
Graph Algorithms: Shortest Paths

Zbyněk ”Pedro” Křivka
krivka@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Czech Republic

Lecture at Escuela de Ingenieŕıa Informática de Segovia,
Universidad de Valladolid - Campus de Segovia, Spain

March 16, 2017

1 / 53

krivka@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

I ≈ 2 000 students (Bc, MSc, PhD)

I ≈ 50 Erasmus students each semester

I Erasmus+ Agreement with your faculty

I http://www.fit.vutbr.cz/admissions/short.php.en

2 / 53

http://www.fit.vutbr.cz/admissions/short.php.en

Outline (with hyperlinks)

Introduction
Graph Theory
Graph Representation

Single-Source Shortest Paths
Bellman-Ford Algorithm
Dijkstra Algorithm

All-Pairs Shortest Paths

3 / 53

References

Books

I Cormen, Leiserson, Rivest, Stein: Introduction to algorithms.
The MIT Press and McGraw-Hill, 2001.

I Jǐŕı Demel: Grafy a jejich aplikace [in Czech]. Academia, 2002.

4 / 53

Introduction

5 / 53

Graph Theory

6 / 53

Definitions
Directed graph (digraph) G is a pair

G = (V, E) ,

where
I V is a finite set of vertices (nodes) and
I E ⊆ V2 is a set of edges (arrows, arcs).

An edge (u, u) is called a self-loop.
If (u, v) is an edge, we say that (u, v) is incident from u and incident to v,
that is v is adjacent to u.

1 2 3

4 5 6

Figure: Digraph

7 / 53

Definitions
Undirected graph G is a pair

G = (V, E) ,

where
I V is a finite set of vertices and
I E ⊆ (V

2) is a set of edges.

Note
An edge is a set {u, v}, where u, v ∈ V and u 6= v. Self-loops are
forbidden.
Convention: {u, v}, (u, v), and (v, u) denote the same edge.

1 2 3

4 5 6

Figure: Undirected Graph

8 / 53

Definitions

I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices
where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

9 / 53

Definitions

I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices
where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

9 / 53

Definitions

I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices
where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

9 / 53

Definitions

I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices
where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

9 / 53

Definitions

I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices
where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

9 / 53

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle, if k ≥ 1 and v0 = vk.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

I Acyclic graph contains no cycles.

10 / 53

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle, if k ≥ 1 and v0 = vk.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

I Acyclic graph contains no cycles.

10 / 53

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle, if k ≥ 1 and v0 = vk.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

I Acyclic graph contains no cycles.

10 / 53

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle, if k ≥ 1 and v0 = vk.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

I Acyclic graph contains no cycles.

10 / 53

Definitions

I A graph G′ = (V′, E′) is a subgraph of G, if V′ ⊆ V and E′ ⊆ E.

I An undirected graph is connected if every pair of vertices is connected
by a path.

I An connected, acyclic, undirected graph is a tree.
I Homework: Prove that |E| = |V| − 1.

I An acyclic, undirected graph is a forest (several trees).

11 / 53

Definitions

I A graph G′ = (V′, E′) is a subgraph of G, if V′ ⊆ V and E′ ⊆ E.

I An undirected graph is connected if every pair of vertices is connected
by a path.

I An connected, acyclic, undirected graph is a tree.
I Homework: Prove that |E| = |V| − 1.

I An acyclic, undirected graph is a forest (several trees).

11 / 53

Graph Representation

12 / 53

Let G = (V, E) be a graph. Denote:

I n = |V|
I m = |E|.

1. Adjacency-list representation
I effective for sparse graphs (m� n2);

2. Adjacency-matrix representation
I effective for dense graphs (m close to n2);
I when we often need quick answer whether two given vertices are

connected by an edge.

13 / 53

Let G = (V, E) be a graph. Denote:

I n = |V|
I m = |E|.

1. Adjacency-list representation
I effective for sparse graphs (m� n2);

2. Adjacency-matrix representation
I effective for dense graphs (m close to n2);
I when we often need quick answer whether two given vertices are

connected by an edge.

13 / 53

Adjacency-list representation
G = (V, E) is represented as

I an array Adj[1 . . . n] with n lists, one (unsorted) list for each vertex,
I where Adj[u] stores all vertices v such that (u, v) ∈ E.

1 2 3

4 5 6

1

2

3

4

5

5

42

5

6

2

4

6 6

1 2

3

45

1

2

3

4

5

4

1

5

5 3

2

3 4

2

1

2

2

4

5

I Space complexity: Θ(m + n) (depends linearly on the size of the
graph).

14 / 53

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

15 / 53

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

15 / 53

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

15 / 53

Adjacency-matrix representation

Let G = (V, E) be a graph and assume V = {1, 2, . . . , n}. Adjacency
matrix A = (aij) is a matrix of size n× n such that

aij =

{
1 if (i, j) ∈ E,
0 otherwise.

1 2 3

4 5 6

1 2 3 4 5 6

1 0 1 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0 1

16 / 53

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

17 / 53

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

17 / 53

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

17 / 53

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

17 / 53

Exercises

1. Let deg−(u) and deg+(u) be the number of outcoming edges from u
and incoming edges to u, respectively. Given an adjacency-list
representation of a digraph and a vertex v, how long does it take to
compute degrees deg−(v) and deg+(v)?

2. The transpose of a directed graph G = (V, E) is the graph
GT = (V, ET), where ET = {(v, u) ∈ V×V : (u, v) ∈ E}. Thus, GT

is G with all its edges reversed. Describe an efficient algorithm for
computing GT from G for the adjacency-list representation of G.
Analyze the time complexity of your algorithm.

3. The square of a directed graph G = (V, E) is the graph G2 = (V, E2)
such that (u, v) ∈ E2 if and only G contains a path with at most two
edges between u and v. Describe an efficient algorithm for computing
G2 from G for the adjacency-list representation of G. Analyze the
time complexity of your algorithm.

18 / 53

Single-Source Shortest Paths

19 / 53

Shortest Paths – Motivation

I Transportation: How to get from A into B in the quickest/cheapest
way?

I Optimization: cost minimization in static state space (e.g. knapsack
problem, . . .)

Measuring-cup Problem

I We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can
pour from one cup to another as much as possible without spilling.

I How to measure 2 litres? How to do it in the cheapest way, if each
liter is paid?

I What if I have 3-litre and 5-litre cup and I need to measure 4 litres?
Is it possible?

20 / 53

Shortest Paths – Motivation

I Transportation: How to get from A into B in the quickest/cheapest
way?

I Optimization: cost minimization in static state space (e.g. knapsack
problem, . . .)

Measuring-cup Problem

I We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can
pour from one cup to another as much as possible without spilling.

I How to measure 2 litres? How to do it in the cheapest way, if each
liter is paid?

I What if I have 3-litre and 5-litre cup and I need to measure 4 litres?
Is it possible?

20 / 53

Shortest Paths – Motivation

I Transportation: How to get from A into B in the quickest/cheapest
way?

I Optimization: cost minimization in static state space (e.g. knapsack
problem, . . .)

Measuring-cup Problem

I We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can
pour from one cup to another as much as possible without spilling.

I How to measure 2 litres? How to do it in the cheapest way, if each
liter is paid?

I What if I have 3-litre and 5-litre cup and I need to measure 4 litres?
Is it possible?

20 / 53

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

21 / 53

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

21 / 53

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

21 / 53

Shortest Paths – Variants

I Single-source shortest-paths problem

I Single-destination shortest-paths problem – by reversing the direction
of each edge

I Single-pair shortest-path problem – is there faster solution?

I All-pairs shortest-paths problem – single-source from each vertex or
faster?

22 / 53

Subpaths of Shortest Paths

Lemma 1.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

23 / 53

Subpaths of Shortest Paths

Lemma 1.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

23 / 53

Subpaths of Shortest Paths

Lemma 1.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

23 / 53

Subpaths of Shortest Paths

Lemma 1.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

23 / 53

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

24 / 53

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

24 / 53

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

24 / 53

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I If π[v] = u 6= nil, then (u, v) ∈ E is highlighted in the graph
drawing.

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

25 / 53

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I If π[v] = u 6= nil, then (u, v) ∈ E is highlighted in the graph
drawing.

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π
I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

25 / 53

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I If π[v] = u 6= nil, then (u, v) ∈ E is highlighted in the graph
drawing.

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π
I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

25 / 53

Representing Shortest Paths
I Let G = (V, E) be a graph.
I π[v] is set to a predecessor to v; that is, a vertex or nil.
I If π[v] = u 6= nil, then (u, v) ∈ E is highlighted in the graph

drawing.
I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

PRINT-PATH(G, s, v)
1 if v = s
2 then print s
3 else if π[v] = NIL
4 then print “No path from ” s “ to ” v “!”
5 else PRINT-PATH(G, s, π[v])
6 print v

25 / 53

Shortest paths are not necessarily unique – Example

s/0

t/3 x/9

z/11y/5

3

5

6

6

3

4
2 271

Figure: Shortest paths.

26 / 53

Shortest paths are not necessarily unique – Example

s/0

t/3 x/9

z/11y/5

3

5

6

6

3

4
2 271

Figure: Shortest paths.

26 / 53

Relaxation

I d[v] – shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v ∈ V
2 do d[v]← ∞
3 π[v]← NIL
4 d[s]← 0

I Time complexity: Θ(n).

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v]← d[u] + w(u, v)
3 π[v]← u

27 / 53

Relaxation

I d[v] – shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v ∈ V
2 do d[v]← ∞
3 π[v]← NIL
4 d[s]← 0

I Time complexity: Θ(n).

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v]← d[u] + w(u, v)
3 π[v]← u

27 / 53

Bellman-Ford Algorithm

28 / 53

Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I If it returns False, G contains negative-weight cycles reachable from
s.

I If it returns True, π contains the shortest paths.

29 / 53

Bellman-Ford – Example

s/0

t/∞ x/∞

z/∞y/∞

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I Edges are relaxed in the following order:
(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).

30 / 53

Bellman-Ford – Example

s/0

t/6 x/∞

z/∞y/7

6

7

8 −4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I Edges are relaxed in the following order:
(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).

30 / 53

Bellman-Ford – Example

s/0

t/6 x/4

z/2y/7

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I Edges are relaxed in the following order:
(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).

30 / 53

Bellman-Ford – Example

s/0

t/2 x/4

z/2y/7

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I Edges are relaxed in the following order:
(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).

30 / 53

Bellman-Ford – Example

s/0

t/2 x/4

z/− 2y/7

6

7

8 −4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I Edges are relaxed in the following order:
(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).

30 / 53

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).

I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

31 / 53

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

31 / 53

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

31 / 53

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

31 / 53

Dijkstra Algorithm

32 / 53

Dijkstra Algorithm

I Only for weighted, directed graphs without negative edges:

I w(u, v) ≥ 0 for each edge (u, v) ∈ E.

I Can we implement it with lower time complexity than Bellman-Ford
algorithm?

33 / 53

Dijkstra Algorithm

I Only for weighted, directed graphs without negative edges:

I w(u, v) ≥ 0 for each edge (u, v) ∈ E.

I Can we implement it with lower time complexity than Bellman-Ford
algorithm?

33 / 53

Dijkstra Algorithm

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S← ∅
3 Q← V
4 while Q 6= ∅
5 do u←EXTRACT-MIN(Q)
6 S← S ∪ {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)

I S is a set of finished vertices (their shortest distance from s is already
computed).

I Q is a min-priority queue; the vertex with the lowest d-value is at the
beginning of Q.

34 / 53

Dijkstra Algorithm – Example

s/0

t/∞ x/∞

z/∞y/∞

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Dijkstra Algorithm – Example

s/0

t/10 x/∞

z/∞y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Dijkstra Algorithm – Example

s/0

t/8 x/14

z/7y/5y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Dijkstra Algorithm – Example

s/0

t/8 x/13

z/7z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Dijkstra Algorithm – Example

s/0

t/8 x/9

z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Dijkstra Algorithm – Example

s/0

t/8 x/9

z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

35 / 53

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

36 / 53

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

36 / 53

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

36 / 53

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

36 / 53

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

36 / 53

Exercises

1. Modify the Bellman-Ford algorithm so that it sets d[v] to −∞ for all
vertices v for which there is a negative-weight cycle on some path
from the source s to v.

2. Give a simple example of a digraph with negative-weight edge(s) for
which Dijkstra’s algorithm produces incorrect answers. Why?

37 / 53

Demonstration Tool

Graph Simulator

I Application with GUI in Java by Jakub Varadinek and Otto Michalička

I Requirements: Java Runtime Environment 1.7 (32-bit or 64-bit
version)

I Language: English, Czech, ?

I Algorithms: Breadth-First Search, Depth-First Search, Topological
Sorting, Strongly-connected Components, Bellman-Ford and Dijkstra
Algorithms

I Modes: Graph editing, Algorithm Simulation (stepping, breakpoints,
variables)

I http://www.fit.vutbr.cz/~krivka/graphsim

38 / 53

http://www.fit.vutbr.cz/~krivka/graphsim

All-Pairs Shortest Paths

39 / 53

Using Single-Source Shortest Paths Algorithms

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Find all shortest paths from each vertex to the other vertices (solve
n-times single-source shortests paths).

I Considering n-times Dijkstra algorithm: O(n3 + nm) = O(n3) time
for array, or O(n2 log n + nm) for Fibonacci heap.

I For negative weights of edges, use n-times Bellman-Ford: O(n2m)
time (dense graphs: O(n4)).

40 / 53

Using Single-Source Shortest Paths Algorithms

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Find all shortest paths from each vertex to the other vertices (solve
n-times single-source shortests paths).

I Considering n-times Dijkstra algorithm: O(n3 + nm) = O(n3) time
for array, or O(n2 log n + nm) for Fibonacci heap.

I For negative weights of edges, use n-times Bellman-Ford: O(n2m)
time (dense graphs: O(n4)).

40 / 53

Using Single-Source Shortest Paths Algorithms

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Find all shortest paths from each vertex to the other vertices (solve
n-times single-source shortests paths).

I Considering n-times Dijkstra algorithm: O(n3 + nm) = O(n3) time
for array, or O(n2 log n + nm) for Fibonacci heap.

I For negative weights of edges, use n-times Bellman-Ford: O(n2m)
time (dense graphs: O(n4)).

40 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,

2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Shortest Path Representation

I Even for sparse graphs, the input is adjacency-matrix with weights
W = (wij), where

wij =


0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E

I We allow negative-weight edges.

I We assume no negative-weight cycles.

I The results stored in n× n matrix D = (dij), where dij = δ(i, j) when
the algorithm is finished.

I Predecessor matrix Π = (πij), where πij is

1. NIL if i = j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41 / 53

Printing of Shortest Paths

PRINT-ALL-SHORTEST-PATH(Π, i, j)
1 if i = j
2 then print i
3 else if πij = NIL

4 then print “No path from ” i “ to ” j “ exists!”
5 else PRINT-ALL-SHORTEST-PATH(Π, i, πij)
6 print j

42 / 53

Shortest Paths and Matrix
Multiplication

43 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix with weights W = (wij).

I Let p be a shortest path from i to j with m′ edges.

I If there is no negative-weight cycle in p, then m′ < ∞.

I If i = j, then m′ = 0 and wij = δ(i, j) = 0.

I If i 6= j, then we decompose path p into:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I Observe that p′ is a shortest path from i to k, so δ(i, j) = δ(i, k) +wkj.

44 / 53

Matrix Multiplication – Recursive Solution

I Let l(m)
ij be a minimum weight of any path from i to j with at most m

edges.

I m = 0, if and only if i = j. Thus, l(0)ij =

{
0 if i = j
∞ if i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I Observe that a shortest path from i to j has at most n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(If there is no negative-weight cycle.)

45 / 53

Matrix Multiplication – Recursive Solution

I Let l(m)
ij be a minimum weight of any path from i to j with at most m

edges.

I m = 0, if and only if i = j. Thus, l(0)ij =

{
0 if i = j
∞ if i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I Observe that a shortest path from i to j has at most n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(If there is no negative-weight cycle.)

45 / 53

Matrix Multiplication – Recursive Solution

I Let l(m)
ij be a minimum weight of any path from i to j with at most m

edges.

I m = 0, if and only if i = j. Thus, l(0)ij =

{
0 if i = j
∞ if i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I Observe that a shortest path from i to j has at most n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(If there is no negative-weight cycle.)

45 / 53

Matrix Multiplication – Recursive Solution

I Let l(m)
ij be a minimum weight of any path from i to j with at most m

edges.

I m = 0, if and only if i = j. Thus, l(0)ij =

{
0 if i = j
∞ if i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I Observe that a shortest path from i to j has at most n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(If there is no negative-weight cycle.)

45 / 53

Matrix Multiplication – Computing

I Input matrix W = (wij).

I We compute a series of matrices L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1) contains the actual shortest-path weights.

I Observe that l(1)ij = wij; that is, L(1) = W.

46 / 53

Matrix Multiplication – Computing

I Input matrix W = (wij).

I We compute a series of matrices L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1) contains the actual shortest-path weights.

I Observe that l(1)ij = wij; that is, L(1) = W.

46 / 53

Matrix Multiplication – Computing

I Input matrix W = (wij).

I We compute a series of matrices L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1) contains the actual shortest-path weights.

I Observe that l(1)ij = wij; that is, L(1) = W.

46 / 53

Matrix Multiplication – Computing

I Input matrix W = (wij).

I We compute a series of matrices L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1) contains the actual shortest-path weights.

I Observe that l(1)ij = wij; that is, L(1) = W.

46 / 53

The Heart of All-Pairs Shortest Paths Algorithm

EXTEND-SHORTEST-PATHS(L, W)
1 n← rows[L]
2 let L′ = (l′ij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do l′ij ← ∞
6 for k← 1 to n
7 do l′ij ← min(l′ij, lik + wkj)

8 return L′

I rows[L] denotes the number of rows of L.

I Time complexity: Θ(n3).

47 / 53

The relation to matrix multiplication (finally)

I Let C = A · B, where A and B are n× n matrices.

I Then,

cij =
n

∑
k=1

aik · bkj

I Compare to

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

48 / 53

The relation to matrix multiplication (finally)

I Let C = A · B, where A and B are n× n matrices.

I Then,

cij =
n

∑
k=1

aik · bkj

I Compare to

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

48 / 53

The relation to matrix multiplication (finally)

I Let C = A · B, where A and B are n× n matrices.

I Then,

cij =
n

∑
k=1

aik · bkj

I Compare to

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

48 / 53

Find 3 differences (apart from algorithm/variable renaming)

EXTEND-SHORTEST-PATHS(L, W)
1 n← rows[L]
2 let L′ = (l′ij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do l′ij ← ∞
6 for k← 1 to n
7 do l′ij ← min(l′ij, lik + wkj)

8 return L′

MATRIX-MULTIPLY(A, B)
1 n← rows[A]
2 let C = (cij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do cij ← 0
6 for k← 1 to n
7 do cij ← cij + aik · bkj
8 return C

49 / 53

Matrix Multiplication – Notation

I Letting X · Y denote the matrix computed by
Extend-Shortest-Paths(X, Y).

I Then, we compute the following matrices

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2

L(3) = L(2) ·W = W3

...

L(n−1) = L(n−2) ·W = Wn−1

where Wn−1 contains the shortest path weights.

50 / 53

Matrix Multiplication – Notation

I Letting X · Y denote the matrix computed by
Extend-Shortest-Paths(X, Y).

I Then, we compute the following matrices

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2

L(3) = L(2) ·W = W3

...

L(n−1) = L(n−2) ·W = Wn−1

where Wn−1 contains the shortest path weights.

50 / 53

Slow Multiplicative Method

SLOW-ALL-SHORTEST-PATHS(W)
1 n← rows[W]

2 L(1) ←W
3 for m← 2 to n− 1
4 do L(m) ← EXTEND-SHORTEST-PATHS(L(m−1), W)

5 return L(n−1)

I Time complexity: Θ(n4).

51 / 53

How to Speed Up Multiplicative Method?

I We are often interested only in matrix L(n−1).

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Multiplicative operation defined in Extend-Shortest-Paths is
associative.

I Therefore, we can decrease the number of products from n− 1 to
dlog n− 1e and compute the sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we get the final product L(2dlog n−1e) = L(n−1).

52 / 53

How to Speed Up Multiplicative Method?

I We are often interested only in matrix L(n−1).

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Multiplicative operation defined in Extend-Shortest-Paths is
associative.

I Therefore, we can decrease the number of products from n− 1 to
dlog n− 1e and compute the sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we get the final product L(2dlog n−1e) = L(n−1).

52 / 53

How to Speed Up Multiplicative Method?

I We are often interested only in matrix L(n−1).

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Multiplicative operation defined in Extend-Shortest-Paths is
associative.

I Therefore, we can decrease the number of products from n− 1 to
dlog n− 1e and compute the sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we get the final product L(2dlog n−1e) = L(n−1).

52 / 53

How to Speed Up Multiplicative Method?

I We are often interested only in matrix L(n−1).

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Multiplicative operation defined in Extend-Shortest-Paths is
associative.

I Therefore, we can decrease the number of products from n− 1 to
dlog n− 1e and compute the sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we get the final product L(2dlog n−1e) = L(n−1).

52 / 53

Faster Multiplicative Method

FAST-ALL-SHORTEST-PATHS(W)
1 n← rows[W]

2 L(1) ←W
3 m← 1
4 while m < n− 1
5 do L(2m) ← EXTEND-SHORTEST-PATHS(L(m), L(m))
6 m← 2m
7 return L(m)

I Time complexity: Θ(n3 log n).

53 / 53

	Introduction
	Graph Theory
	Graph Representation

	Single-Source Shortest Paths
	Bellman-Ford Algorithm
	Dijkstra Algorithm

	All-Pairs Shortest Paths

