1/50

Part V1I.
Models for Context-Free
Languages

2/50

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of
srammatical rules, by which it
generates strings of its language.

Ilustration: | Start nonterminal ‘
Grammar G: | ﬁ Rule: S — AB

Nonterminals:‘ A, B, ‘ B
Rule: A — ab

Terminals: ‘ a,b,c,d ‘

ab
Rules: S —> AB, ﬁ,Rule: B — bBa
j ~ “‘l;lb | | abbBa
B :)) ZB, Rule: B — ba
a, —t—
B = ba abbbaa € L(G)

3/50
Context-Free Grammar: Definition

Definition: A context-free grammar (CFQG) 1s a

quadruple G = (N, T, P, S), where

* N is an alphabet of nonterminals

e T'1s an alphabet of terminals, NN T = O

* P 1s a finite set of rules of the form 4 — x,
where 4 e N,x € (NU T

* § € N is the start nonterminal

Mathematical Note on Rules:
« Strictly mathematically, P is a relation from N to (N U T)”

* Instead of (4, x) € P, wewrite A >x € P

* A - x means that 4 can be replaced with x
* A — ¢ s called erule

4/50

Convention
e A, ..., F,S :nonterminals
N : the start nonterminal
ca,..,d . terminals
« U,...,7Z :membersof (NU T)
U, ...,z : members of (N U T)
. . sequence of productions

A subset of rules of the form:
A—=>x,A>x,....,A>Xx,

can be simply written as:
A->x|x]|...|x

n

5/50

Derivation Step

Gist: A change of a string by a rule.

Definition: Let G= (N, T, P, S) be a CFG. Let
u,ve (NuT)*and =A4 — x € P. Then, uAdv
directly derives uxv according to 1n G, written
as uAv = uxv | | or, ssmply, uAv = uxv.

Note: If uAv = uxv in G, we also say that G makes a
derivation step from uAv to uxv.

iy [A] v,

Rule: A —> x //MM V\X

6/50

Sequence of Derivation Steps 1/2
Gist: Several consecutive derivation steps.

Definition: Let u € (N U T)". G makes a
zero-step derivation from u to u; in symbols,
u = u [€] or, simply, u =° u

Definition: Let u,,....u, € (NU 1), n>1, and
u,, > u,|pl,p,e P,toralli=1,..., n; that 1s

ug = uy [pl=uy [p,] ... = u, [p,]
Then, G makes n derivation steps from u, to u,,

u, =" u, |p;... p,] or, ssmply, u, =" u,

7/50

Sequence of Derivation Steps 2/2

If uy =" u, [n] for some n = 1, then u, properly
derives u, in G, written as u, =" u, [x].

If uy =" u, [] for some n > 0, then u, derives
u, in G, written as u, =" u, [n].

Example: Consider

aAb

Then,

—> aaBbb
aaBbb = aacbb

aAb =2 aacbb
aAb =" aacbb
aAb =" aacbb

[1: A — aBb], and
[12: B — c].

12
12

12

8/50

Generated Language
Gist: G generates a terminal string w by a
sequence of derivation steps from S to w

Definition: Let G = (N, T, P, S) be a CFG. The
language generated by G, L(G), 1s defined as
LG)={wweT, S=>"w

Illustration:
G=(WN,T,P,S),letw=a,a,...a,;a. e Tlori=1..n

if S=>...=>..=>a4a,..4, then w € L(G);

otherwise, w ¢ L(G)

9/50

Context-Free Language (CFL)

Gist: A language generated by a CFG.

Definition: Let L be a language. L 1s a context-
free language (CFL) 1f there exists a context-free
grammar that generates L.

Example:
G=(N,T,P,S), where N={S}, T={a, b},
P={1:8—>aSh,2:. 85 > ¢}
S=>e] Sy U@={a"bn20}
S=aSh|l]|= ab [2]
S=aSb || = aaShb || = aabb |]

| L={a"b": n> 0} is a CFL.

10/50

Rule Tree
* Rule tree graphically represents a rule
A A
DA->e|| | 4-5xx..X,;
g X X, ... X,

* Derivation tree corresponding to a derivation

= U,U,...U, AV|V,...V,
= U,U,...U, x V|V,...V, //

Rule tree
corresponding
to4d —>x

11/50

Derivation Tree: Example
G=WN,T,P,E), where N={E, F, T}, T=1{i,+,*,(,)},

P={ 1. E— E+T, E—> T, : T — T*F,

. T — F, F— (E), F—i }
Derivation: Derivation tree:
E=E+T E

E

[1]
] .
= E+i*F [0] T T
=>T+i*F |’] | |/\
¥ 1 [6]
[4]
[6]

F|F|F
N
l

I + 1 % 1

12/50

[Leftmost Derivation

Gist: During a leftmost derivation step, the
leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFQG, let

uel ,ve NUT) ' .Letp=A—>xc Pbea

rule. Then, uAv directly derives uxv in the

leftmost way according to p in G, written as
uAv =, uxv |p]

Note: We define =, " and =, by analogy with =*
and =", respectively.

13/50

Leftmost Derivation: Example
G=WN,T,P,E)y, where N={E, F, T}, T=1{i,+,%,(,)},

P={1.E— E+T, . E—> T, : T — T*F,
. T — F, F— (E), F—i }
Leftmost derivation: Derivation tree:
L=, E+T [1] £
mLtT |7] E T
=mL+T 4] |
=m 1 TL 0] T T/\
=i | +T*F [3] ||
=>m | TE*F 4] F | F | F
=, i+ i*F[6] o
=, i +i*i|[0] AR

14/50

Rightmost Derivation

Gist: During a rightmost derivation step, the
rightmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFQG, let

uec(NuUTl)y,veT'.Letp=A—>xc Pbea

rule. Then, uAv directly derives uxv in the

rightmost way according to p in G, written as
uAv = uxv |p]

Note: We define =, *and =, * by analogy with =*
and =", respectively.

15/50

Rightmost Derivation: Example
G=W,T,P,E),where N={E, F, T}, T={i,+, %, ()},

P={ 1. E— E+T, E—> T, : T — T*F,
: T > F, . F—> (), 6.F-—>i }
Rightmost derivation: Derivation tree:
E=,E+1 |l] L
=, E+T*F [3] E T
=m E+T7 1 [0] |
=m EHLE* 1 [4] T | T
=m £+ 17 1 [0] | |
= Lt 171 [2] F | F|F
>y E+ 0% 0 4] e
i [6] I + 1 * 1

=

rm

16/50

Der1vations: Summary

e [etA— x e Pbearule.

1) Derivation:

Letu,ve (NUT) uAv = uxv
Note: Any nonterminal is rewritten

2) Leftmost derivation:

Letue T',ve (NUT) :uAv= uxv
Note: Leftmost nonterminal is rewritten

3) Rightmost derivation:

Letue (NOUT),veT :udAv=__ uxv
Note: Rightmost nonterminal is rewritten

17/50

Reduction of the Number of Derivations

Gist: Without any loss of generality, we can
consider only leftmost or rightmost
derivations.

Theorem: Let G=(N, T, P, S) be a CFG.
The next three languages coincide

(D) {w:wel,S=, w

) {w:weT,S=, " w}

B){wwe T, S="w} =L(G)

18/50

Introduction to Amblgulty

= (N, T, P, E), where

exprl

N={E F, T}, T={i,+* ()}, E/\T
P={ I.E—>E+T, 2: E—>T, ,
3:T—> T*F, 4:T—F, T]I*/\
5:F—>(E), 6:F—>i}
[Theory: oxpracties 0] 4
I + 1 % i
oy = IV, T, P, E), where E K
prE} T={i,+ % (), AR
P={1:E— E+E,2: E —> E*E, E E\| E
3 E—(E), 4:E—i }E/P; ‘ ‘ lE
| 1 |

i+ixi 1 +ixi

Note: L(G,y,1) = L(Gypo) Improperﬁuring compilation

19/50

Grammatical Ambiguity

Definition: Let G = (N, T, P, S) be a CFG.
If there exists x € L(G) with more than one
derivation tree, then G 1s ambiguous;
otherwise, G 1s unambiguous.

Definition: A CFL, L, is inherently ambiguous
if L 1s generated by no unambiguous grammar.

Example:

* G, 1s unambiguous, because for every x € L(G
there exists only one derivation tree

* G, 1s ambiguous, because for i+i*i € L(G
there exist two derivation trees

L, = L(Gexp,,l) L(Gexprz) 1s not inherently ambiguous

expr

because G, ., is unambiguous

exprl)

expr2)

20/50

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.

Finite
—»| State
Read-write head Control
Read head
Pushdown: \ 4 Input tape: \ 4
Al ... |4,]|A; a, lay| ... a;| ... |a,

move of head
top

21/50

Pushdown Automata: Definition

Definition: 4 pushdown automaton (PDA) 1s

a’7-tuple M= (0,2, I',R,s, S, F), where

* 0 1s a finite set of states

2. 1S an input alphabet

 ['1s a pushdown alphabet

* R 1s a finite set of rules of the form: Apa — wq
whered el',p,ge Q,acXu e, wel”

* s € Q1s the start state

* § € I 1s the start pushdown symbol

* ' QO 1s a set of final states

22/50

Notes on PDA Rules

Mathematical note on rules:

» Strictly mathematically, R 1s a relation
fromI'x Ox (XU {e)tol x O

* Instead of (4Apa, wq) € R, however, we write

Apa = wq € R
* Interpretation of Apa — wq: if the current

state 1s p, current input symbol 1s a, and the
topmost symbol on the pushdown 1s 4, then M
can read a, replace 4 with w and change state p
to q.

* Note: if a = €, no symbol 1s read

23/50

Graphical Representation

@ represents g € O
—>® represents the initial state s € Q

represents a final state f € F

@ Alw, a >@ denotes Apa — wq € R

24/50

Graphieal Representation: Exam&

M=(0,%,I.R,s S, F)
where: T

*0=1{s,p,94,f};

> =1{a,b};

e ['={a, S};

* R={Ssa — Sap,
apa — aap,
apb — ¢,
agb — ¢q,
Sq —f}

e F = {f}

25/50

PDA Contiguration

Gist: Instantaneous description of PDA

Definition: Let M= (0,2, 1, R, s, S, F) be a PDA.
A configuration of M is a string y € " OX"

Finite State
- Control —

Read-write head = current state

Pushdown: Input tape: yRead head

E“‘ .| A4, ‘ZLJ a, |ay| ... a;| ... |a,

T
%ﬁiguration

26/50

Move
Gist: A computational step made by a PDA

Definition: Let xApay and xwgqy be two configurations
of a PDA, M, where

x,wel,Ael,p,ge O,ac XU {e},andy € X"
Let =Apa —> wq € R be arule. Then, M makes

a move from xApay to xwqy according to , written as
xApay |- xwqy [] or, simply, xApay |- xwqy.

Note: if & = g, no input symbol is read

Configuration: 1 X | @ 61‘ ..V|

Rules Apu > w?// //Jv /2

New configuration: @ , y ,

27/50

Sequence of Moves 1/2
Gist: Several consecutive computational steps

Definition: Let ¥ be a configuration. M makes
zero moves from y to y; 1n symbols,

% |- x [] or, simply, x |-° %
Definition: Let y,, %, ..., X, b€ a sequence of
configurations, n > 1, and x,, |-, [7;], 7, € R,
foralli=1, ..., n; that 1s,

Xo =% [md =% 17l oo =%, 17
Then M makes n moves from ¥, to ¥,
Xo =" % [71--- 1] o1, simply, %o |- %,

28/50

Sequence of Moves 2/2

It y, " %, [p] for some n > 1, then

Xo |_+ Xn [p] Or, Slme’: Xo |_+ Xn

It y, " %, [p] for some n > 0, then

Xo |_* Xn [p] Or, Slme’» Xo |_* Xn

Example: Consider
AApabc |- ABgbc [1: Apa — Bq], and
ABgbc |- ABCrc [2: Bgb — BCr].

Then,

AApabc |-* ABCrc [1 2],
AApabc |- ABCrc 1 2],
AApabc |- ABCrc [1 2]

29/50

Accepted Language: Three Types

Definition: Let M= (0, 2,1, R, s, S, F)) be a PDA.

1) The language that M accepts by final state,
denoted by L(M);, is defined as

LM);={w:weXZ, Sswl-zf,z €I, fe F}
2) The language that M accepts by empty pushdown,
denoted by L(M),, 1s defined as

LM),={w:w e X% Ssw|-—"zf,z=¢, f € O}
3) The language that M accepts by final state and

empty pushdown, denoted by L(M), 1s defined as
LM)p={w:w e X, Sswl-"zf,z=¢,f € F}

30/50

PDA: Example

M=(0,X,T,R,s,S,F)
where:

*0=15p,9f};

> =1{a,b};

"= {a, S};

* R={Ssa — Sap,
apa — aap,
apb — ¢,
agb — ¢q,

Question: aabb < L(M)fg?

[S|®[a]]2]5]

Rule: Ssa —> Sap

[STe]@[a]p]?]

Rule: apa — aap

[STe[«]@[5]5]

Rule: apb — ¢q

[S«1@[2]

Rule: agh — ¢

.@I] ‘ Final state ‘

Sq —f} Empty |Rule: S
« F={f} pushdown | Answer: YES

Ssaabb |- Sapabb |- Saapbb |- Saqb |- Sq |- f

Note: L(M),= L(M),=L(M);, = {a"b". n > 1}

31/50

Three Types of Acceptance: Equivalence

Theorem:

*L=L(M) toraPDAM, & L = L(M), tora PDA M,
*L=L(M,) toraPDAM <L = L(M,),tora PDA M,
*L =LM),toraPDA M, < L =L(M,), fora PDA M,

Note: There exist these conversions:

PDA M,, that accept L
by final state and
empty pushdown

T

PDA M, that accept L
by empty pushdown

PDA M, that accept L
by final state

32/50

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than
one move from any configuration.

Definition: Let M= (0, 2,1, R, s, S, F)be a
PDA. M 1s a deterministic PDA 1f for each rule
Apa — wq € R, 1t holds that R — {Apa — wq}
contains no rule with the left-hand side equal
to Apa or Ap.

Illustration: Configuration:

V.t 1
‘ L ‘ ‘ég ‘ a ‘ LY
—> W
No more that one rule of the forms <>¥4p 171

\ Apa — wyq,

33/50

PDAs are Stronger than DPDAs

Theorem: There exists no DPDA M, that accepts
L={xy:x,yeX y=reversal(x)}

Proof: See page 431 in [Meduna: Automata and Languages]

Illustration: L=1{o:x,yeXy=reversal(x)!

O

The family of deterministic The family of
CFLs—the languages (languages accepted
accepted by DPDAs by PDAs

34/50

Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a
string rather than a single symbol.
Definition: An Extended Pushdown automaton

(EPDA) 1s a 7-tuple M= (0, X, I, R, s, S, F),
where O, 2, I, s, S, F are defined as in an PDA and
R 1s a finite set of rules of the form: vpa — wq,
where v, we I, p,g € Q,a € 2 U {&}

Illustration:

Pushdown of PDA: Pushdown of EPDA:
| | | | | |
L X | ‘ A L X ‘ 1Y

—— —_——
PDA has a single symbols as the EPDA has a string as the

pushdown top pushdown top

35/50

Move in EPDA

Definition: Let xvpay and xwqy be two configurations
of an EPDA, M, where x,v,w e I'",p,q € O,a € X
U {e},andy € X*. Let r=vpa —> wq € R be arule.
Then, M makes a move from xvpay to xwqy according
to r, written as xvpay |— xXwqy [r] or xvpay |— xwqy.

Configuration: | @ a ‘ ,y l
Rule: vpa —> wq\ \\ * // //
New configuration: 7 @ l .V |

Note: |-, |7, |-*, L(M),, L(M), , and L(M),, are defined
analogically to the corresponding definitions for PDA.

36/50

EPDA: Example

M=(Q,%,T,R,s,S, F)

where: —
* O =15, f};
> =1{a,b};
eI'=1{a,b,sS, C};
*R=1{ sa— as,
sb — bs,
s — Cs,
aCsa — Cs,
bCsb — Cs,
SCs —> [}
« F = {f}

Question: abba Lfg(M)?

Ssabba |- Sasbba |- Sabsba
— SabCsbha |- SaCsa
-S5Cs |-f

Answer: YES

Note: L(M),= L(M),=L(M),, = {xy: x,y € X7, y = reversal(x)}

37/50
Three Types of Acceptance: Equivalence

Theorem:

* L = L(M), tor an EPDA M, < L = L(My),, for an EPDA M,
* L = L(M,). tor an EPDA M, < L = L(Mp),, for an EPDA M,
* L = L(M), tor an EPDA M, < L = L(M,), for an EPDA M,

Note: There exist these conversion:

EPDA M, that accept L
by final state and
empty pushdown

i |

EPDA M, that accept L
by final state

EPDA M_ that accept L
by empty pushdown

38/50

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there 1s a PDA A,
and L(M),= L(M’),.

Proof: See page 419 in [Meduna: Automata and Languages]
Illustration:

The family of The family of
languages accepted languages accepted
by EPDAs by PDAs

39/50

EPDAs and PDAs as Parsing Models for CFGs

Gist: An EPDA or a PDA can simulate the
construction of a derivation tree for a CFG

* Two basic approaches:
1) Top-Down Parsing | 2) Bottom-Up Parsing

Input string ‘

Input string

From the input
string towards $

From .§ towards
the input string

’

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols
onto the pushdown:

Loxy (Olal vy | foreverya e 3

| add sa = as to R;

L, 1e|lOL 1y,

2) M contains reduction rules that simulate the
application of a grammatlcal rule in reverse:

-®‘ 'y' foreveryA—)xePinG:
‘ — ‘ ‘ — ‘addxs—)AstoR;

LY 1) |

3) M also contains the rule #5s — / that takes M to a
final state

41/50

EPDAs as Models of Bottom-Up Parsers 2/2

Bottom-up construction of a derivation tree:

(@]l
_—3

"HSs > € R

Rule: Y>> xBC Derivation tree:
[#] Tx| |B|C||]
Rule: C > 7

|#| 1Y | |B| :Z: II]

A\

A\

=
A\

42/50

Algorithm: From CFG to EPDA

e Input: CFGG=WV, T, P, 5)
* Output: EPDA M= (Q,%, T, R, 5, #, F); L(G) = L(M),
* Method:
* Q= 1{5/};
> =1T;
c['=NU T U {#};
* Construction of R:
 for every a € 2, add sa — as to R;
 for every A > x € P, add xs = As to R;
e add #5s = [to R;
* F={/};

43/50

From CFG to EPDA: Example 1/2
cG=(N,T,P,S), where:

N=385,T=1();, P=18—>(5),5 > ()j
Objective: An EPDA M such that L(G) = L(M),

M =0, 2, 1,R,s,#, F)where:
O=1{s/2=T={(); I'=NUTU {#} =1{S, (,), #}

““eT “)eT S->©S)eP S—>()eP

iy .y
R=1{s(—> (s, s)>)s, (8)s >S8s, ()s >S5, #Ss > [}
shift rules reduction rules

F= 4/}

44/50

From CFG to EPDA: Example 2/2
M =(0,2,1,R,s, #, F), where:

O=1{s,/52=T={G)}, I'=1G), S, #}, FF'=1{/}
R={s(—> (s,8) >)5, (8)s > S5, ()s > s, #Ss —> [}

Question: (()) € L(M)? Rule: ()s = S

AGMIMD] | [FIdSION] B

Rule: s(= (s 1 Rule: 5) >)s N
FLAOLD] ¢ ' ELdshlel O
Rule: s(= (s : Rule: (5) > § S
FITAELD] i [EEIOI /AN
Rule: 5) -)s : Rule: #Ss — (())

ErnmEnon () 1| Final stat
‘ — Sae\—/glswer YES

45/50

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the
pushdown and reads the input symbol if both coincide:

L .x, ‘“‘@‘“‘ 2 ‘foreveryan:

1O 5 add asa — s to R;
| |

2) M contains expansion rules that simulate the
application of a grammatical rule:

@‘ 'y, |foreveryd —>a,...a, € PinG,

add As > a,, ...a;s to R;
‘an:...:ad ‘ :y : ‘ ;reversal(al eeell,)

46/50

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

...Iak| b1|°":bl Icl:“‘ :le

B
ClBlay- - WA EACTEA
| by.-ab | cipee £l Derivation tree:
B — b,..b,
[T 54 A
C - c..c,
\4 | €0]
Empty

pushdown

47/50

Algorithm: From CFG to PDA

* Input: CFGG=(N, T, P, 5)
* Qutput: PDAM=(Q,%,T,R,s, 5, F); L(G)=LM),
e Method:

* Q= {s};
> =1T;
eI =NUT;

* Construction of R:
e for every a € 2, add asa — s to R;
» forevery A > x € P, add As = ys to R,
where y = reversal(x);
o F':=;

48/50

From CFG to PDA: Example 1/2

«G=(N,T,P,S), where:
N=1{8},T=1()}, P=15—>(5),5 > ()}
Objective: An PDA M such that L(G) = L(M),

M=(Q,2, I,R,s,S, F)where:

Q={s}; Z2=T={(G)}; T'=NuUT={S,()}
“WeT “eTl S>S)eP S—>(),eP

l 15 [

R=1{(s(—>s,)s)—)s Ss—))S(s Ss —)(s }
popping rules expansion rules

F=0

49/50

From CFG to PDA: Example 2/2

M=(0,2,1,R,s,S,F), where:
Q=11 2=T={)},I['=1{(),S},F=9

P={((—>s,)s)—>s, 8s—)S(s,

Ss —)(s }

Question: (()) € L(M),?
[SIOLMDO D] s

Rule: §5 —)S(s

DISTA®OLAD D] s
Rule: (s(> s
DISI®OLDD] (s
Rule: Ss —)(s N

>

DDhId®LDD]

atededd

—_—
—
A
~

S

Rule: (s(> s S
LDIGDLD] (/("‘)\)

Rule:)s) = s S
NIO0DT /Q\
Rule:)s) > s ((S))
jor A
Empty (())

pushdown | Answer: YES

50/50

Models for Context-free Languages

Theorem: For every CFG G, there 1s an PDA
M such that L(G) = L(M)..

Proof: See the previous algorithm.

Theorem: For every PDA M, there 1s a CFG
G such that L(M), = L(G).

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for

context-free languages are
1) Context-free grammars 2) Pushdown automata

