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Part XIII.
Beyond the Context-Free
Languages



2145

Turing Machines (TM)

Gist: The most powerful computational model.

Finite
State
Control

Tape: | Read-write head

ala,| .. &l - |a,[A|A|A

Note: A = blank
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Turing Machines: Definition
Definition: A Turing machine (TM) Is a 6-tuple
M=(Q, 2, TI,R,s, F), where
 Q Is a finite set of states
3 IS an input alphabet
e ["Isatape alphabet;Ac ;X T
* R Is a finite set of rules of the form: pa — gbt,

wherep,ge Q,a,bel,te{S R, L}
e s € Q Is the start state

 F — Q Is aset of final states

Mathematical note:
e Mathematically, Risarelation fromQ xI'to Q x I'x {S, R, L}

e Instead of (pa, qbt), we write pa — bt
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Interpretation of Rules

e pa — qbS: If the current state and tape symbol are p and a,
respectively, then replace a with b, change p to g, and keep the
head Stationary.

@O = ™ O

°pa— qu. If the current state and tape symbol are p and a,
respectively, then replace a with b, shift the head a square Right,
and change p to q.

O T+ ™ L O

°pa — qu. If the current state and tape symbol are p and a,
respectively, then replace a with b, shift the head a square Left,
and change p to q

@O = ™ O = mr
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Graphical Representation

@) represents g € Q
—>@ represents the initial state s € Q

represents a final state f € F

@22 denotes pa— gbS € R
@-2LR (@) denotes pa— gbR e R

@-22-L (@) denotes pa— qgbL € R
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Turing Machine: Example 1/2

M=(Q,2,T,R,s, F)

where: A S
.Q:{S1 3,q,f}, —

e ¥ ={a, b}, @
o ['={a, b, A};

e R ={sA — fAS, ala, R b/b, R

sa — paR, b/IA, S| Ja/A, S
sb — pbR,

gg : ggz ala, B b/b, R

DA — gAL, ‘@’ AJIA, L

ga — fAS,

qb — fAS}

‘F={1}
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Turing Machine: Example 2/2

Note: M deletes a symbol
T™ M: before the first occurrence of A:

° A/A,S I Hlustration:
ﬂ (O] P
ala, R b/b, R =3

b/A, S a/A,S‘ 9‘ lalblAlAL ..

ala, B b, R ‘ 9 ‘ |a|b|X|A|
AA L ‘ 9 ‘ [albIAJAL ...

L O | e
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TM Configuration

Gist: Instantaneous description of TM

What does a configuration describes?
1) Current state 2) Tape Contents 3) Position of the head

[ @] 2[@]

4
Lal|a2| | a a,+]| a Al A] ... La1|a2| .. |a] Al Al A] A] ...

y X y
Configuration xpy

Definition: LetM=(Q, Z,T',R, s, F) bea TM.
A configuration of M Is a string y = xpy, where

Xel,peQ,yel (I'-{A}) U {A}.
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Stationary Move

Definition: Let y, 4’ be two configurations of M.
Then, M makes a stationary move from y to ¢’
according to , writtenas y |- %’ [ ] or,
simply, y |- If

y = Xpay, y’ =Xgbyand :pa— gbhS e R
Illustration:

Rule: pa — (bS

@l #D a

Conf|gurat|on New Conflgu ratlon
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Right Move

Definition: Let y, x’ be two configurations of M.
Then, M makes a right move from y to ¥’
accordmg to , written as y |—RRX | ] or simply,

— If xa al-ab
% =R % 85) p%bqy,pyltgqor

(2)x = XbgA, Y—S

‘ @\ vRuIe pa—>qu v
I by v, |
IbI L.y, |

L . IaI
or Conflguratlon “New Conflgu ration

‘ @\ yRule: pa — gbR @
X, lalAalAl ... I:ﬁleA_.

[ I 160)[al [ TxT ]b]

> 4 > 4

Configuration New Configuration

-
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eft Move

Definition: Let y, v’ be two configurations of M.
Then, M makes a left move from y to ¢ accordlngl

to ,writtenasy |- %’ [ ]or, simply, ¥ [- ¥’ If
(1)X xcpay, x’ = xgchy,y#eorb=A, :pal|- queRor
Z)X-xcpa v’ =Xqc, :pal- qAL e R

vRuIe pa—> bL

C X |b| |
L X, Iclélal I IchI J
r

Conﬂguratlon New Configuration

vRule: pa—>qAL v
caAA X, NClAJAIAL ...
IcI x|

Conflguratlon New Caﬁfigu ration

O
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Move

Definition: Let y, 4’ be two configurations of M.
Then, M makes a move from y to ’ according to
arule ,writtenasy |-y’ [ ]or, simply, y |-y’ If
v |- %’ [ ]forsome X € {S, R, L}.
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Sequence of Moves 1/2
Gist: Several consecutive computational steps
Definition: Let y be a configuration. M makes
zero moves from y to ; in symbols,

x |=° % [e] or, simply, x [-° x
Definition: Let y,, %4, ---» X, D€ @ sequence of
configurations,n>1,and y;; |-y [r:], I, € R,
forall1=1, ..., n; that is,

Xo I=xa [Nl =%z [ral - =2 [Fl
hen, M makes n moves from y, to v,
Xo I=" %n [F1-. Fpl OF, simply, %o |=" %,
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Sequence of Moves 2/2

If %o |-" %, [p] fOr some n > 1, then
Yo =" xnlplor, simply, %, |- %,

If %o |-" %, [p] fOor some n > 0, then
Yo |= %alplor, simply, xo |- x,

Example: Consider
apbc [-agac [1: pb — gaS], and
agac |- acrc [2: ga — rcR].
Then, apbc |-2 acrc [1 2],
apbc |-+ acrc [1 2],
apbc |-" acrc [1 2]

0
0




15/45

TM as a Language Acceptor

Gist: M accepts w by a sequence of moves
from s to a final state.

Definition: LetM=(Q, X, T, R, s, F) be a TM.

The language accepted by M, L(M), Is defined as:

L(IM)={w:w e X", sw |- xfy;x,yeI'",fe F} U
{e:sA |- xfy;x,y eI, f e F}

lllustration:
e FOrw#g¢g:

‘ S, I?:w: IMAL-#‘ ® ‘I X Ivivi JAIAL...

e Forw=-c¢:

| © - #‘ ©® ‘I T [ATAT.
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TM as an Acceptor: Example
T™M M: ala, R ala, L

sabba |- Ag,abb |- Aag,bb |- Aabg,b |- Aabbq,A |- Aabg,b
— Aaq,b |- Ag,ab |- g;Aab |- Asab |- AAg,b |- AAg,b
— AADQ A |- AAQ,D |- AQLA |- SA |- A

Summary: abba e L(M)
Note: L(M) = {a"b": n > 0}
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TM as a Computational Model

Definition: LetM = (Q, %, I', R, s, F) be a TM;
n-place function ¢ Is computed by M provided that
SAX,AX,...AX, |-~ TA with f e Fifandonly if

O(Xyy Xoyenny X)) =
Illustration:

O e e A
. B
L O DT [0k Xoreos %) = ¥
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TM as a Computational Model: Example
TM M:

A/A,A/l,RA/A, 1/A, A/A, @
1/' 1/' 1/'

SA11A11 |- Ag,11 A1l |- Alg,1A11 |-Al1q,All |-Al11q,11
~A1111q,1 |-A111110,A |-A1111q.1 |-Al11q,1
— A11q,11 |- Alq,111 |- AQ,1111 |- g,A1111

— fA1111

Summary: ¢(11,11) =1111

Note: ¢(X;, X,) = X; + X,, where
e X, = 12 represents a natural number a
* X, = 1° represents a natural number b




19/45

Deterministic Turing Machine (DTM)

Gist: Deterministic TM makes no more than
one move from any configuration.

Definition: LetM=(Q, X, I', R, s, F) be a TM.
M Is a deterministic TM If for each rule pa —
gbt € R 1t holds that R — {pa — gbt} contains
no rule with the left-hand side equal to pa.

[heorem: For every TM M, there Is an equivalent
DTM M.

Proof: See page 634 in [Meduna: Automata and Languages]
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k-Tape Turing Machine

Gist: Turing machine with k tapes

Illustration: — v
L x, lad v, |... Tapel

| | ' | |
L X0 ] v, |... Tape?2
L x. lad v, |... Tapek

Theorem: For every k-tape TM M, there Is an
equivalent TM M.

Proof: See page 662 in [Meduna: Automata and Languages]
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k-Head Turing Machine

Gist: Turing machine with k heads
Illustration:

®

lHead 1 lHead 2 vHead k

Xo lad X I X, ... .. g X, ..

Theorem: For every k-head TM M, there is an
equivalent TM M.

Proof: See page 667 in [Meduna: Automata and Languages]
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TM with Two-way Infinite Tapes

Gist: Turing machine with tape infinite both
to the right and to the left

lHlustration:

el X lad v, 1.

Theorem: For every TM with two-way Infinite
tapes M, there is an equivalent TM M.

Proof: See page 673 in [Meduna: Automata and Languages]
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Description of a Turing Machine

Gist: Turing machine representation using
a string over {0, 1}

e Assume that TM M has the form M = (Q, Z, I', R, q,, {9,}),
where Q ={q,, d;, ..., 0.}, [ ={a,, a,, ..., a,} sothata,= A
e Let & is the mapping from (QuU T U {S, L, R}P to {0, 1}*

defined as: 5(S) = 01, 8(L) = 001, 8(R) =
0(Q;) = foralli=0... m,
o(a) = foralli=0...n

* For every r: pa — gbt € R we define

| 8() = 58(p)5(2)8(q)5()3() |
eletR={r,r,...,r .} Then

| 5(M) = 1118(1.)8(")...8(")" is the description of TM M |
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Description of TM: Example

M=(Q, % I,R,q, {d,}), where

Q={0n 0.} Z=1{a, a1 ' ={A, a;, a,};
R={1:qpa; > gud,R, 2I gy, > o34 R, 3: A —> q,AS}
Task: Decription of M, 8(M).

6(S) =01, 8(L) =001, 8(R) =

6(d,) =01, 8(qy) = ’

6(A) = 01, 6(a;) = 001, 6(ay) =
o(M) 6(1)o(2)o(2)

6(00)0(a1)d(0p)o(a,)o(R)
6(00)8(a,)d(0p)o(a,)o(R)
6(00)5(A)5(01)8(A)3(S)
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Universal Turing Machine
Gist: Universal TM can simulate every DTM
[llustration:

Universal
TM U l

‘ Description of M, (M) ‘ Input string w ‘ A ‘

Note: Universal TM U reads the description of TM M,
and the input string w, and then simulates the moves
that M make with w.
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Unrestricted Grammar: Definition

Gist: Generalization of CFG

Definition: An unrestricted grammar (URG) Is a

quadruple G = (N, T, P, S), where

* N Is an alphabet of nonterminals

T Is an alphabet of terminals, NN T =&

P Is a finite set of rules of the form x — v,
wherex e (NUT) " N(NUT),ye (NUT)

* S € N Is the start nonterminal

Mathematical Note on Rules:
o Strictly mathematically, P is a finite relation from

(NUT)N(NUT) " to(NUT)”
e Instead of (x,y) € P, wewritex >y € P
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Derivation Step

Gist: A change of a string by a rule.

Definition: Let G=(N, T, P, S) be an URG. Let
u,ve (NuUT) and :x—vy e P.Then, uxv
directly derives uyv according to in G, written
as uxv = uyv [ ] or, simply, uxv = uyv.

Note: =", =*, =* and L(G) are defined by analogy with
the corresponding definitions in terms of CFGs.




28/45

Unrestricted Grammar: Example

G=(N,T,P,S),where N={S, A, B}, T={a}

P={1.S— ASB, 'S > a,
: Aa — aaA, :AB —> ¢ _}
S=a [/]

S=ASB[l]= AaB [?] = aaAB [?] = aa[4]

S=ASB[1]=AASBB[]l] = AAaBB [’] =
AaaABB [3] = aaAaABB [3] =
aaaaAABB [3] = aaaaAB [4] = aaaa [4]

Note: L(G) = {a2": n > 0}
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Recursively Enumerable Languages

Definition: Let L be a language. L Is a
resurcively enumerable language If there
exists an Turing machine M that L = L(M).

Theorem: For every URG G, thereisan TM M
such that L(G) = L(M).

Proof: See page 714 in [Meduna; Automata and Languages’

Theorem: For every TM M, there Is an URG G
such that L(M) = L(G).

Proof: See page 715 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for recursively
enumerable languages are

1) Unrestricted grammars 2) Turing Machines
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Context-Sensitive Grammar
Gist: Restriction of URG
Definition: Let G=(N, T, P, S) be an
unrestricted grammar. G Is a context-sensitive (or
length-increasing) grammar (CSG) If every rule
X =y € P satisfies |x| < |yl.

Note: =, =", =%, =* and L(G) are defined by analogy
with the definitions of the corresponding notions on URGs.
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Linear Bounded Automaton
Gist: A Turing machine with a Tape Bounded
by the Length of the Input String.

Finite
State
Control
Tape: 1Read-write head
yla| .. ai A | A

M
IMOVES
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Linear Bounded Automaton: Definition

Gist: With w on its tape, M’s tape Is
restricted to |w| squares.

Definition: A linear bounded automaton (LBA)
Is a TM that cannot extend its tape by any rule.

Accepted language: Illustration

(O e ™ [0 e

%I‘he same length. ﬁ'
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Context-sensitive Languages

Definition: Let L be a language. L Is a
context-sensitive If there exists a
context-sensitive grammar G that L = L(G).

Theorem: For every CSG G, there Isan LBA M
such that L(G) = L(M).

Proof: See page 732 in [Meduna; Automata and Languages’

Theorem: For every LBA M, there i1s an CSG G
such that L(M) = L(G).

Proof: See page 734 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for
context-sensitive languages are
1) Context-sensitive grammars

2) Linear bounded automata
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Right-Linear Grammar: Definition
Gist: A CFG in which every rule has a string
of terminals followed by no more that
one nonterminal on the right-hand side.
Definition: LetG=(N, T, P,S) beaCFG. G is a
right-linear grammar (RLG) if every rule A — X
e P satisfiesx € T U T N.

Example:
G=(N,T,P,S),where N={S, A}, T={a, b}

P={l.S—>aS,”?:.S—>aA 2:A>bA 4L:A—>Db}
e S=aA[’] = ab [4]

e S=aS[l] = aaA[’] = aab [4]

e S=aA[’] = abA [3] = abb [4]

Note: L(G) = {a™b": m, n > 1}
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Grammars for Regular Languages

Theorem: For every RLG G, there isan FA M
such that L(G) = L(M).

Proof: See page 575 in [Meduna: Automata and Languages]

Theorem: For every FA M, there iIsa RLG G
such that L(M) = L(G).

Proof: See page 583 in [Meduna: Automata and Languages]

Conclusion: Grammars for regular languages are
Right-linear grammar




Generalization
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Grammars: Summary

Languages| Grammar [Form of rulesx — vy

Recursively Xe (NUT)N(NuUT)”

enumerable Unrestricted ye (NUT)
Context- Context- [xe (NUT)'N(NUT)”
sensitive sensitive |y e (NU T, |X]| <Y
X e N

Context-free| Context-free ye (NUT)

_ _ X e N
Regular Right-Linear ye T'"UTN

UOI39111S9Y
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Automata: Summary

Generalization

anguages| Accepting Device

Recursively Turing

enumerable machine
Context- Linear bounded
sensitive automaton

Context.f Pushdown
ontext-rree automaton

Finite

Regular

automaton

UOI30111S9Y
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Chomsky Hierarchy

the family of regular
languages = Type 3

\

the family of
recursive enumerable
languages = Type 0

Type 2

the family of context-
free languages =

the family of context-
sensitive languages =

Typel

Type3c Type2c Typel c TypeO
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Language Lqeieaccentance 1/2

Gist: Lggieacceptance 1S the language over {0, 1}, which
contain a string 6(M), if and only DTM M accepts 5(M).

Definition: |
L seitacceptance = {6(M): Misa DTM, 8(M) e L(M)}

lHlustration: ‘TM M ‘ ‘ giic/:lgietion of M-

e
™M [ . 13
» Does TM M accept §(M) = > (M)

SelfAcceptance
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Language Lqeieaccentance 2/2

Theorem: Lggtacceptance IS @CCEPL bY SOme TM.

Proof (idea):

 We constructa DTM V, which:

1) Replace an input string w = 6(M) with 6(M)o(M)
2) Simulate an activity of a universal TM U
 Then, L(V) = Lsgitacceptance: thus theorem holds.

lHlustration:

Mo | [T, - .
A i
| [ R o O Y

(M) w = §(M)



41/45

Language Lyonsertaccentance 1/3

Gist: LNonSeIfAcceptance =L

Definition:
L

SelfAcceptance

NonSelfAcceptance = {O’ 1} - LSeIfAcceptance

| T™M M

(LTIL. TJAL.
» Does TM M accept §(M) = > (M)

A/iY_ESTWI\‘

S(M) Z LSeIfAcceptance S(M) < LSeIfAcceptance
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Language Lyonseitaccentance 2/3

Theorem: Ly seiracceptance 1S @CCEPt By No TM.

Proof (by contradiction):
* Assume that Ly,nseifacceptance 1S @ccepted by a TM.
Consider this infinite table:

M. m; = o(M;) SelfAcceptance(M;)
«| M, [111001001001101 Yes
=| M, [11101010111100101 No
—| M; |1110010001010001001001 | Yes
< . .
Note:

* SeIfAcceptance(I\/Ii) = Yes If m; € I-SeIfAcceptanc:e
No i1f rni & LSeIfAcceptance
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Language Lynseiraccentance 3/

» Notice: I—NonSeIfAcceptanc:e = {mi .M & L(Mi)1 =1, }

e LetL(M,) = I—NonSeIfAcceptance
» Selfacceptance(M,) = No implies
m, ¢ L(M,) implies

mk € LNonSeIfAcceptance
m, € L(M,)

contradiction
e Selfacceptance(M,) = Yes implies
m, € L(M,) implies

mk & I—NonSeIfAcceptance
m, ¢ L(M,)

contradiction
* I-NonSeIfAcceptance IS accepted by no T™M Mk

Implies

Implies
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Recursive Language

Gist: Recursive Language accepts TM that always halt

Definition: Let L be a language. If L = L(M),
where M Is DTM that always halts, then L Is
a recursive language.

Theorem: The family of recursive languages is
closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]

Theorem: The family of recursively enumerable
languages Is not closed under complement.

Proof: See the L

SelfAcceptance
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Other Hierarchy of Languages

The family of The family of rec.
recursive languages - enumerbale - All

(accepted by TMs languages Lang.

that always halt) (accepted by TMSs)

L

L

SelfAcceptance NonSelfAcceptance
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