL. Let k ≥ 1 be the pumping

lemma constant for L. 
2) Let z = akbkck: akbkck ∈ L, |z| = |akbkck| = 3k ≥ k
3) All decompositions of z into uvwxy; vx ≠ ε, |vwx| ≤ k:

aaaaa…aabb…bb…bbcc…ccccc
k k k

a) vwx ∈ {a}*{b}*,
vx ≠ ε

b) vwx ∈ {b}*{c}*,
vx ≠ ε



u vwx y

Pumping Lemma: Example 2/2
a) vwx ∈ {a}*{b}*:

• uv0wx0y = uwy =

a a…aabb …b bcc …cc
k  k k

• Pumping lemma: 
uv0wx0y ∈ L

u w y
a a …aabb…b bcc …cc ∉ L

Note: uwy contains k cs, but fewer than k as or bs. 

u vwx y

b) vwx ∈ {b}*{c}*:

• uv0wx0y = uwy =

aa…aab b …bbcc …c c
k  k k

ywu
aa …aab b…bbcc …c c ∉ L

• Pumping lemma: 
uv0wx0y ∈ L
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All these decompositions lead to a contradiction!
4) Therefore, L is not a CFL.

Note: uwy contains k as, but fewer than k bs or cs. 



Closure properties of CFL

The family of CF 
languages

Illustration:
• The family of CF languages is closed under union.

It means:

Definition: The family of CFLs is closed 
under an operation o if the language resulting
from the application of o to any CFLs is a 
CFL as well.

L1 L2∪ = L3
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• Input: Grammars G1 = (N1, T, P1, S1) and
G2 = (N2, T, P2, S2);

• Output: Grammar Gu = (N, T, P, S) such that
L(Gu) = L(G1) ∪ L(G2)

Algorithm: CFG for Union
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• Method:
• let S ∉ N1∪ N2, let  N1∩ N2 = ∅:

• N := {S} ∪ N1∪ N2;
• P := {S → S1, S → S2} ∪ P1∪ P2;



• Input: G1 = (N1, T, P1, S1) and
G2 = (N2, T, P2, S2);

• Output: Gc = (N, T, P, S) such that
L(Gc) = L(G1) . L(G2)

Algorithm: CFG for Concatenation
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• Method:
• let S ∉ N1∪ N2, let  N1∩ N2 = ∅:

• N := {S} ∪ N1∪ N2;
• P := {S → S1S2} ∪ P1∪ P2;



• Input: G = (N1, T, P1, S1)
• Output: Gi = (N, T, P, S) such that L(Gi) = L(G)*

Algorithm: CFG for Iteration
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• Method:
• let S ∉ N1:

• N := {S} ∪ N1;
• P := {S → S1S, S → ε} ∪ P1;



Proof:

Theorem: The family of CFLs is closed under
union, concatenation, iteration.

Closure properties

• Let L1, L2 be two CFLs.
• Then, there exist two CFGs G1, G2 such that

L(G1) = L1, L(G2) = L2;
• Construct grammars

• Gu such that L(Gu) = L(G1) ∪ L(G2)
• Gc such that L(Gc) = L(G2) . L(G2)
• Gi such that L(Gi) = L(G1)*

by using the previous three algorithms
• Every CFG denotes CFL, so
• L1 L2, L1∪ L2, L1

* are CFLs.

22/31



Intersection: Not Closed
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Proof:

Theorem: The family of CFLs is not closed 
under intersection.

• The intersection of some CFLs is not a CFL:

• L1 = {ambncn: m, n ≥ 1} is a CFL
• L2 = {anbncm: m, n ≥ 1} is a CFL
• L1 ∩ L2 = {anbncn : n ≥ 1} is not a CFL 
(proof based on the pumping lemma) QED



Complement: Not Closed
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Proof by contradiction:

Theorem: The family of CFLs is not closed 
under complement.

• Assume that family of CFLs is closed under
complement.

• L1 = {ambncn: m, n ≥ 1} is a CFL
• L2 = {anbncm: m, n ≥ 1} is a CFL
• L1, L2 are CFLs
• L1 ∪ L2 is a CFL (the family of CFLs is closed under union)
• L1 ∪ L2 is a CFL (assumption)
• DeMorgan’s law implies L1 ∩ L2 = {anbncn: n ≥ 1} is a CFL
• {anbncn: n ≥ 1} is not a CFL ⇒ Contradiction



Main Decidable Problems
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1. Membership problem:
• Instance: CFG G, w ∈ Σ*;Question: w ∈ L(G)?

2. Emptiness problem:
• Instance: CFG G; Question: L(G) = ∅?

3. Finiteness problem:
• Instance: CFG G; Question: Is L(G) finite?



Algorithm: Membership
• Input: CFG G = (N, T, P, S) in Chomsky 

normal form; w ∈ T+

• Output: YES if w ∈ L(G)   
NO if w ∉ L(G)

• Method I:
• if S ⇒n w, where 1 ≤ n ≤ 2|w| – 1, then write (’YES’)

else write (’NO’)
• Method II:
• See: The general parsing method based on CNF

The membership problem for CFLs is decidable
Summary:
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Definition: Let G = (N, T, P, S) be a CFG. A symbol 
X ∈ N ∪ T is accessible if there exist u, v ∈ Σ* such 
that S ⇒* uXv; otherwise, X is inaccessible.

Example:
Note: Each inaccessible symbol can be removed from CFG

Accessible Symbols
Gist: Symbol X is accessible if S ⇒* …X…, 

where S is the start nonterminal.

G = ({S, A, B}, {a, b}, {S → SB, S → a, A → ab, B → aB }, S)
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S - accessible: for u = ε, v = ε: S ⇒0 S
A - inaccessible: there is no u, v ∈ Σ* such that S ⇒* uAv
B - accessible: for u = S, v = ε: S ⇒1 SB
a - accessible: for u = ε, v = ε: S ⇒1 a
b - inaccessible: there is no u, v ∈ Σ* such that S ⇒* ubv



Definition: Let G = (N, T, P, S) be a CFG. A symbol 
X ∈ N ∪ T is terminating if there exists w ∈ T* such 
that X ⇒* w; otherwise, X is nonterminating

Example:

Note: Each nonterminating symbol can be removed 
from any CFG.

Terminating Symbols
Gist: Symbol X is terminating if X derives a terminal string. 

G = ({S, A, B}, {a, b}, {S → SB, S → a, A → ab, B → aB }, S)
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Symbol S - terminating: for w = a: S ⇒1 a
Symbol A - terminating: for w = ab: A ⇒1 ab
Symbol B - nonterminating: there is no w ∈ T* such that B ⇒* w
Symbol a - terminating: for w = a : a ⇒0 a
Symbol b - terminating: for w = b : b ⇒0 b



Algorithm: Emptiness
• Input: CFG G = (N, T, P, S);
• Output: YES if L(G) = ∅

NO if L(G) ≠ ∅
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• Method:
• if S is nonterminating then write (’YES’)

else write (’NO’)

Summary:
The emptiness problem for CFLs is decidable



Algorithm: Finiteness
• Input: CFG G = (N, T, P, S);
• Output: YES if L(G) is finite    

NO if L(G) is infinite
• Method:
• Let k = 2card(N)

• if there exist z ∈ L(M), k ≤ |z| < 2k then write (’NO’)
else write (’YES’)

The finiteness problem for CFLs is decidable
Summary:
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Main Undecidable Problems
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1. Equivalence problem:
• Instance: CFGs G1, G2;Question: L(G1) = L(G2)?

2. Ambiguity problem:
• Instance: G; Question: Is G ambiguous?

Note:
It is mathematically proved that there 
exists no algorithm, which solve these 
problems in finite time.
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