Parallel Grammars:
Scattered Context Grammars

!'_ Alexander Meduna

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic, Europe

i Based on these Papers

= Meduna, A.: Coincidental Extention of Scattered Context
Languages, Acta Informatica 39, 307-314, 2003

= Meduna, A. and Fernau, H.: On the Degree of Scattered
Context-Sensitivity. 7heoretical Computer Science 290,
2121-2124, 2003

= Meduna, A.: Descriptional Complexity of Scattered Rewriting
and Multirewriting: An Overview. Journal of Automata,
Languages and Combinatorics, 571-579, 2002

= Meduna, A. and Fernau, H.: A Simultaneous Reduction of
Several Measures of Descriptional Complexity in Scattered
Context Grammars. Information Processing Letters, 214-
219, 2003

i Classification of Parallel Grammars

I. Totally parallel grammars, such as L systems, rewrite all
symbols of the sentential form during a single derivation
step (not discussed in this talk).

I1. Partially parallel grammars rewrite some symbols
while leaving the other symbols unrewritten.

e Scattered Context Grammars work in a partially
parallel way.

e These grammars are central to this talk.

i Scattered Context Grammars (SCGs)

Essence
= semi-parallel grammars

= application of several context-free productions during a
single derivation step

= stronger than CFGs

Main Topics under Discussion
= reduction of the grammatical size
= new language operations

i Concept

Concept
= sequences of context-free productions

= several nonterminals are rewritten in parallel while the rest
of the sentential form remains unchanged

i Definition

Scattered context grammar .

= G=NT, RS

= N, 7,and S as in a CFG

= Pis a finite set of productions of the form
(A, A, o A) > (X, X, ooy X))
where A, e Nand x,e I with V=N U T

Direct derivation:
= UALA ... UAU. . = UX XU ... UX U, if
(A, A, o A) > (X, X, oy X0)

Generated language:
= [(G) ={w. S=* wand we T*}

i Example

Productions:
(S) — (44), (A A) — (aA, bAO), (A, A) — (¢,)

Derivation:
S = AA = aAbAc = aaAbbAcc = aabbcc

Generated Language:
L(G) = {abc: >0}

i Language Families

Language Families
= (S - (ontext Sensitive Languages
= RE - Recursively fnumerable Languages

. SC={/(G): Gis a SCG}

for every n>1,
= SAn) ={L(G): GisaSCG with no more than n
nonterminals}

i Reduction of SCGs

Reduction of SCGs
= (A) reduction of the number of nonterminals

= (B) reduction of the number of context (non-context-free)
productions

= (C) simultaneous reduction of (A) and (B)

i Reduction (A) 1/2

Reduction of the Number of Nonterminals

= Theorem 1: RE= SC(3)
= Theorem 2: CS« SC(1)

= Proof (Sketch): Let L = {a” h= 2" n>1}. Assume that
L = L(G), where G= ({5}, {a}, P S) is a SCG. In G,
S =*aSa = * aaa
forsome j j>0suchthat/+ j & >1. Thus,
S =*gnisan = * gngkan
foreveryn>0. As @aad e L, |daad| =i+ k+ j= 27,

Consider v= gga’ e L. Then, 2"< || = 27"+ [+ j<
2ml so v ¢ [—a contradiction.

10

i Reduction (A) 2/2
- Corollary: SQ1) = SC(3) = RE

- Open Problem: RE= SC(2)?

11

i Reduction (B)

Reduction of SCGs
= (A) reduction of the number of nonterminals
= (B) reduction of the number of context

(non-context-free) productions
= (C) reduction of (A) and (B)

12

i Reduction (B) 1/5

Reduction of the Number of Context Productions

= A context production means a non-context-free production
(A, A, ..., A) > (X, X, oy X)) With 7> 2

= Theorem 4: Every language in RE is generated by a
scattered context grammar with only these two context
productions:

($,0,0,%) —> (& % % ¢)
($,1,1, %) > (&% $ ¢

13

Reduction (B) 2/5

I. Left-Extended Queue Grammar
Q=WT WFHFSsR

R -finite set of productions of the form (g, g, z r). Every
generation of # € L(Q) has this form

#ayGo

= a#a G, (3 Gor Zyr G1)]

= dya# X G, [(a1, G, 21, G)]

= Aoy AH g 1 X4 1

— 3031”' akak+1#ak+2Xk+1y1qk+2 -(ak+1/ q/(+ll }/1, qk+2)]

= ... Hks1-- amrt® Gam Vi Y1 Qhem [(@ermtr Gerrmtr Virrr Quem)]
= ;... Hys1--- G Vi Y mQhs m K=/ P /s gy |

where A= y...y, with g, ., € F

14

i Reduction (B) 3/5

I1. Substitutions
g. binary code of symbols from V
/1. binary code of states from W

II1. Introduction of SCG
G= (N, 7, CF v Context, S)
Context=4(%$,0,0,%) > (¢, $ %/ ¢),

($,1,1,9%) > (e $ % ¢)

IV. CF used to generate
$A@a,... a1 GadVi-- Yl K Qv Q19+ G1G0)$

15

i Reduction (B) 4/5

V. Context used to verify

g(aoal°-- Ayt 1+ - ak+m) = /7(C]0C]1... FThe+1--- qk+m)
let Aaya,... k1 - Grem) = QG- Ckrmypn

/eth(qoql--- Tipe+1- - qk+m) = 060’1 02k+/77)2/7
where each ¢; g, {0, 1}

By using ($, 0,0, %) > (g, %, $, €) and
($,1,1,%) > (g, %, $,), Gmakes
$GGG- - Cuampa1-- Ym Qs myn--- b A%
$CG... QuempN1+ Ym Qurmpzn--- BALS
$G... CuhrmpaY1-- Ym Qe mzn--- GBS

$Vi Yo

Nee-Ym

16

i Reduction (B) 5/5

Corollary 5: The SCGs with two context productions
characterize RE.

Open Problem: What is the power of the SCGs with a
single context production?

17

i Reduction of SCGs

Reduction of SCGs
= (A) reduction of the number of nonterminals

= (B) reduction of the number of context (non-context-free)
productions

= (C) reduction of (A) and (B)

18

i Simultaneous Reduction (A) & (B)

Simultaneous Reduction of the Number of
Nonterminals and the Number of Context Productions

= Note: Next two theorems were proved in cooperation with
H. Fernau (Germany).

= Theorem: Every type-0 language is generated by a SCG
with no more than seven context productions and no more
than five nonterminals

= Theorem: Every type-0 language is generated by a SCG
with no more than six context productions and no more than
Six honterminals

= Open Problem: Can we improve the above theorems?

19

i New Operations

c-free SCGs

= ¢-free SCG: each production (4;, ..., A) > (x, ..., X,)
satisfies x; # ¢

= c-free SC = {L(G): G'is an e-free SCG }
» c-free SCc CS — SC= RE

= Objective: Increase of ¢-free SC to RE by a simple
language operation over ¢-free C

20

i Coincidental Extension 1/6

Coincidental Extension

= For a symbol, #, and a string, x= a,8,...4a,.;8,, any string
of the form #a, #a,#...#a _,#a,#, where />0, is a
coincidental #-extension of x.

= A language, K is a coincidental #-extension of L if every
string of K represents a coincidental extension of a string in
L and the deletion of all #s in K'results in L, symbolically
written as L , 4 K

« If L ,«4 Kand there are an infinitely many coincidental
extensions of x in Kfor every x € L, we write L , 4 K

21

i Coincidental Extension 2/6

Examples:
For X={#a#b#:. j>5} u{#"#d"#:. n i>0} and
Y= {ab} u{cd. n>0},

Y, 4, X 50 Y, ,4dX

For A = {Za#b#} o {#"#d"#: n, [> 0},
Y .4 Aholds, but Y ,«d_ Adoes not hold.

B={#a#b#:i>5} u{#c#d#+*L. n />0}is not
the coincidental #-extension of any language.

22

i Coincidental Extension 3/6

= Theorem: Let K e RE. Then, there exists a e-free SCG, G,
such that K ., L(G).

= Proof (Sketch): Let K'e RE. There exists a SCG, G, such
that L = L(G). Construct a e-free SCG,

G=(VP S {#}u T) sothat L .« L(G).

Homomorphism /A :
A) = Afor every nonterminal A
A a) = afor every terminal a

me)=Y

23

i Coincidental Extension 4/6

P constructed by performing the next six steps:

I.
I1.

I1I.
IV.

V.

add (D) —» (YS$) to P

for every (A, ..., A) —> (x, ..., x,) € P, add

(A, ..., A, $) > (Ax), ..., Ax) $) toP

add (Y, $) > (YY,$)to P

forevery g, b, ce T,

add ((a), (D), (0, $) — (0a), (0H), (0¢), §) to P
forevery g, b, ¢, d < 7, add

(¥, <0a), ¥, (0D, Y, 00, 8) — (#,(0a), X, (0b), ¥, (00, 8),
((08)X0b), (00), §) — ((4a), (1H), (20, 8),

((4a), X, (1b), ¥, (20, §8) — ((4a), #,(1D), X, (20, 8),
((4a), (1D), (20, (d), 8) — (a, (4b), (10, (2d), 8),
((4a), (1D, (20, §) — (a,(1b), (30, 8),

((1a), X, 3b), ¥, 8) — ((1a), #, (3D), #, §)

to P

24

i Coincidental Extension 5/6

VI. for every g, b € 7, add
(la), X, 3D, 8) —(a #, b, #) toP.

G generates every y € L(G) in this way
Z=>YS =2t x> 82t /=y

where v e (K Y}y)*{$}. In addition,
V= u08)u0a,)ux085)... u,(apu8

if and only if a,8,a;...a, € L(G)

25

i Coincidental Extension 6/6

In greater detail, v§ =+ 2§ = y can be expressed as
Y(0a,) Y{0a,) Y{0a;)... Xa,) V'§

=/ #0apX0a,) Y0a;) YXa,)... YXa) Y'§

= #4apXla,)Ya)Ya,)... YXa)Y'§

=/ #4a)#(1ayXa)yYa,)... Ya,)V'§

= #Ha #4ayX(1a;)Y2a,)...Ya,)V'§

=/ #a #4a)#1la)X2a,)... YXayY'§

= #Ha#a,#4apyXla,yY2as)... Ya)Y'§

Ha #a,#a,.. (4a.,)#1a,) X(2a,)V'§
- Ha#a#a..a,,#1a,,) X3a,Y'§
= #a Ha, #a,.. #a, ,#1a,) #Z X#3a,)#1§
= HaHa#a,.. #a, #a. Aa#

= Corollary: Let K€ RE. Then, there exists a e-free SCG, G,
such that K, 4 L(G).

26

i Use in Theoretical Computer Science

Use in Theoretical Computer Science

= Corollary: For every language K € RE, there exists a
homomorphism /4 and a language H < ¢-free SC such that
K= AH.

= In a complex way, this result was proved on page 245 in
[Greibach, S. A. and Hopcroft, J. E.: Scattered Context
Grammars. J. Comput. Syst. Sci. 3, 232-247 (1969)]

27

i Future Investigation

Future Investigation: k-/imited coincidental extension

= Let A be a non-negative integer.

= For a symbol, #, and a string, x= g,4,...4,.18,, any string
of the form #a, #a,#... #a, #a,#, wherek> /7> 0, is a
k-limited coincidental #-extension of x.

= Alanguage, K is a coincidental a A-/imited #-extension of L
if every string of K'represents a A-limited coincidental
extension of a string in L and the deletion of all #s in K
results in L, symbolically written as L . .4 K

Example
« For X={#a#b#:2>i>0} u{#Hc#d#.4>/>0}and Y
= {ab, cad},
Y 4o QX

28

i Very Important Open Problem

Important Open Problem: s-free SC= CS?

= Does there exist a non-negative integer &, such that for
every L €CS, L .., L(H) for some e-free SCG, H?

= If so, I know how to prove ¢-free SC = CS ©.

END

29

	Based on these Papers
	Classification of Parallel Grammars
	Scattered Context Grammars (SCGs)
	Concept
	Definition
	Example
	Language Families
	Reduction of SCGs
	Reduction (A) 1/2
	Reduction (A) 2/2
	Reduction (B)
	Reduction (B) 1/5
	Reduction (B) 2/5
	Reduction (B) 3/5
	Reduction (B) 4/5
	Reduction (B) 5/5
	Reduction of SCGs
	Simultaneous Reduction (A) & (B)
	New Operations
	Coincidental Extension 1/6
	Coincidental Extension 2/6
	Coincidental Extension 3/6
	Coincidental Extension 4/6
	Coincidental Extension 5/6
	Coincidental Extension 6/6
	Use in Theoretical Computer Science
	Future Investigation
	Very Important Open Problem

