
New Trends in Formal Languages

Professor Alexander Meduna, PhD
Brno University of Technology

February 12 – 15, 2007

12:00 – 14:00

I. New Variants of Pushdown Automata.
February 12, 12:00 - 14:00

Classical Pushdown Automata. We start the lecture by reviewing the basic notions
concerning the ordinary pushdown automata.

Regulated Pushdown Automata. This second part of the lecture suggests a new investigation
area of the formal language theory--regulated automata. Specifically, it investigates
pushdown automata that regulate the use of their rules by control languages. It proves that
this regulation has no effect on the power of pushdown automata if the control languages are
regular. However, the pushdown automata regulated by linear control languages characterize
the family of recursively enumerable languages. All these results are established in terms of
acceptance by final state, acceptance by empty pushdown, and acceptance by final state and
empty pushdown. In its conclusion, this lecture formulates several open problems.

Deep Pushdown Automata. Indisputably, the context-free grammars and pushdown automata,
which represent their fundamental automaton counterpart, fulfill a crucial role in the formal
language theory. Over its history, this theory has modified the context-free grammars in
many ways, including various regulated versions of these grammars. Many of these modified
context-free grammars define a language family lying between the families of context-free
and context-sensitive languages. To give a specific example, an infinite hierarchy of language
families between the families of context-free and context-sensitive languages was established
based on n-limited state grammars, which represent a regulated grammars underlain by
context-free grammars. As a matter of fact, most regulated context-free grammars without
erasing productions are stronger than context-free grammars but no more powerful than
context sensitive grammars. Compared to the number of grammatical modifications, there
exist significantly fewer modifications of pushdown automata although the automata theory
has constantly paid some attention to their investigation. Some of these modifications, such
as finite-turn pushdown automata, define a proper subfamily of the family of context-free
languages. On the other hand, some other modifications, such as two-pushdown automata,
are as powerful as the Turing machines. As opposed to the language families generated by
regulated context-free grammars without erasing productions, there are hardly any
modifications of pushdown automata that defines a language family between the families of
context-free and context-sensitive languages. It thus comes as no surprise that most of these
modified context-free grammars, including the n-limited state grammars, lack any automaton
counterpart.
 During this lecture, we introduce a deep pushdown automata, which represent a new
modification of ordinary pushdown automata. However, as opposed of the previous
modifications, the power of the deep pushdown automata is similar to the generative power of
regulated context-free grammar without erasing productions because they are stronger than
ordinary pushdown automata but less powerful than context sensitive grammars. More
precisely, these automata give rise to an infinite hierarchy of language families coinciding

with the hierarchy resulting from the n-limited state grammars. In this sense, the deep
pushdown automata represent the automaton counterpart to the state grammars and, in this
sense, fill this gap.
 The introduction of deep pushdown automata is inspired by the standard conversion of
a context-free grammar to an equivalent pushdown automaton, M, frequently referred to as
general top-down parser. Recall that during every move, M either pops or expands its
pushdown depending on the symbol occurring on the pushdown top. If an input symbol, a,
occurs on the pushdown top, M compares the pushdown top symbol with the current input
symbol, and if they coincide, M pops the topmost symbol from the pushdown and proceeds to
the next input symbol on the input tape. If a nonterminal occurs on the pushdown top, the
parser expands its pushdown so it replaces the top nonterminal with a string. M accepts an
input string, x, if it makes a sequence of moves so it completely reads x, empties its
pushdown, and enters a final state; the latter requirement of entering a final state is dropped in
some books.
 A deep pushdown automaton, deepM, represents a slight generalization of M. Indeed,
deepM works exactly as M except that it can make expansions of depth m so deepM replaces the
mth topmost pushdown symbol with a string, for some m ≥ 1. We demonstrate that the deep
pushdown automata that make expansions of depth m or less, where m ≥ 1, are equivalent to
the m-limited state grammars, so these automata accept a proper language subfamily of the
language accepted by the deep pushdown automata that make expansions of depth m + 1 or
less. The resulting infinite hierarchy of language families obtained in this way occurs
between the family of context-free and context-sensitive languages. For every positive
number n, however, there exist some context-sensitive languages that cannot be accepted by
any deep pushdown automata that make expansions of depth n or less.
 In the conclusion of this lecture, we formulate some open problem areas concerning
the deep pushdown automata. Specifically, it suggests some deterministic and generalized
versions of these automata to study.

II. Semi-Parallel Grammars
February 13, 12:00 - 14:00

Indisputably, the parallel computation fulfills a crucial role in the modern computer science
as a whole. Whenever investigating this computation, we face the problem of choosing its
most appropriate model in order to grasp it as rigorously as possible. In the formal
language theory, it is more than natural to base this model upon a suitable type of
grammars.
 To have the grammatical model of parallel computation simple, we surely prefer
grammars based on context-free productions to those based on context-dependent
productions. However, sequential grammars, such as an ordinary context-free grammars,
can hardly serve as a model of this kind because they rewrite only a single symbol during a
derivation step. Although purely parallel grammars, such as L systems, reflect the parallel
computation more appropriately, this reflection is still not quite adequate from a realistic
point of view. Indeed, these parallel grammars work in a completely parallel way since
they rewrite all symbols of the sentential form during a derivation step. In reality, however,
parallel computation is usually performed in a partially parallel way: some parts of
information are processed in parallel while the rest remains unchanged. Of course, this
partially parallel computation is most appropriately formalized by partially parallel
grammars, which represent a compromise between purely sequential and purely parallel
grammars. That is, these grammars work in a semi-parallel context-free way so that they
simultaneously rewrite some symbols during a single derivation step while leaving the

other symbols unchanged. Partially parallel grammars of this kind are discussed in the
lecture.
 This lecture concentrates its investigation on the descriptional complexity of
partially parallel grammars. Specifically, it reduces the number of some of their
components, such as nonterminals or productions. It studies how to achieve this reduction
without any decrease in this generative power, which coincides with the power of the
Turing machines. By achieving this reduction, it actually makes the partially parallel
rewriting more succinct and economical, and this economization is obviously highly
appreciated both from a practical and theoretical standpoint.
 More specifically, a special types of partially parallel context-free rewriting is
central to this lecturescattered rewriting. During a derivation step, scattered context
grammars rewrite some symbols of the sentential form while leaving the others unrewritten.
This lecture gives an overview of the main results concerning the descriptional complexity
of these grammars with respect to the number of nonterminals or productions. In the
conclusion, some open problems are pointed out.

III. Grammars with Context Conditions
February 14, 12:00 - 14:00

In the classical formal language theory, we can divide grammatical productions into context-
dependent and context-independent productions, and based on this division, we can naturally
distinct context-dependent grammars, such as phrase-structure grammars, from context-
independent grammars, such as context-free grammars. Making a derivation step according
to context-dependent productions depends on rather strict conditions satisfied by the context
surrounding the rewritten symbol while making a step according to context-independent
productions does not, so from this point of view, we obviously always prefer using context-
independent grammars to the others. Unfortunately, compared to context-dependent
grammars, context-independent grammars are significantly less powerful; in fact, most of
them are incapable to grasp some aspects of quite common programming languages. On the
other hand, most context-dependent grammars are equivalent to the Turing machines, and this
remarkable power represents their indisputable advantage. These pros and cons inspired the
modern language theory to introducing some new grammars that simultaneously satisfy these
properties(1) they are based on context-independent productions, (2) their context
conditions are significantly simpler than the strict conditions of classical context-dependent
productions, and (3) they are as powerful as classical context-dependent grammars.

In this lecture, we overview the most essential types of these grammars, whose alternative
context conditions can be classified into these three categories(A) context conditions placed
on derivation domains, (B) context conditions placed on the use of productions, (C) context
conditions placed on the neighborhood of the rewritten symbols.
As already pointed out, we want the context conditions as small as possible. Therefore, we
concentrate the investigation on the reduction of context conditions. Specifically, it reduces
the number of some of their components, such as nonterminals or productions. It studies how
to achieve this reduction without any decrease in this generative power, which coincides with
the power of the Turing machines. By achieving this reduction, it actually makes the partially
parallel rewriting more succinct and economical, and this economization is obviously highly
appreciated both from a practical and theoretical standpoint. Regarding each of the discussed
grammars, we introduce and study their parallel and sequential versions, which represent two
basic approaches to grammatical rewriting in today’s formal language theory. That is, during
a sequential derivation step, a grammar rewrites a single symbol in the current sentential form
while during a parallel derivation step, a grammar rewrites all symbols. As context-free and

E0L grammars represent perhaps the most fundamental sequential and parallel grammars,
respectively, we usually base the discussion of sequential and parallel rewriting upon them.

IV. A Combination of Grammars and Automata
February 15, 12:00 - 14:00

In the formal language theory, the overwhelming majority of language-defining
devices is based on rewriting systems that represent either grammars or automata.
Grammars generate their languages while automata accept them. Consider,
forinstance, a context-free grammar G. G contains an alphabet of terminal symbols and an
alphabet of nonterminal symbols, one of which represents the start symbol. Starting from this
symbol, G rewrites nonterminal symbols in the sentential forms by its rules until it generates a
string of terminals. The set of all terminal strings generated in this way is the language
that G defines. To illustrate automata, consider a finite-state automaton M. M has a finite set
of states, one of which is defined as the start state. In addition, some states are specified as
final states. M works by making moves. During a move, it changes its current state and reads
an input symbol. If with an input string, M makes a sequence of moves according to its
rules so it starts from the start state, reads the input string, and reaches a final state, then M
accepts the input string. The set of all strings accepted in this way represents the language that
M defines. Although it is obviously quite natural to design language-defining devices based
on a combination of grammars and automata and, thereby, make their scale much broader,
only a tiny minority of these devices is designed in this combined way. To support this
combined design, the present lecture introduces and discusses new rewriting systems,
called #-rewriting systems, having features of both grammars and automata. Indeed, like
grammars, they are generative devices. However, like automata, they use finitely many states
without any nonterminals. As its main result, this lecture characterizes the well-known infinite
hierarchy of language families resulting from programmed grammars of finite
index by the #-rewriting systems.

From a broader perspective, this result thus demonstrates that rewriting systems
based on a combination of grammars and automata are naturally related
to some classical topics and results concerning formal languages, on which they can shed light
in an alternative way.

