New Book
Elements of Compiler Design

by

!'_ Alexander Meduna

Taylor and Francis Group, New York, 2007
ISBN: 978-1-4200-6323-3
http://www.fit.vutbr.cz/—meduna/books/eocd

Author

Professor Alexander Meduna, PhD

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Bozetéchova 2, Brno, the Czech Repubilic

E-Mail: meduna@fit.vutbr.cz

Phone: +420 54114-1232

Fax: +420 54114-1270

Website: http://www.fit.vutbr.cz/~meduna

Subject

Approach
= introductory level
= both theoretical and practical treatment

Pedagogical Goals
= understanding compiler design in theory
= |earning how to write a compiler in practice

Keywords

= compiler writing = optimization

= lexical analysis = code generation
= syntax analysis = automata theory

= syntax-directed translation formal languages

courses

Primary course

= one-term introductory course in compiler design at an
undergraduate level

Secondary course
= automata theory and formal languages

Theory

Theoretical aspects of this book

= formal models underlying compilation phases

= formalization of the concepts, methods, and techniques employed
in compilers

= mathematical foundations of compilation
= formal languages, grammars, automata, and transducers

Practice

Practical aspects of this book

= implementation of compilation techniques

= case study that designs a Pascal-like programming language and
its compiler

= many examples and programs
= description of software tools, including yacc and lex

Features and Their Benefits 1/2

feature: presents the essentials of compiler writing in an easy-
to-follow way

benefit: students grasp compiler construction quickly and clearly

feature: includes intuitive explanations of theoretical concepts,
definitions, algorithms, and compilation techniques

benefit: students easily follow the topics under discussion

feature: examines the mathematical foundations of compiler
design and related topics, such as formal languages, automata,
and transducers

benefit: demonstrates compilation techniques precisely

Features and Their Benefits 2/2

feature: demonstrates how theory and practice work together in
a real-world context through the implementation of algorithms,
examples, case studies, and software tools, such as lex and yacc

benefit: enhances comprehension

feature: contains the C++ implementation of a real compiler as
well as a variety of programs and challenging exercises, many of
which are instructively solved

benefit: demonstrates how to write programs to implement the
compilation algorithms

feature: accompanying website provides lecture notes, teaching
tips, homework assignments, errata, exams, solutions, and
implementation of compilers

benefit: enhances comprehension

i Brief Contents

Preface (14 pages)

Introduction (20 pages)

Lexical Analysis (54 pages)

Syntax Analysis (64 pages)

Deterministic Top-Down Parsing (20 pages)

Deterministic Bottom-Up Parsing (26 pages)

Syntax-Directed Translation and Intermediate Code Generation
(28 pages)

Optimization and Target Code Generation (20 pages)

Conclusion (6 pages)

Appendix (16 pages)

Bibliography (22 pages)

Indices (10 pages)

Contents 1/5

Preface

Introduction

= Mathematical Preliminaries
= Compilation

= Rewriting Systems

10

Contents 2/5

Lexical Analysis
= Models
= Methods
= Theory

Syntax Analysis
= Models
= Methods
= Theory

11

Contents 3/5

Deterministic Top-Down Parsing
= Predictive Sets and LL Grammars
= Predictive Parsing

Deterministic Bottom-Up Parsing
= Precedence Parsing
= LR Parsing

12

Contents 4/5

Syntax-directed Translation and Intermediate Code

Generation

Bottom-Up Syntax-Directed Translation and Intermediate Code
Generation

Top-Down Syntax-Directed Translation
Semantic Analysis

Symbol Table

Software Tools for Syntax-Directed Translation

13

Contents 5/5

Optimization and Target Code Generation
= Tracking the Use of Variables

= Optimization of Intermediate Code

= Optimization and Generation of Target Code
Conclusion

Appendix: Implementation

Bibliography

Indices

14

Competition 1/5

Book Aho, A.V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers. Principles,
Technigues, and Tools. Addison Wesley, 2006 (ISBN 0321486811)

How this book differs
= too complicated for the undergraduate students

Strength

= a revised and updated version of the famous “Dragon Book."”
= covers all the major topics in compiler design in depth

= used as the basis of a graduate class on compilers

Weakness
= written in somewhat dry and encyclopedic way

15

Competition 2/5

Book Cooper, K. D. Engineering a Compiler. Morgan Kaufmann, 2004
(ISBN 155860698X)

How this book differs
= concentrates its attentions only on the back end of a compiler
= cannot be used at an undergraduate level

Strength

= has a nice layout and gives many examples

= all topics are well connected to each other

= helpful for an advanced computer programmer

Weakness
= avoids any mathematical formalism and theoretical concepts
= text is wordy

16

Competition 3/5

Book Bal, H., Grune, D., Jacobs C., and Langendoen, K.: Modern Compiler
Design. Wiley, 2000 (ISBN 0471976970)

How this book differs
= beyond the level of bachelor students

= necessary to supplement this book, such as Chapter 3 about attribute
grammars, with other books on compilers

Strength
= covers a broad range of concepts used in modern compilers

= explains the compilation of object-oriented, functional, logic, parallel, and
distributed languages

= describes the implementation of optimization techniques in detail

Weakness
= algorithms are written in a difficult-to-follow pseudo-code
= exercises at the end of each chapter are rather poor

17

Competition 4/5

Book Parsons, T. W.: Introduction to Compiler Construction. Computer
Science, 1992 (ISBN 0716782618)

How this book differs
= describes all formal notions in a very informal way

= difficult to understand how these notions are related to the process of
compilation

Strength
= provides a throughout introduction to compiler design
= contains all the essential material concerning compilers

Weakness

= presents all concepts in an obscure way

= reader can hardly grasp the principles of compiler writing
= examples are too trivial and somewhat dated

= contains many minor mistakes and misprints

18

Competition 5/5

Book Fischer, C. and LeBlanc, R.: Crafting a Compiler with C. Addison
Wesley, 1991 (ISBN 0805321667)

How this book differs
= beyond the level of bachelor students

Strength
= approaches to writing compilers by using C
= includes numerous programs

= covers many advanced topics concerning code generation, optimization,
and real-world parsing

= good reference

Weakness
= necessary to supplement this book with books on automata

19

A Sample: Precedence Parsing 1/10

Operations REDUCE and SHIFT

= In a G-based bottom-up parser, where G = (%, ;R) iS a grammar, we
use two operations, REDUCE and SHIFT, wﬁlch modify the current pd

top as follows:

« REDUCE(A — x) makes a reduction according to A — x € R
= SHIFT pushes /ns onto pd and advances to the next input symbol

Algorithnm 5.2 Operator Precedence Parser

Input

= agrammar G= (X, R
= a Gop-table

= /ins= wd with w e A"

Output
= ACCEPT if we L(G), and REJECT if w ¢ L(G)

20

A Sample: Precedence Parsing 2/10

Method
begin

set pdto u;

repeat

case Gop-table [pd-top-terminal, ins,] of
: SHIFT;
| : SHIFT;
|1 if Geontains a rule A —» xwith x = G-op-handle then
REDUCE(A — X);

else REJECT; {no rule to reduce by}
® : REJECT; { G-op-table-detected error}
© : ACCEPT;
end; {case}

until ACCEPT or REJECT;
end.

21

i A Sample: Precedence Parsing 3710

Case Study
C—> CvC
C—> CAC

v\//\ ~. < >
| |
1
B

®® |
L | ®0

1

]

Operator Precedence Table

i A Sample: Precedence Parsing 4/10

Configuration Tab/e Entry Parsing Action

PO A(ivid [P, A=L SHIFT

> or(iv)d [i A]] REDUCE(C— /)
> Cor(ivid [P,A]=L SHIFT

> Cro(ivid [A (=L SHIFT

> Cr(®ivid [(, =L SHIFT

> Cr(/®v)4 [jv]=] REDUCE(C — /)
> Cr(COv I [(,v]=L SHIFT
> Cr(Cve)d [v, =L SHIFT
» CAr(Cvi®)d [i)]= REDUCE(C— /)

» CA(Cv (o)A [v,)] = REDUCE(C— Cv 0
> Cr(CO)<4 ()] | SHIFT

> Cr (@<), < REDUCE(C — (0))
> Cr CO< A,<] i REDUCE(C— Ch O
> Co < [>,4]1=© ACCEPT

Operator Precedence Parsing

i A Sample: Precedence Parsing 5/10

Configuration Rule Parse Tree
>/ A(/iv)d
> o1 (/vi)d C— 7 (eI,

» COn(/vi)4

> Cre(/v)d

> Chr(®iv)4

> Chr (/v Co 7/ CHINGH v)

> Chr(COV)4

» CAr(Cve)d

> CA(Cvi®)d C— i CHINCH v &h)

P CA(Cv (@)X C— Cvl GINGRH v GH))

> Chr(Ce)4

> CA(C)o < C—> (0 Cin &&AH VAN
YN & C— CAC QCHn G(QCH vEN)
» (&<

Construction of Parse Tree by Operator-Precedence Parser **

A Sample: Precedence Parsing 6/10

Construction of an Operator Precedence Table

I.

IL.

I11.

IV.

if gis an operator that has a higher mathematical precedence than
operator b, then alband bl a

if @and b are left-associative operators of the same precedence, then
alband bla

if g and b are right-associative operators of the same precedence,
then alLband bl a

if @ can legally precede operand J, then al /
if @ can legally follow / then /la

if @ can legally precede (, then al(
if @ can legally follow (, then (La
if @ can legally precede), then aJ)
if @ can legally follow), then)la

25

i A Sample: Precedence Parsing 7/10

AN

A

(
I
i

j
I

i
ofe
i

@

1

L L |
oo] |
[l | ®©

Precedence Table with Error-Recovery Routines

vvr\ ~. < >
LI 1

26

A Sample: Precedence Parsing 8/10

Table-Detected Errors

® configuration: pd; = 7and ins; =/
diagnostic: missing operator between two /s
recovery: change pd, to C then push A onto the pd top

@ configuration: pd; = /and /ins; = (

diagnostic: missing operator between 7and (
recovery: change pd, to C then push A onto the pd top

27

A Sample: Precedence Parsing 9710

Reduction Errors

O configuration: pd, = (and /ns; =)
diagnostic: no expression between parentheses
recovery: push Conto the pdtop

® configuration: pd, € {A, v} and ins, ¢ {j, (}
diagnostic: missing right operand
recovery: push Conto the pd top

28

i A Sample: Precedence Parsing 10/10

Configuration Tab/e E. Parsing Action

>&i(/v)4 NE L SHIFT

> /&(/Vv)d U (] = table-detected error and rec. @
>Cre(/Vv)4 A, (= L SHIFT

>Cr(®/V)4 [((A=L SHIFT

> Ch(joV)4 /v]=J] REDUCE(C—)

A (CoVv)d (,v]=1 SHIFT

pCA(Cve)d [v,)]=] Reduction error and recovery ®
»CA(CvCe®)d [v,)]=] REDUCE(C— Cv C)

> Cr(Co)4 () =1 SHIFT

> CA (O«),4]=J] REDUCE(C— (0))

»Cr Co< A,4]=] REDUCE(C— Ch C)

> (o< > 4] = © REJECT because of errors @ and @

Operator Precedence Parsing with Error-Recovery Routines

29

i Bibliographical Notes in Detail

... Aho, A. V. and Ullman, J. D. [1969a], Aho, A. V. and Ullman, J. D.
1969b], Barnett, M. P. and Futrelle, R. P. [1962], Conway, M. E.
11963], de Bakker, J. W. [1969], Evey, J. [1963], Ginsburg, S. and
Rice, H. G. [1962], Hartmanis, J., Lewis, P. M., II, and Stearns, R. E.
11965], Irons, E. T [1961], Johnson, W. L., Porter, J. H., Ackley, S.
I., and Ross, D. T. [1968], Kasami, T. [1965], Knuth, D. E. [1967a],
Knuth, D. E. [1967b], Korenjak, A. J. and Hopcroft. J. E. [1966],
Kurki-Suonio, R. [1964], Landin, P. J. [1965], Lewis, P. M., II and
Stearns, R. E. [1968], McCarthy, J. [1960], McCarthy, J. and Painter,
J. [1967], Naur, P. (ed.) [1960], Oettinger, A. G. [1961], and van
Wijngaarden, A. (ed.) [1969]. During the last three decades of the
twentieth century, the basic knowledge concerning the construction
of compilers was summarized in the books Aho, A. V. and Uliman, J.
D. [1972], Aho, A. V. and Ullman, J. D. [1973], Aho, A. V. and
Ullman, J. D. [1977], Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J.
D. [2007], Alblas, H. [1996], Appel, A. W. [1998], Bergmann, S.
[1994], Elder, J. [1994], Fischer, C. N. [1991], Fischer, C. [1999]...

30

Topics Not Covered in This Book 174

Lexical Analysis

= acceleration of the scanning process: scanning ahead on the input
to recognize and buffer several next lexemes

= buffering these lexemes by using various economically data-
organized methods (pairs of cyclic buffers)

= theory of finite automata

= minimization of the number of states in any deterministic finite
automata

Syntax Analysis

= time and space complexity of parsing algorithms
= general parsers based upon tables
= Earley Parsing Algorithm

31

Topics Not Covered in This Book 274

Deterministic Top-Down Parsing

= k-symbol lookahead

= LL(K) parsers based upon LL(X) grammars
= automatic top-down parser generator

Deterministic Bottom-Up Parsing
= generalized precedence parser

= varies constructions of the LR tables and the corresponding LR
parsers

= canonical LR parsers

= |lookahead LR parsers

= the Brute-Force lookahead LR parsers

= shift-reduce and reduce-reduce problems discussed in detail

32

Topics Not Covered in This Book 374

Syntax-Directed Translation and Intermediate Code
Generation

= top-down syntax-directed translation discussed in detail
= semantic pushdown

n stabcl:k-implemented tree-structured and hash-structured symbol
tables

= more software tools, such as SLK and bison

Optimization and Target Code Generation
= time and space complexity

= optimizing compiler

= run-time memory management

= static memory management

= dynamic memory management

= stack storage and heap storage

33

Topics Not Covered in This Book 474

Theory

= deterministic parsers of non-context-free languages
= conditional grammars

= regulated grammars

Design

= compiler design based upon computational cooperation,
distribution, concurrence, and parallelism

= functional, logic, and object-oriented languages and their
compilers

34

i Discussion and End

35

	Author
	Subject
	Courses
	Theory
	Practice
	Features and Their Benefits 1/2
	Features and Their Benefits 2/2
	Brief Contents
	Contents 1/5
	Contents 2/5
	Contents 3/5
	Contents 4/5
	Contents 5/5
	Competition 1/5
	Competition 2/5
	Competition 3/5
	Competition 4/5
	Competition 5/5
	A Sample: Precedence Parsing 1/10
	A Sample: Precedence Parsing 2/10
	A Sample: Precedence Parsing 3/10
	A Sample: Precedence Parsing 4/10
	A Sample: Precedence Parsing 5/10
	A Sample: Precedence Parsing 6/10
	A Sample: Precedence Parsing 7/10
	A Sample: Precedence Parsing 8/10
	A Sample: Precedence Parsing 9/10
	A Sample: Precedence Parsing 10/10
	Bibliographical Notes in Detail
	Topics Not Covered in This Book 1/4
	Topics Not Covered in This Book 2/4
	Topics Not Covered in This Book 3/4
	Topics Not Covered in This Book 4/4
	Discussion and End

