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Graph Theory



Definitions

Directed graph (digraph) G is a pair
G=(V,E),

where

» V is a finite set of vertices (nodes) and
» E C V?is a set of edges (arrows, arcs).

An edge (u,u) is called a self-loop.

If (u,v) is an edge, we say that (u,v) is incident from u and incident to v,
that is v is adjacent to u.

O—» ©

Figure: Digraph
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Definitions
Undirected graph G is a pair

G=(V,E),
where

» V is a finite set of vertices and
» EC (‘2/) is a set of edges.

Note

An edge is a set {u,v}, where u,v € V and u # v. Self-loops are
forbidden.
Convention: {u,v}, (u,v), and (v,u) denote the same edge.

® ©

Figure: Undirected Graph
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Definitions

» A path p = (vo,v1,02,...,0k) is a connected sequence of vertices
where (v;_1,0v;) € Eforalli=1,2,...,k.
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Definitions

» A path p = (vo,v1,02,...,0k) is a connected sequence of vertices
where (v;_1,0v;) € Eforalli=1,2,...,k.

» The length of p equals to the number of edges in p.
» If there is p from u to u’, we say that u’ is reachable from u by p,

p
denoted as u ~ 1.
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Definitions

v

A path p = (vg,v1,v2,...,0) is a connected sequence of vertices
where (v;_1,0v;) € Eforalli=1,2,...,k.

v

The length of p equals to the number of edges in p.

v

If there is p from u to u/, we say that u’ is reachable from u by p,
denoted as u > .

> A path is simple if all vertices in the path are distinct.
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Definitions

» A path p = (vo,v1,02,...,0k) is a connected sequence of vertices
where (v;_1,0v;) € Eforalli=1,2,...,k.

v

The length of p equals to the number of edges in p.

v

If there is p from u to u/, we say that u’ is reachable from u by p,
denoted as 1 > 1.
> A path is simple if all vertices in the path are distinct.

@ » Give some examples of a path
and simple path.

(O)—

» Give an example of unconnected
sequence.
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Definitions

» A subpath s of p = (vo, vl,vz,...,vk> is a contiguous subsequence,
S = <UZ',UZ'+1,UZ'+2,. . .,Uj>, for 0 S i S ] S k.
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Definitions

» A subpath s of p = (vo, vl,vz,...,vk> is a contiguous subsequence,
s = <UZ',UZ'+1,UZ'+2,. . .,Uj>, for 0 < i < ] < k.

» A path ¢ = (vg,v1,02,...,0¢) is a cycle, if k > 1 and vy = vy.

()—

® > What is (1,2,4,5,4,1)?
» What is (1,2,4,1)7
» What is (2,2)?
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Definitions

» A subpath s of p = (vo, vl,vz,...,vk> is a contiguous subsequence,
s = <UZ',UZ'+1,UZ'+2,. . .,Uj>, for 0 < i < ] < k.

» A path ¢ = (vg,v1,02,...,0¢) is a cycle, if k > 1 and vy = vy.

(O)—

® > What is (1,2,4,5,4,1)?
» What is (1,2,4,1)7
» What is (2,2)?

» Acyclic graph contains no cycles.
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Definitions

» A graph G' = (V',E') is a subgraph of G, if V/ C V and E' C E.
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Definitions

» A graph G' = (V',E') is a subgraph of G, if V/ C V and E' C E.

» An undirected graph is connected if every pair of vertices is connected
by a path.
» An connected, acyclic, undirected graph is a tree.
» Homework: Prove that |[E| = |V| —1.

v

An acyclic, undirected graph is a forest (several trees).
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Graph Representation



Let G = (V,E) be a graph. Denote:
~ =V

» m = |E|.

1. Adjacency-list representation
» effective for graphs (m < n?);
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Let G = (V,E) be a graph. Denote:
~ =V

» m = |E|.

1. Adjacency-list representation
» effective for graphs (m < n?);
2. Adjacency-matrix representation

» effective for graphs (m close to n?);
» when we often need quick answer whether two given vertices are
connected by an edge.
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Adjacency-list representation

G = (V,E) is represented as

» an array Adj[1...n] with n lists, one (unsorted) list for each vertex,
» where Adj[u] stores all vertices v such that (u,v) € E.

> Space complexity: @(m + 1) (depends linearly on the size of the

graph).
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Weighted graph

» A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E — RR.
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every edge using weight function w : E — RR.

» Representation of w(u,v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u,v).
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Weighted graph

» A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E — RR.

» Representation of w(u,v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u,v).

» Disadvantage: Finding whether an edge (u,v) belongs to E requires
the search of the whole list Adj[u].
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Adjacency-matrix representation

Let G = (V,E) be a graph and assume V = {1,2,...,n}. Adjacency
matrix A = (a;) is a matrix of size n x n such that

L _ 1 i) ek
771 0 otherwise.

1 2 3 4 5 6

110 1 0 1 0 O

@ O O 2/{0 0 0 0 1 O
‘ 3]0 0 0 0 1 1
410 1 0 0 0 O

@ @ ® 5/0 0 01 0 O
6|0 0 0 0 0 1
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» Space complexity: @(n?) (independent of the number of edges).

H R R OR[N
O~ ORFR O W
R O R KR Ol D
O R O =l Ol

A w N
_H O O K Ol

17 / 53



H R R OR[N
OR O O W
R O R KR Ol D
O O K RO

A w N
_H O O K Ol

5

» Space complexity: @(n?) (independent of the number of edges).

> Transpose matrix of A = (a;) is a matrix AT = (ag) where al;

ij = ji-
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A w N

5
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O R O~ = O

» Space complexity: @(n?) (independent of the number of edges).

> Transpose matrix of A = (a;) is a matrix AT = (ag) where al;

> If A represents an undirected graph, then A = AT. It is enough to

store just one half of A.

i

a]-i.
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20

Space complexity: ©(n?) (independent of the number of edges).

A W N =
— O O Ol
R R RO RN
OR O O W
R O R KR Ol D

O R O~ = O

5

Transpose matrix of A = (a;) is a matrix AT = (ag) where ag =

If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

Let G = (V,E) be a weighted graph, then

I w(i,j) if (i,j) € E,
7771 NIL otherwise,

where NIL is a special value, mostly 0 or co.

a]-i.
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Exercises

1. Let deg_(u) and deg (1) be the number of outcoming edges from u
and incoming edges to u, respectively. Given an adjacency-list
representation of a digraph and a vertex v, how long does it take to
compute degrees deg_(v) and deg (v)?

2. The transpose of a directed graph G = (V,E) is the graph
G' = (V,ET), where ET = {(v,u) € V x V: (u,v) € E}. Thus, GT
is G with all its edges reversed. Describe an efficient algorithm for
computing GT from G for the adjacency-list representation of G.
Analyze the time complexity of your algorithm.

3. The square of a directed graph G = (V,E) is the graph G?> = (V,E?)
such that (u,v) € E? if and only G contains a path with at most two
edges between u and v. Describe an efficient algorithm for computing
G? from G for the adjacency-list representation of G. Analyze the
time complexity of your algorithm.
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Single-Source Shortest Paths



Shortest Paths — Motivation

» Transportation: How to get from A into B in the quickest/cheapest
way?

» Optimization: cost minimization in static state space (e.g. knapsack
problem, ...)
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Measuring-cup Problem

» We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can
pour from one cup to another as much as possible without spilling.

» How to measure 2 litres? How to do it in the cheapest way, if each
liter is paid?
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Shortest Paths — Motivation

» Transportation: How to get from A into B in the quickest/cheapest
way?

» Optimization: cost minimization in static state space (e.g. knapsack
problem, ...)

Measuring-cup Problem

» We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can
pour from one cup to another as much as possible without spilling.

» How to measure 2 litres? How to do it in the cheapest way, if each
liter is paid?

» What if | have 3-litre and 5-litre cup and | need to measure 4 litres?
Is it possible?
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Shortest Paths

» Given weighted directed graph G = (V,E) and
» weight function w: E — R.
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Shortest Paths

» Given weighted directed graph G = (V,E) and
» weight function w: E — R.

v

The weight of path p = (v, v1,...,vk) is

v

The shortest-path weight from u to v is

5(u,0) = min{w(p) : u 5 v} if there is a path from u to v
’ o0 otherwise

v

A shortest path from u to v is any path p from u to v with
w(p) = 6(u,v).

21/ 53



Shortest Paths — Variants

» Single-source shortest-paths problem

» Single-destination shortest-paths problem — by reversing the direction
of each edge

v

Single-pair shortest-path problem — is there faster solution?

v

All-pairs shortest-paths problem — single-source from each vertex or
faster?
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Subpaths of Shortest Paths

Lemma 1.
Let G = (V,E) be directed graph with weight function w : E — R. Let
p = (v1,v2,...,0x) be a shortest path from vy to vy.

Forany1 <i<j<k, letpj= (v;,vi11,...,0;) be the subpath of p from
v; to 0.
Then, pi; is a shortest path from v; to v;.

Proof.
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Subpaths of Shortest Paths

Lemma 1.

Let G = (V,E) be directed graph with weight function w : E — R. Let
p = (v1,v2,...,0x) be a shortest path from vy to vy.

Forany 1 <i<j<k, let pj;j = (v;,0iy1,...,0;) be the subpath of p from
v; to 0.

Then, pi; is a shortest path from v; to v;.

Proof.

. i P P
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Subpaths of Shortest Paths

Lemma 1.
Let G = (V,E) be directed graph with weight function w : E — R. Let
p = (v1,v2,...,0x) be a shortest path from vy to vy.

Forany1 <i<j<k, letpj= (v;,vi11,...,0;) be the subpath of p from
v; to 0.
Then, pi; is a shortest path from v; to v;.

Proof.

. i P P
> pis v P g 4 vj & Ok, where w(p) = w(py;) +w(pi) + w(pj)-

> Assume that there is pj; from v; to v; with w(p};) < w(pj).
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Subpaths of Shortest Paths

Lemma 1.
Let G = (V,E) be directed graph with weight function w : E — R. Let
p = (v1,v2,...,0x) be a shortest path from vy to vy.

Forany1 <i<j<k, letpj= (v;,vi11,...,0;) be the subpath of p from
v; to 0.
Then, pi; is a shortest path from v; to v;.

Proof.

> pis o o A vj £ ., where w(p) = w(py) +w(p;) +w(pi)-

> Assume that there is pj; from v; to v; with w(p};) < w(pj).

> Then, v 4 v; <5 v; % vk, where w(p1;) + w(py) + w(pix) < w(p).
Contradiction.

O
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Negative-weight edges

» If G contains no negative-weight cycles reachable from the source s,
then for all v € V, 4(s,v) remains well defined (even if negative).
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» If G contains a negative-weight cycle reachable from s, 4 is not well
defined — repeating traverse of the negative-weight cycle.

> If there is negative-weight cycle on some path from s to v, we define
3(s,v) = —o0.
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Negative-weight edges

» If G contains no negative-weight cycles reachable from the source s,
then for all v € V, 4(s,v) remains well defined (even if negative).

» If G contains a negative-weight cycle reachable from s, 4 is not well
defined — repeating traverse of the negative-weight cycle.

> If there is negative-weight cycle on some path from s to v, we define
3(s,v) = —o0.

» Note: There is always the shortest path, but not path. The
algorithms work with paths = problem.
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Representing Shortest Paths

» Let G = (V,E) be a graph.

» 77[v] is set to a predecessor to v; that is, a vertex or NIL.

» If 7t[v] = u # NIL, then (u,v) € E is highlighted in the graph
drawing.

25 / 53



Representing Shortest Paths

v

Let G = (V,E) be a graph.
7t[v] is set to a predecessor to v; that is, a vertex or NIL.
If 7t[v] = u # NIL, then (u,v) € E is highlighted in the graph
drawing.
Predecessor subgraph G = (Vx, Ex) induced by 7
» Ve ={veV:nv] #nNiL} U{s}
» Ex ={(nt[v],v) €eE:ve Vy—{s}}

v

v

v
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Representing Shortest Paths

» Let G = (V,E) be a graph.
» 77[v] is set to a predecessor to v; that is, a vertex or NIL.
» If 7t[v] = u # NIL, then (u,v) € E is highlighted in the graph
drawing.
» Predecessor subgraph Gz = (V, Ex) induced by 7
» Ve ={veV:nv] #nNiL} U{s}
» Ex ={(nt[v],v) €eE:ve Vy—{s}}
» After the algorithm is finished, G is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.
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Representing Shortest Paths

» Let G = (V,E) be a graph.
» 77[v] is set to a predecessor to v; that is, a vertex or NIL.
» If 7t[v] = u # NIL, then (u,v) € E is highlighted in the graph
drawing.
» Predecessor subgraph G, = (V, Ex) induced by 7
» Ve={veV:mny] #NL}U{s}
» Ex={(n[v),v) EE:ve V;—{s}}
> After the algorithm is finished, G is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

PRINT-PATH(G, s, v)

1 ifvo=s

2 thenprints

3  elseif [v] = NIL

4 then print “No path from ” s “ to ” v “!”
5 else PRINT-PATH(G, s, 7t[v])

6 print v
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Shortest paths are not necessarily unique — Example

Figure: Shortest paths.
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Shortest paths are not necessarily unique — Example

Figure: Shortest paths.
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Relaxation

» d[v] — shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 foreach vertexv € V

2 do d[v] < o0
3 7t[v] + NIL
4 d[s]+ 0

» Time complexity: ©(n).
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Relaxation

» d[v] — shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 foreach vertexv € V

2 do d[v] < o0
3 7t[v] + NIL
4 d[s]+ 0

» Time complexity: ©(n).
RELAX(u, v, w)
1 ifd[v] > du] +w(u,v)
2 thend[v] < d[u] +w(u,0)
3 n[v] < u

27 / 53
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Bellman-Ford Algorithm

BELLMAN-FORD(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 fori<1ton—1

3 do for each edge (u,v) € E

4 do RELAX(u, v, w)

5 foreachedge (u,v) € E

6 doif d[v] > d[u] +w(u,v)

7 then return FALSE

8 return TRUE

> If it returns FALSE, G contains negative-weight cycles reachable from
S.

» If it returns TRUE, 71 contains the shortest paths.

20 / 53



Bellman-Ford — Example

Figure: Computation by Bellman-Ford Algorithm.

> Edges are relaxed in the following order:
(t,x), (ty), (t,2), (%), (, %), (y,2), (%), (2,5), (s, ), (s, y)-
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Bellman-Ford — Example

Figure: Computation by Bellman-Ford Algorithm.

» Edges are relaxed in the following order:
(t,x), (ty), (£, 2), (x,£), (y, %), (y,2), (2,%), (2,5), (s, £), (5, y).
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Bellman-Ford Algorithm — Time Complexity

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 fori+1ton—1

3 do for each edge (1,v) € E

4 do RELAX(u, v, w)

5 foreachedge (u,v) € E

6 doif d[v] > d[u] +w(u,v)

7 then return FALSE

8 return TRUE

> Line 1 takes ©(n).
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Bellman-Ford Algorithm — Time Complexity

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 fori+1ton—1

3 do for each edge (1,v) € E

4 do RELAX(u, v, w)

5 foreachedge (u,v) € E

6 doif d[v] > d[u] +w(u,v)

7 then return FALSE

8 return TRUE

Line 1 takes ©(n).

Lines 2-4 take (1 — 1)-times ©(m).
Lines 5-7 take O(m).

In total, @(mn).

vV v v v
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Dijkstra Algorithm

» Only for weighted, directed graphs without negative edges:
» w(u,v) > 0 for each edge (u,v) € E.
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Dijkstra Algorithm

» Only for weighted, directed graphs without
» w(u,v) > 0 for each edge (u,v) € E.

» Can we implement it with lower time complexity than Bellman-Ford
algorithm?
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Dijkstra Algorithm

DIKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,s)

2 S0

3 Q«V

4 while Q #©

do u +EXTRACT-MIN(Q)
S« SuU{u}
for each vertex v € Adj[u]

do RELAX(u, v, w)

@ g oG

» S is a set of finished vertices (their shortest distance from s is already
computed).

» Q is a min-priority queue; the vertex with the lowest d-value is at the
beginning of Q.
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Dijkstra Algorithm — Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.
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Dijkstra Algorithm — Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.
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Time Complexity of Dijkstra algorithm
Min-Priority Queue Implemented by Array

» INSERT and DECREASE-KEY take O(1).
» EXTRACT-MIN takes O(n) for each vertex (line 5).
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Time Complexity of Dijkstra algorithm
Min-Priority Queue Implemented by Array

» INSERT and DECREASE-KEY take O(1).
» EXTRACT-MIN takes O(n) for each vertex (line 5).
» RELAX is repeated m-times (line 8).

> In total, O(n* +m) = O(n?).

Min-Priority Queue Implemented by Heaps
» For sparse graphs, we get the time complexity O(mlogn) using

binary heap.

» In general, using Fibonacci heap we get the time complexity
O(nlogn +m).
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Exercises

1. Modify the Bellman-Ford algorithm so that it sets d[v] to —oo for all
vertices v for which there is a negative-weight cycle on some path
from the source s to v.

2. Give a simple example of a digraph with negative-weight edge(s) for
which Dijkstra’s algorithm produces incorrect answers. Why?
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Demonstration Tool

Graph Simulator

2

>

Application with GUI in Java by Jakub Varadinek and Otto Michali¢ka

Requirements: Java Runtime Environment 1.7 (32-bit or 64-bit
version)

Language: English, Czech, ?

Algorithms: Breadth-First Search, Depth-First Search, Topological
Sorting, Strongly-connected Components, Bellman-Ford and Dijkstra
Algorithms

Modes: Graph editing, Algorithm Simulation (stepping, breakpoints,
variables)

http://www.fit.vutbr.cz/~krivka/graphsim
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All-Pairs Shortest Paths



Using Single-Source Shortest Paths Algorithms

» Given weighted directed graph G = (V,E) and
» weight function w: E — R.
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weight function w : E — RR.
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v

Find all shortest paths from each vertex to the other vertices (solve
n-times single-source shortests paths).

Considering n-times Dijkstra algorithm: O(n® + nm) = O(n?) time
for array, or O(n?logn + nm) for Fibonacci heap.
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Using Single-Source Shortest Paths Algorithms

» Given weighted directed graph G = (V,E) and
» weight function w: E — R.

» Find all shortest paths from each vertex to the other vertices (solve
n-times single-source shortests paths).

» Considering n-times Dijkstra algorithm: O(n® + nm) = O(n?) time
for array, or O(n?logn + nm) for Fibonacci heap.

» For negative weights of edges, use n-times Bellman-Ford: O(n?m)
time (dense graphs: O(n?)).
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Shortest Path Representation

» Even for sparse graphs, the input is adjacency-matrix with weights
W = (wj;), where

wij =< w(ij) ifi#jand (i,j) €E,
0 ifi #jand (i,j) ¢ E
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wj =< w(ij) ifi#jand (i,j) €E,
00 if i #jand (i,j) ¢ E

» We allow negative-weight edges.

» We assume no negative-weight cycles.

> The results stored in 1 x n matrix D = (d;;), where d;; = 6(i,j) when
the algorithm is finished.
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Shortest Path Representation

» Even for sparse graphs, the input is adjacency-matrix with weights
W = (wj;), where

0 ifi=j,
wij=1{ w(i,j) ifi#jand (ij)€E,
co ifi #jand (i,j) ¢ E

» We allow negative-weight edges.

» We assume no negative-weight cycles.

v

The results stored in 7 X n matrix D = (d;;), where d;; = 5(i,j) when
the algorithm is finished.

> Predecessor matrix IT = (77;;), where 71;; is

1. NIL if i =j or there is no path from i to j,
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Shortest Path Representation

» Even for sparse graphs, the input is adjacency-matrix with weights
W = (wj;), where

0 if i =],
wj =< w(ij) ifi#jand (i,j) €E,
00 if i #jand (i,j) ¢ E

» We allow negative-weight edges.

» We assume no negative-weight cycles.

v

The results stored in 7 X n matrix D = (d;;), where d;; = 5(i,j) when
the algorithm is finished.
> Predecessor matrix IT = (77;;), where 71;; is

1. NIL if i =j or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

41/ 53



Printing of Shortest Paths

PRINT-ALL-SHORTEST-PATH(IT, i, )

1 ifi=j

2 then printi

3  elseif ;; = NIL

4 then print “No path from ” i “ to ” j “ exists!”
5 else PRINT-ALL-SHORTEST-PATH(IT, i, 71,»]»)

6 print j
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Shortest Paths and Matrix
Multiplication



Matrix Multiplication — Structure of Shortest Paths

> Representation — adjacency matrix with weights W = (w;;).
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Matrix Multiplication — Structure of Shortest Paths

v

Representation — adjacency matrix with weights W = (w;).

v

Let p be a shortest path from i to j with m’ edges.

\4

If there is no negative-weight cycle in p, then m’ < oco.
If i = j, then m’ = 0 and w;; = 6(i,j) = 0.

\{
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Matrix Multiplication — Structure of Shortest Paths

> Representation — adjacency matrix with weights W = (w;;).
> Let p be a shortest path from i to j with m’ edges.

» If there is no negative-weight cycle in p, then m’ < co.

» If i =, then m’ = 0 and w;; = 6(i,j) = 0.

> If i # j, then we decompose path p into:

!
ik,

where p’ has m’ — 1 edges.
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Matrix Multiplication — Structure of Shortest Paths

> Representation — adjacency matrix with weights W = (w;;).
> Let p be a shortest path from i to j with m’ edges.

» If there is no negative-weight cycle in p, then m’ < co.

> If i = j, then m’ = 0 and w;; = 6(i,j) = 0.

> If i # j, then we decompose path p into:

!
ik,

where p’ has m’ — 1 edges.
> Observe that p' is a shortest path from i to k, so 6(i,j) = (i, k) + wy;.
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Matrix Multiplication — Recursive Solution

> Let ll(jm) be a minimum weight of any path from i to j with at most m
edges.
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Matrix Multiplication — Recursive Solution

> Let ll(jm) be a minimum weight of any path from i to j with at most m
edges.

» m =0, if and only if i =7. Thus,l(o):{o ifi=j

ij oo ifi#]
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Matrix Multiplication — Recursive Solution

> Let ll(jm) be a minimum weight of any path from i to j with at most m

edges.
, e (0) 0 ifi=j
» m =0, if and only if i = j. Thus, li]. =1 o ifi £

> l(m) = min( ’ min {Zl(]:nin + ZUkj}) = 1r<nki?n{l§?1_l) + wkj}.

y 1<k<n
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Matrix Multiplication — Recursive Solution

v

Let ll(jm) be a minimum weight of any path from i to j with at most m
edges.
0 ifi=j

> m =0, if and only if i = j. Thus, zfj°>:{ o fid]

> 1" = min(/" ", min {17+ wy}) = min {1 Y 4wy},
<n

v

Observe that a shortest path from i to j has at most n — 1 edges, so
5(1 ]) l( 1 _ l( n) _ ll(j”+1) _

(If there is no negative-weight cycle.)
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Matrix Multiplication — Computing

> Input matrix W = (wj;).

46 / 53



Matrix Multiplication — Computing

> Input matrix W = (wj;).

» We compute a series of matrices L(l),L(z), ... ,L(”*l), where for
m=1,2,...,n—1,
L™ = (1)
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Matrix Multiplication — Computing

> Input matrix W = (wj;).
» We compute a series of matrices L(l),L(z), ... ,L(”*l), where for

m=1,2,...,n—1,
(m) _ (m)
L —(lij ).

» L("~1) contains the actual shortest-path weights.
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Matrix Multiplication — Computing

> Input matrix W = (wj;).

v

We compute a series of matrices L(l),L(Z), ... ,L(”*l), where for
m=1,2,...,n—1,
_ (q(m)
LU = (1"
» L("~1) contains the actual shortest-path weights.

Observe that ll(jl) = wjj; that is, L = W.

v
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The Heart of All-Pairs Shortest Paths Algorithm

EXTEND-SHORTEST-PATHS(L, W)
1 n <+ rows[L]

2 letl' = (ll{j) be an 1 x n matrix
3 fori+ 1ton

4 doforj« 1ton

5 do lz{j — o0

6 fork< 1ton
8 return L’

» rows[L| denotes the number of rows of L.

» Time complexity: ©(n).
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The relation to matrix multiplication (finally)

» Let C = A - B, where A and B are n X n matrices.
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The relation to matrix multiplication (finally)

» Let C = A - B, where A and B are n X n matrices.
» Then,

n
cij =) i by
k=1

» Compare to

(m) _ . rg(m=1)
L = 1r§nk12n{lil?1

+ Wy}
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Find 3 differences (apart from algorithm /variable renaming)

EXTEND-SHORTEST-PATHS(L, W)
1 n « rows|L]

2 letl = (llfj) be an 1 x n matrix
3 fori<+ 1lton

4 doforj< 1ton

5 do [; += oo

6 fork < lton

7 do lz/] — l’nil’l(l;]‘, Lk + wk])
8 return L’

MATRIX-MULTIPLY (A, B)

1 n <+ rows|A]

2 let C = (cjj) be an n x n matrix
3 fori«+ 1lton

4 doforj< 1ton

5 do Cij «~0

6 fork < lton

7 do Cij < Cij +aj- bkj
8 return C
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Matrix Multiplication — Notation

> Letting X - Y denote the matrix computed by
EXTEND-SHORTEST-PATHS(X, Y).
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Matrix Multiplication — Notation

> Letting X - Y denote the matrix computed by
EXTEND-SHORTEST-PATHS(X, Y).

» Then, we compute the following matrices

LA = 1O.w = W
L@ — M.w = W2

LoD = LoDy =

where W"~1 contains the shortest path weights.
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Slow Multiplicative Method

SLOW-ALL-SHORTEST-PATHS(W)
1 n <« rows[W]

2 LW« w

3 form<2ton—1
4 do L(™) « EXTEND-SHORTEST-PATHS(L("~1), W)
5

return L("—1)

» Time complexity: @(n?).
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How to Speed Up Multiplicative Method?

> We are often interested only in matrix L"),
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How to Speed Up Multiplicative Method?

> We are often interested only in matrix L"),

> If there is no negative-weight cycle, then L") = L("=1) for al|
m>n-—1.

» Multiplicative operation defined in EXTEND-SHORTEST-PATHS is
associative.

» Therefore, we can decrease the number of products from n — 1 to
[logn — 1] and compute the sequence of matrices

L) = 13

L2 = W?

L®&) = W4 = W2 . W2

1.8 = W8 = W4 . W4
L(zﬂogn—ﬂ) _ W(zﬂ(.)gn—ﬂ) _ Wzﬂogn—l]fl . Wzﬂognfﬂ—l

Since 2108711 > 3 — 1, we get the final product p@er Tty g (n-1)
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Faster Multiplicative Method

FAST-ALL-SHORTEST-PATHS(W)
1 n < rows[W]|

2 LW« w

3 m+1

4 whilem <n—1
5 do L(2") « EXTEND-SHORTEST-PATHS(L(™), (™))
6 m < 2m

7 return L(")

» Time complexity: @(n®logn).
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