1/22

Regulated Pushdown

Automata
Alexander Meduna

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic, Europe

2/22
Fundamental References

* Meduna Alexander, Kolar DuSan:
Regulated Pushdown Automata, Acta Cybernetica,
Vol. 2000, No. 4, p. 653-664

* Meduna Alexander, Kolar DuSan:

One-Turn Regulated Pushdown Automata and
Their Reduction, Fundamenta Informatica,
Vol. 2002, No. 16, p. 399-405

3/22

Inspiration: Regulated Grammars

e Grammar G:

1.8 > AC
2.4 —> aAb
3.4 —> ab

4. C > Cc

5.C—>c

« 5 =1{1}{24}"{35}

4/22

Regulated Grammars 1/2

 Grammar G: * Without =, G
1.8 > AC generates aabbccc:
3.4 — ab = adbC [2
4.C—> Cc = adbCc [4
S.C—>c¢ = aabbCc [3
== {1}424}"435} = aabbCcc |4
=> aabbccc 5

L(G) = {a"b"c": n,m > 1}

5/22

Regulated Grammars 2/2

» with =, G does not generate aabbccc, because
124345 ¢ E = {1}{24}7{35}
» with =, G generates aabbcc:

S = AC 1
= aAbC 2
= aAbCc 4
= aabbCc 3]
—> aabbcc 5]

and 12435 € £
L(G, E)={a"b"c": n =2 1}

6/22

PDA: Notation

* A PDA is based on a finite set of rules
of the form:

pushdown syw

Aqa —> xp

input symbol or €| |pushdown string

7/22

New Concept: Regulated PDAs

s PDA M:

. Ssa — Sas
. asa — aas
.asb — ¢
.aqgb > ¢q
. 8qgc > 8q
.Sqc > f

o = = {12"34"5"6: m, n > 0}

N £ W N -

=)

8/22

Regulated PDAs 1/2

 PDA M: * Without =, M
1. Ssa = Sas accepts aabbccc:

2. asa —> aas Ssaabbccc
3.ash > g = Sasabbccc |1
4. agh - g = Saasbbccc ;2:
5. Sqc — Sq = Saqgbccc :3;
6.5qgc—>f = Sqccec :4:
— = Sqcc 5
= = {12"34"5"6: m, n > 0} = Sqc '5°
=/ 6.

L(M) = {a"b"c": n,m > 1}

9/22

Regulated PDAs 2/2

» with =, M does not accept aabbcce because
1234556 ¢ = = {12"34"5"6: m, n > 0}
» with =, M accepts aabbcc:

Ssaabbcc = Sasabbce [1]
= Saasbbcc |2
= Saqgbcc 3
= Sqcc 4
= 8qc S5
= f 6

and 123456 € £
LM, E)={a"b"c": n 2 1}

10/22

Gist: Regulated PDAs

* Consider a pushdown automaton, M, and
control language, =.

* M accepts a string, x, 1f and only 1f =
contains a control string according to
which M makes a sequence of moves so it
reaches a final configuration after reading x.

11/22

Definition: Regulated PDA 1/4

A pushdown automaton 1s a 7-tuple
M=(0,%, Q R,s,S, F), where
0 1s a finite set of states,
* 2 1s an input alphabet,
» () 1s a pushdown alphabet,
* R 1s a finite set of rules of the form:
Apa — wq, where
AeQ pge O acXuiel,we
e s € Q1s the start state
e § € Q 1s the start symbol
 FF'c Q1s a set of final states

12/22

Definition: Regulated PDA 2/4

* Let ¥ be an alphabet of rule labels. Let every
rule Apa — wq be labeled with a unique p € ¥ as

p. Apa — wyq.

* A configuration of M, y, is any string from Q" Q%"

* Foreveryx € Q°, y € X7, and p. Apa — wq € R,
M makes a move from configuration xApay to
configuration xwqy according to p, written as

xApay = xwqy [p]

13/22

Definition: Regulated PDA 3/4

 Let y be any configuration of M. M makes zero
moves from y to y according to €, written as

x =" % [€]

* Let there exist a sequence of configurations
o> Lis ---» A, TO0r some n = 1 such that y., = %, [p;],
where p,; € ¥, for i = 1,...,n, then M makes n moves
from y, to vy, according to [p, ...p,], written as

14/22

Definition: Regulated PDA 3/4

o If for some n =0, y, =" %, [Py--- P,], WE Write

 Let = be a control language over W, thatis, 2 ¢ \V".
With =, M accepts its language, L(M, £), as

LM, Z)={w:w e X7, Ssw =" f[c],c € E}

15/22

Language Families

 LIN - the family of linear languages

 CF - the family of context-free languages

* RE - the family of recursively enumerable
languages

* RPD(REG) - the family of languages accepted
by PDAs regulated by regular

« RPD(LIN)

languages

- the family of languages accepted

by PDAs regulated by linear
languages

16/22

Theorem 1 and 1ts Proof 1/2

RPD(REG) = CF

Prootf:
I. CF < RPD(REG) 1s clear.

II. RPD(REG) c CF:
e Let L = L(M, =),

‘ PDAr ‘TRegular language

e Let = = L(G), G - regular grammar based
onrules: A > aB, A — a

17/22

Theorem 1 and 1ts Proof 2/2

Transtorm M regulated by = to a PDA N
as follows:

1) for every a.Cgb — xp from M and
every A = aB from G,
add C<gA>b —> x<pB>to N

2) for every a.Cqgb — xp from M and
cvery A — a from G, New symb()l
add C<gA>b — x<p/>to N

3) The set of final states in V:
{<pf>: p is a final state in M}

18/22

Theorem 2

RPD(LIN) = RE

Proof:

* See [Meduna Alexander, Kolar DuSan:

Regulated Pushdown Automata, Acta
Cybernetica,Vol. 2000, No. 4, p. 653-664]

19/22

Simplification of RPDAs 1/2

I. consider two consecutive moves made by a
pushdown automaton, M.

If during the first move M does not shorten its
pushdown and during the second move it does,
then M makes a turn during the second move.

* A pushdown automaton 1s one-turn 1f it
makes no more than one turn during any
computation starting from an 1nitial
configuration.

20/22

One-Turn PDA: Illustration

>

One-turn

Length of pushdown

Moves

21/22

Simplification of RPDAs 2/2

II. During a move, an atomic regulated PDA
changes a state and, in addition, performs exactly
one of the following actions:

1. pushes a symbol onto the pushdown
2. pops a symbol from the pushdown
3. reads an input symbol

22/22

Theorem 3

 Every L € RE is accepted by
an atomic one-turn PDA

regulated by =, where = € LIN.

Prootf:

* See [Meduna Alexander, Kolar DuSan:
One-Turn Regulated Pushdown Automata
and Their Reduction, Fundamenta

Informatica,Vol. 2002, No. 16, p. 399-405]
End

