1/50

Context-Free Languages
and Their Models

2/50

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of
sgrammatical rules, by which it
generates strings of its language.

Illustration: | Start nonterminal ‘

Grammar G: | Rule: S — AB
Nonterminals:‘ A, B,[5] ‘ ﬂﬁ
Rule: A — ab
Terminals: ‘ a, b, c,d ‘ .-7). e ¢
a
Rules: S > AB, ﬁ,Rule: B — bBa
j = “‘:b ’ abbBa
—> ab, ﬂ,Rule:B—)ba
B — bBa, ——
B = ba abbbaa € L(G)

3/50

Context-Free Grammar: Definition

Definition: 4 context-free grammar (CFQG) 1s a

quadruple G = (N, T, P, S), where

* N 1s an alphabet of nonterminals

o T'1s an alphabet of terminals, NN T =

e P 1s a finite set of rules of the form A — x,
where A e N,x € (NU T)"

* § € Nis the start nonterminal

Mathematical Note on Rules:
« Strictly mathematically, P is a relation from N to (N U T)"

 Instead of (4, x) € P, wewrite A >x € P

* A — x means that 4 can be replaced with x
* A — ¢ 1s called &rule

4/50

Convention
e A, ..., F,S :nonterminals
e S : the start nonterminal
ca,..,d . terminals
e U,...,Z :membersof (NUT)
U, ...,7 : members of (N U T)°
. : sequence of productions

A subset of rules of the form:
A->x,A>x,,....,A>x

can be simply written as:
A—=>x|x|...|x

n

n

5/50

Derivation Step

Gist: A change of a string by a rule.

Definition: Let G= (N, T, P, S) be a CFG. Let
u,ve (NuT)y and =A4— x e P. Then, uAv
directly derives uxv according to 1n G, written
as uAv = uxv | | or, ssmply, uAv = uxv.

Note: If uAv = uxv in G, we also say that G makes a
derivation step from uAv to uxv.

LAl

RuleA—)x// ’//@\\ \\

6/50

Sequence of Derivation Steps 1/2
Gist: Several consecutive derivation steps.

Definition: Let u € (WU 7T)". G makes a
zero-step derivation from u to u; in symbols,
u = u [€] or, simply, u =° u

Definition: Let u,,....u, € (NU 1), n > 1, and
u,, = u; [p;l,p;e P, foralli=1,..., n; that 1s

ug = uy [pl=uy [py] ... = u, [p,.
Then, G makes n derivation steps from u, to u,,

u, =" u, [p,... p,] or, ssmply, u, =" u,

7/50

Sequence of Derivation Steps 2/2

If uy =" u, [] for some n > 1, then u, properly
derives u, in G, written as u, =" u, [7].

If uy =" u, [m] for some n > 0, then u, derives
u, in G, written as u, =" u, [7].

Example: Consider
aAb — aaBbb [1: A — aBb], and
aaBbb = aacbb |2: B — c].
Then, aAb =2 aachb [1 2],
aAb =" aachbb |1 2],
aAb =" aacbb [12

8/50

Generated Language

Gist: G generates a terminal string w by a
sequence of derivation steps from $ to w

Definition: Let G = (N, T, P, S) be a CFG. The
language generated by G, L(G), 1s defined as
LG =w:weT,S="w}

Illustration:
G=(N,T,P,S),letw=a,a,...a,;a. e Ttori=1..n

if S=...=..=>a4a,..a, then w € L(G);

otherwise, w ¢ L(G)

9/50

Context-Free Language (CFL)

Gist: A language generated by a CFG.

Definition: Let L be a language. L 1s a context-
free language (CFL) 1f there exists a context-free
grammar that generates L.

Example:
G=WN,T,P,S), where N={S}, T = {a, b},
P={1:8S—>aSh,2. 5 —> ¢}
S=¢ [2] — S L(G)={a"b": n = 0}
S=aSh[1|=ab [2]

S=aSb|!]| = aaSbb ||| = aabb |2]

‘ L={a"b": n > 0} is a CFL.

10/50

Rule Tree
* Rule tree graphically represents a rule
A A
DA-el] | D4-oxx...x:| AT
e X1 Xy oo X,

* Derivation tree corresponding to a derivation

= U,U,...U, AV V,..V,|
= U,U,...U xVV,...V,| T [/
U,U,...U

Rule tree
corresponding
to4 —>x

11/50

Derivation Tree: Example
G=(N,T,P,E),where N={E, F, T}, T=1{i,+,%,(,)},

P={ 1. E— E+T, E—> T, : T — T*F,

. T > F, F—>(E), 6:F—>i }
Derivation: Derivation tree:
E=E+T 3

E

[1]

5] -
= E+F*F [4] |
= E+ 1 *F [6] T T
= T+ 1i*F [] | |/\

%1 [6]
[4]
0]

(ol

I + 1 % i

12/50

[eftmost Derivation

Gist: During a leftmost derivation step, the
leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let

uel',ve NUT) ' .Letp=A—>xec Pbea

rule. Then, uAv directly derives uxv in the

leftmost way according to p in G, written as
uAv =, uxv [p]

Note: We define =, *and =, ~ by analogy with =*
and =", respectively.

13/50

Leftmost Derivation: Example
G=WN,I,P,E),where N={E, F, T}, T={i,+, %, ()},

P={ 1. E— E+T, E—> T, : T — T*F,
. T — F, F— (E), F—i }
Leftmost derivation: Derivation tree:
E =, E+T [1])
mL+T [2] E T
—>mL+T [4] |
=, | +T*F [3] | |
=>m | TE*F [4] F | F | F
=, i+ i*F [6] AR
=, i +i*i][6] L+ orox

14/50

Rightmost Derivation

Gist: During a rightmost derivation step, the
rightmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let

uec(NuUD,vel Letp=A—>xcPbea

rule. Then, uAv directly derives uxv in the

rightmost way according to p in G, written as
uAv =, uxv |p]

Note: We define =, *and =, * by analogy with =*
and =", respectively.

15/50

Rightmost Derivation: Example
G=WN,I,P,E),where N={E, F, T}, T={i,+, %, ()},

P={ 1. E— E+T, E—> T, : T — T*F,
: T —> F, F—> (), 6.F—>i }

Rightmost derivation: Derivation tree:
E=.,E+1 [£

= E+T*F [3] E T

= E+T* i [6] |

= E+F* i [4] T T

= E+ i* i [6] | |

= Lt 17 1 [2] F | F|F

=, F+ 1% 1 [4] | | |

—_ i+ [0] Lo+ 0o

rm

16/50

Derivations: Summary

e [etA —> x e Pbearule.

1) Derivation:

Letu,ve (NUT) uAv = uxvy
Note: Any nonterminal is rewritten

2) Leftmost derivation:

Letue T,ve (NUT) :uAv=, uxv
Note: Leftmost nonterminal is rewritten

3) Rightmost derivation:

Letue (NUT),veT :udAv=__ uxv
Note: Rightmost nonterminal is rewritten

17/50

Reduction of the Number of Derivations

Gist: Without any loss of generality, we can
consider only leftmost or rightmost
derivations.

Theorem: Let G= (N, T, P, S) be a CFG.
The next three languages coincide

(D) {w:weTl,S=,~ w}

Q) {wweTl,S=,"w}
B){wweT,S="wh=L(G)

18/50

Introduction to Ambiguity

o] = (N, T, P, E), where
Np!:EFT}T{1+*()}, A—
P={ 1:E—>E+T, 2:E—>T, 1,5
:T—>T*F, 4:T—> F, T T
. F—>(E), 6:F—>i} 1'7 1'7 r
| | |
[Theory: © x Practice: ©] 1 [%}
oy = (N, T, P, E), where E E
prE}T{H*()} T~
P={1:E—E+E,2: E - E*E, E E | E
| 1 |
— i tisi i4ind

Note: L(G,,,,) = L(G

expr2) Improper during compilation

19/50

Grammatical Ambiguity

Definition: Let G=(V, T, P, S) be a CFG.
If there exists x € L(G) with more than one
derivation tree, then G 1s ambiguous;
otherwise, G 1s unambiguous.

Definition: A CFL, L, is inherently ambiguous
if L 1s generated by no unambiguous grammar.

Example:

* G, 1s unambiguous, because for every x € L(G
there exists only one derivation tree

* G, 1s ambiguous, because for i+i*i € L(G
there exist two derivation trees

L, = LG,) =L(G,,,) 1s not inherently ambiguous

expr

because G, _ . is unambiguous

exprl)

expr2)

20/50

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.

Finite
—| State
Read-write head Control
Read head
Pushdown: v Input tape: v
Al ... |4, |44 a, |a,| ... a;| ... |a,
——-

move of head
top

21/50

Pushdown Automata: Definition

Definition: 4 pushdown automaton (PDA) 1s

a’7-tuple M= (0,2, I, R, s, S, F), where

* () 1s a finite set of states

* X 1s an input alphabet

* [1s a pushdown alphabet

* R 1s a finite set of rules of the form: Apa — wq
where A eI',p,ge Q,ac XU e}, wel”

* s € 0 1s the start state

* § € I 1s the start pushdown symbol

 FF'c Q1s aset of final states

22/50

Notes on PDA Rules

Mathematical note on rules:

e Strictly mathematically, R 1s a relation
fromI’'x Ox (XU {e)tol™ x O

* Instead of (4pa, wq) € R, however, we write

_Apa —> wq € R

* Interpretation of Apa — wq: 1f the current
state 1s p, current input symbol 1s a, and the
topmost symbol on the pushdown 1s 4, then M
can read a, replace 4 with w and change state p
to q.

* Note: if a = €, no symbol 1s read

23/50

Graphical Representation

@ represents g €
—>® represents the initial state s € Q

represents a final state f € F

@ Alw. a »@ denotes Apa —> wq € R

24/50

Graphical Representation: Exam&

M=(0Q,2,T,R,s,S, F)
where: \
*0=15p,49,f};
> ={a, b};
e ['={a, S};
* R={Ssa > Sap,

apa — aap,

apb — ¢,

aqgb — ¢q,

Sq —f}

e F = {f}

25/50

PDA Contiguration

Gist: Instantaneous description of PDA

Definition: Let M= (0, X, I, R, s, S,) be a PDA.
A configuration of M is a string y € " OX"

Read-write head

Finite State
Control

= current state

Pushdown: v
Ay A, | A,

Input tape:

! Read head

a, | a4,

a;

-]

S

==

}ﬂiguration

26/50

Move
Gist: A computational step made by a PDA

Definition: Let xApay and xwqy be two configurations
of a PDA, M, where

x,wel Ael',p,ge OQ,ac XU {e},andy € X"
Let =Apa — wq € R be arule. Then, M makes

a move from xApay to xwqy according to , written as
xApay |- xwqy [] or, simply, xApay |- xwqy.

Note: if 7 = g, no inE tsymbol 1s read

Configuration: | ,x, |4 ‘@‘ al| |y,

v 4 vy //JV /- //

New conﬁguratlon‘ X :w: ‘@‘ .y.

27/50

Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let ¥ be a configuration. M makes
zero moves from y to y; in symbols,

% =" ¥ [€] or, simply, y |-°
Definition: Let y,, %, ..., X, b€ a sequence of
configurations, n = 1, and x, , |-, [7;],7; € R,
foralli=1, ..., n; that 1s,

Xo =% [l =% [l - 1= 17
Then M makes n moves from y, to ,,,
%o |=" %, L7y 7] or, simply, x4 =" %,

28/50

Sequence of Moves 2/2

It x, "%, [p] for some n > 1, then

Xo |- %, [p] or, simply, ¥, |- %,

It x, "%, [p] for some n > 0, then

Yo |= x,[p]or, simply, %o |- %,

Example: Consider
AApabc |- ABgbc [1: Apa — Bq], and
ABgbc |- ABCrc |2: Bgb — BCr].

Then,

AApabc |-> ABCrc [1 2],
AApabc |- ABCrc 1 2],
AApabc |- ABCrc [1 2]

29/50

Accepted Language: Three Types

Definition: Let M= (0, 2,1, R, s, S, F) be a PDA.

1) The language that M accepts by final state,
denoted by L(M),, is defined as

LM),={w:we X, Ssw|-"zf,z ", f e F}
2) The language that M accepts by empty pushdown,
denoted by L(M)., 1s defined as

LM),={w:we X Sswl|-"zf,z=¢, f € O}

3) The language that M accepts by final state and
empty pushdown, denoted by L(M), 1s detined as

LM),={w:w el Sswl-"zf,z=¢,f e F}

30/50

PDA: Example

M=(0,2,T,R,s,S,F)
where:

*0=15p,9f};

> ={a, b};

o ['={a, S};

* R={Ssa > Sap,
apa — aap,
apb — ¢,
aqgb — ¢,

Question: aabb € L(M)fg?

[S|®[a]a]2]5]

Rule: Ssa — Sap

[ST2]@[a]z]?]

Rule: apa — aap

[STe[«]@[5]5]

Rule: apb — q

[S[1@[2]

Rule agb — q

.@I] ‘ Final state ‘

S¢ =>fi | Empty |Rulers
« F={f} pushdown I]éHAnswer: YES

Ssaabb |- Sapabb |- Saaﬁbb |- Saqgb |- Sq |- f

Note: L(M),= L(M),=L(M),. = {a"b": n> 1}

31/50

Three Types of Acceptance: Equivalence

Theorem:

*L=L(M) foraPDAM, = L = L(M,), fora PDA M,
* L =L(M,), tora PDA M <L =L(M),tora PDA M,
* L =L(M), tora PDAM, < L =L(M,), fora PDA M,

Note: There exist these conversions:

PDA M,, that accept L
by final state and
empty pushdown

PDA M, that accept L
by final state

PDA M, that accept L
by empty pushdown

32/50

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than
one move from any configuration.

Definition: Let M= (0, 2,1, R, s, S, F)be a
PDA. M 1s a deterministic PDA 1if for each rule
Apa — wq € R, 1t holds that R — {Apa — wq}
contains no rule with the left-hand side equal
to Apa or Ap.

Illustration: Conﬁguratlon

1 1
|x|‘ a 1) g

—> W4,
No more that one rule of the forms
P“ —> Wy,

33/50

PDAs are Stronger than DPDASs

Theorem: There exists no DPDA M, that accepts
L={xy:x,yeX y=reversal(x)}

Proof: See page 431 in [Meduna: Automata and Languages’

Illustration: ‘ L={xy:x,yeX,y=reversal(x)} ‘
The family of deterministic The family of

CFLs—the languages C languages accepted
accepted by DPDASs by PDAs

34/50

Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a
string rather than a single symbol.
Definition: An Extended Pushdown automaton

(EPDA)1sa 7-tuple M= (0, X, I, R, s, S, F),
where O, 2, I, s, S, F are defined as in an PDA and
R 1s a finite set of rules of the form: vpa — wyq,
wherev,we ", p,g e O,a € 2 U {&}

IHustration:
Pushdown of PDA: Pushdown of EPDA:
| | | | | |
‘ X ‘ A ‘ ‘ X ‘ 1Y
\—'—I ﬁ—!

PDA has a single symbols as the EPDA has a string as the
pushdown top pushdown top

35/50

Move in EPDA

Definition: Let xvpay and xwqy be two configurations
of an EPDA, M, where x,v,w e I'",p,qe O,a € X
U {e},andy € X°. Let r=vpa — wq € R be arule.
Then, M makes a move from xvpay to xwqy according
to r, written as xvpay |— xwqy [r] or xvpay |— xwqy.

Conﬁguratlon‘ : v : ‘@‘ a ‘ |y l

Rule: vpa — wq\ \\ ; // >//
I 1

New configuration: : X : W ‘@‘ I y I

Note: |-, |-, |-*, L(M),, L(M),, , and L(M),, are defined
analogically to the corresponding definitions for PDA.

36/50

EPDA: Example

M=(0,%,T,R,s,S, F)

where: —
* O={s,1};
> ={a, b};
eI'=1{a,b,sS, C};
*R=1{ sa— as,
sb — bs,
s — (s,
aCsa —> Cs,
bCsb — (s,
SCs — f}
« F={f}

Question: abba € LfS(M)?

Ssabba |- Sasbba |- Sabsba
— SabCsbha |- SaCsa
—-S8Cs |-f

Answer: YES

Note: L(M),= L(M),=L(M),. = {xy: x,y € X7, y =reversal(x)}

37/50
Three Types of Acceptance: Equivalence

Theorem:

* L = L(M), tor an EPDA M, < L = L(My), tor an EPDA M,
* L = L(M,). tor an EPDA M, < L = L(Mp),, for an EPDA M,
* L = L(M), tor an EPDA M, < L = L(M,), for an EPDA M,

Note: There exist these conversion:

EPDA M, that accept L
by final state and
empty pushdown

EPDA M. that accept L

EPDA M, that accept L
by empty pushdown

by final state

38/50

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there 1s a PDA M,
and L(M),= L(M’),.

Proof: See page 419 in [Meduna: Automata and Languages’
Illustration:

The family of The family of
languages accepted languages accepted
by EPDAs by PDASs

39/50

EPDAs and PDAs as Parsing Models for CFGs

Gist: An EPDA or a PDA can simulate the
construction of a derivation tree for a CFG

* Two basic approaches:
1) Top-Down Parsing | 2) Bottom-Up Parsing

Input string \

Input string

From § towards
the input string

From the input

|
|
|
|
|
|
\ |
|
|
|
|
|
! string towards §

40/50

EPDASs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols
onto the pushdown:

Loxy (Olel vy | foreverya e

— — add sa — as to R;
‘ 1 X ‘a‘ ‘ 1Y g ‘

2) M contains reduction rules that simulate the
application of a grammatical rule in reverse:

®‘ vy | forevery A > x € Pin G:

‘ 1 ‘ ‘ 1 ‘addxs—>Ast0R;

LN 1) g

3) M also contains the rule #5s — / that takes M to a
final state

41/50

EPDASs as Models of Bottom-Up Parsers 2/2

Bottom-up construction of a derivation tree:

(@l
_—3

#Ss > € R

Rule: Y>> xBC Derivation tree:

1-X |
Rule:C—)IZ :
|#| B |B| L<] II]

A\

£ x, II P
start pushdown symbol
X v |z

42/50

Algorithm: From CFG to EPDA

e Input: CFGG=(N, T, P, 5)
* Output: EPDA M= (Q, %, T, R, 5, #, F); L(G) = L(M),
* Method:
* Q= 1{s/};
> =1T;
e[=NUTU {#};
* Construction of R:
e for every a € 2, add sa — as to R;
 for every A > x € P, add xs —» As to R;
e add #5s > [to R;
* F =1/}

43/50

From CFG to EPDA: Example 1/2

«G=(N,T,P,S), where:
N=385,T=1()5, P=18—=>(5), 85— ()
Objective: An EPDA M such that L(G) = L(M),

M= (0,2, T',R, s, #, F) where:
O={s,/1L2Z2=T={(); I'=NUTU{#} =18, (), #}

“CeT “YeT S—> eP S—>()eP

4 4
R=1s(—> (s,) >)s, (S)s >8s, ()s >S8s, #5s > [}
shift rules reduction rules

F'= /3

44/50

From CFG to EPDA: Example 2/2
M =0, 2, T',R,s, #, F), where:

O=1{s,/5,2=T=1G)}, I'=1G), S, #;, FF'=1{/}
R={s(—> (s,5) >)5, (8)s > S5, ()s > S5, #Ss —> [}

Question: (()) € L(M)? Rule: ()s — S

A D] @ [Fdsienl <<>

Rule: s(— (s : Rule: s) =)s
FIAELALDI] ¢ ' EIASDHI@I (())
Rule: s(— (s I Rule: () > § S
FITA@LN] «: [EEOl A\
Rule: 5s) >)s : Rule: #Ss —> (())

|#|(|(|)|®m (()"Flnalstat‘_p
Answer: YES

45/50

PDAs as Models of Top-Down Parsers 1/2
Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the
pushdown and reads the input symbol if both coincide:

L .x, ‘“‘@‘“‘ 2 ‘foreveryan:

—1 %% — add asa — s to R;
‘ 1 X ‘ ‘ 1Y g ‘

2) M contains expansion rules that simulate the
application of a grammatical rule:

@‘ 'y, |foreveryd —>a,...a, € PingG,

add As > a, ...a;s to R;
‘an:...:a]_l ‘ :y : ‘ ;reversal(al ool

46/50

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

e ar bl

i ClBI akll 'al ||al:...:ak| AN

()B4 3, ek, || Derivation tree:

B — b,..b,
A5 5[5, [i~
Icl: :le
C - c..c,
vV e T R 0
Empty OK OK OK
pushdown —/I]I]

47/50

Algorithm: From CFG to PDA

e Input: CFGG=(N, T, P, 5)
* Qutput: PDA M= (Q,X,T,R,s, 5, F); L(G) = L(M),
e Method:

* Q= {s};
> =1T;
' =NUT;

* Construction of R:
e for every a € 2, add asa — s to R;
» forevery A - x € P, add As —> ys to R,
where y = reversal(x);

o .= (;

48/50

From CFG to PDA: Example 1/2

«G=(N,T,P,S), where:
N=185,T=1();, P=8—>(05),5—> ()
Objective: An PDA M such that L(G) = L(M),

M=,2,I,R,s, S, F)where:
O=1sp; XZ=T={()}; I'=NUT={S,()}

“CeT “YeT S—> eP S—>()eP
0 1 T & fﬁ

R= {‘s(—>s)s) —> s, Ss—))S(s Ss —)(s }
popping rules expansion rules

F=0

49/50

From CFG to PDA: Example 2/2
M=(0,2,1T,R,s,S, F), where:

O={sL2=T={()},T={(),S},F=0
P={(6(—>s,)s)—>>s, Ss—>)S, Ss—)(s}

Question: (()) € L(M),?

Rule: (s(> s

%@

|
S
FOTD | (56t /)
: OF S ule:)s) = s

DISTAOLAM DI sy e /9'(\

Rule: (s(= s ' o s ()

DISI®OLDO D] (S)i Rulepé%"_) S

Rule: Ss —)(s N /ISE\

DOIA@LAD DT /R\ || Empty ()
(())| pushdown | Answer: YES

50/50

Models for Context-free Languages

Theorem: For every CFG G, there 1s an PDA
M such that L(G) = L(M)..

Proof: See the previous algorithm.

Theorem: For every PDA M, there 1s a CFG
G such that L(M), = L(G).

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for

context-free languages are
1) Context-free grammars 2) Pushdown automata

	Context-Free Languagesand Their Models
	Context-Free Grammar (CFG)
	Context-Free Grammar: Definition
	Convention
	Derivation Step
	Sequence of Derivation Steps 1/2
	Sequence of Derivation Steps 2/2
	Generated Language
	Context-Free Language (CFL)
	Rule Tree
	Derivation Tree: Example
	Leftmost Derivation
	Leftmost Derivation: Example
	Rightmost Derivation
	Rightmost Derivation: Example
	Derivations: Summary
	Reduction of the Number of Derivations
	Introduction to Ambiguity
	Grammatical Ambiguity
	Pushdown Automata (PDA)
	Pushdown Automata: Definition
	Notes on PDA Rules
	Graphical Representation
	Graphical Representation: Example
	PDA Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language: Three Types
	PDA: Example
	Three Types of Acceptance: Equivalence
	Deterministic PDA (DPDA)
	PDAs are Stronger than DPDAs
	Extended PDA (EPDA)
	Move in EPDA
	EPDA: Example
	Three Types of Acceptance: Equivalence
	EPDAs and PDAs are Equivalent
	EPDAs and PDAs as Parsing Models for CFGs
	EPDAs as Models of Bottom-Up Parsers 1/2
	EPDAs as Models of Bottom-Up Parsers 2/2
	Algorithm: From CFG to EPDA
	From CFG to EPDA: Example 1/2
	From CFG to EPDA: Example 2/2
	PDAs as Models of Top-Down Parsers 1/2
	PDAs as Models of Top-Down Parsers 2/2
	Algorithm: From CFG to PDA
	From CFG to PDA: Example 1/2
	From CFG to PDA: Example 2/2
	Models for Context-free Languages

