Scattered Context Grammars

Alexander Meduna Jiří Techet

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno 61266, Czech Republic

Based upon the book:

A. Meduna and J. Techet: Scattered Context Grammars and their Applications.
WIT Press, 2009

Info about the Book

Publisher: WIT Press

Address of Publisher: Ashurst Lodge, Ashurst, Southampton, SO40

7AA, U.K.

Website: www.witpress.com/978-1-84564-426-0.html

ISBN: 978-1-84564-426-0

Published: 2009 Number of Pages: 217

Organization of the Book

- three parts:
 - I. Introduction
 - II. Theory
 - III. Application and Conclusion
- nine chapters
- exhaustive bibliography

ents of the Book	
	vi 1
Motivation	3
Definitions 2.1 Mathematical Background 2.2 Basics of Formal Language Theory 2.3 Scattered Context Grammars	7 7 9 22
Theory	29
Basic Properties 3.1 Normal Forms 3.2 Closure Properties 3.3 Generative Power	31 31 34 44
	Introduction Motivation Definitions 2.1 Mathematical Background 2.2 Basics of Formal Language Theory 2.3 Scattered Context Grammars Theory Basic Properties 3.1 Normal Forms 3.2 Closure Properties

Contents of the Book

4	Further Properties		
	4.1 4.2	Terminating Left-Hand Sides Generalized k-Limited Erasing	51 54
5	Res	trictions and Extensions	71
	5.1	<i>n</i> -Limited Derivations	71
	5.2	Leftmost Derivations	85
	5.3	Maximal and Minimal Derivations	92
	5.4	Unordered Scattered Context Grammars	101
	5.5	Linear Scattered Context Grammars	104
	5.6	Extended Propagating Scattered Context Gram-	109
		mars	

Contents of the Book

6	Reduction and Economy		
		Reduction Economical Transformations	115 129
7	Par	ses and their Generators	137
	7.1	Terminology	138
	7.2	General Generators	141
	7.3	Canonical Generators	147
	7.4	Reduced Generators	155

Contents of the Book

Ш	Applications and Conclusion	161	
8	Applications in Linguistics 8.1 Syntax and Related Linguistic Terminology 8.2 Transformational Scattered Context Grammars 8.3 Scattered Context in English Syntax	163 164 168 171	
9	Concluding Remarks		
Bibliography			
Language Family Index			
Symbol Index			
Subject Index			

Introduction to Scattered Context Grammars

Scattered Information and Its Grammatical Formalization

 while context-sensitive grammars are suitable for modelling immediate context...

$$AAAABCAAAA$$
 $BC \rightarrow AA$

... they fail to describe scattered context dependencies efficiently

$$ABAAAAAACA$$
 $BA \rightarrow AA'$, $A'A \rightarrow AA'$, $A'C \rightarrow AA$

scattered context dependencies are common in real world:

He is interested in football, isn't he?

... int
$$i$$
; int $j = 10$; for $(i = 0; i < j; i++) { ...}$

 scattered context grammars (introduced by S. Greibach and J. Hopcroft in 1969) are convenient for describing this kind of dependencies

Scattered Context Grammars

Scattered Context Grammar

$$G = (V, T, P, S)$$

- V is a finite alphabet
- T is a set of terminals, $T \subset V$
- S is the start symbol, $S \in V T$
- P is a finite set of productions of the form

$$(A_1,\ldots,A_n)\to(x_1,\ldots,x_n),$$

where $A_1, \ldots, A_n \in V - T$, $x_1, \ldots, x_n \in V^*$

Propagating Scattered Context Grammar

lacksquare each $(A_1,\ldots,A_n) o (x_1,\ldots,x_n)$ satisfies $x_1,\ldots,x_n \in V^+$

Derivation Step

Derivation Step

If
$$(A_1,\ldots,A_n) o (x_1,\ldots,x_n) \in P$$
 and
$$u = u_1A_1\ldots u_nA_nu_{n+1}$$

$$v = u_1x_1\ldots u_nx_nu_{n+1},$$
 then $u \Rightarrow v \ [(A_1,\ldots,A_n) \to (x_1,\ldots,x_n)]$

 \blacksquare alph(x) denotes the set of all symbols appearing in x

Leftmost Derivation Step

■ each A_i satisfies $A_i \notin alph(u_i)$

Generated Language

Generated Language

 $L(G) = \{x \in T^* : S \Rightarrow^* x\}$

Language Families

- $\mathscr{L}(SC)$ scattered context languages
- $\mathscr{L}(PSC)$ propagating scattered context languages

Basic Properties

Theorem

$$\mathscr{L}(SC) = \mathscr{L}(RE).$$

Theorem

$$\mathscr{L}(\mathit{CF}) \subset \mathscr{L}(\underset{\mathsf{PSC}}{\mathsf{PSC}}) \subseteq \mathscr{L}(\mathit{CS}).$$

Theorem

For every recursively enumerable language L there exists a propagating scattered context language L' and a homomorphism h such that h(L') = L.

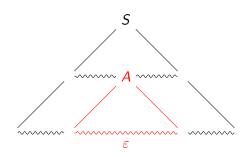
Results

Symbols Erased During Derivation

Symbols Erased During Derivation

A symbol A is erased during a derivation if the frontier of the subtree rooted at A is ε ;

- if the symbol A is erased, we write A,
- if the symbol A is not erased, we write A



Nonterminals Erased in a Generalized k-Limited Way

Nonterminals Erased in a Generalized k-Limited Way

For $y \in L(G)$, every sentential form x in $S \Rightarrow_G^* y$ satisfies:

- 1 every x = uAvBw, where \acute{A} , \acute{B} , \grave{v} , satisfies $|v| \leq k$,
- 2 every x = uAw, where \acute{A} , satisfies: if \grave{u} or \grave{w} , then $|u| \leq k$ or $|w| \leq k$, respectively



Results

Nonterminals Erased in Generalized k-Limited Way by SC Grammars

A scattered context grammar G erases its nonterminals in a generalized k-limited way if $L(G) = L(G, \varepsilon, k)$, where

$$L(G, \varepsilon, k) = \{x \in T^* : S \Rightarrow_G^* x, \text{ and } G \text{ erases nonterminals}$$

in a generalized k -limited way in $S \Rightarrow_G^* x\}$

Theorem

For each $k \geq 0$ and every scattered context grammar G, there is a propagating scattered context grammar \bar{G} such that $L(G, \varepsilon, k) = L(\bar{G})$.

Corollary

For every scattered context grammar G which erases its nonterminals in a generalized k-limited way, there exists a propagating scattered context grammar \bar{G} such that $L(G) = L(\bar{G})$.

Linear Scattered Context Grammars

Linear Scattered Context Grammar

- is a scattered context grammar G = (V, T, P, S)
- P is a finite set of productions of the following two forms:
 - **1** (S) \rightarrow ($x_1A_1 \dots x_kA_kx_{k+1}$), where $A_i \in (V T) \{S\}$, $x_j \in T^*$ for all $1 \le i \le k$, $1 \le j \le k+1$, for some $k \ge 1$,
 - $(A_1,\ldots,A_k) \to (z_1,\ldots,z_k)$, where $A_i \in (V-T)-\{S\}$, and either
 - $z_i = x_i B_i y_i$, where $x_i, y_i \in T^*$, $B_i \in (V T) \{S\}$, or
 - $z_i \in T^*$

for all $1 \le i \le k$, for some $k \ge 1$

Linear Scattered Context Grammar of Degree n

• every $(S) \rightarrow (y_1 A_1 \dots y_m A_m y_{m+1}) \in P$ satisfies $m \leq n$

Right-Linear Scattered Context Grammars

Right-Linear Scattered Context Grammar

- is a linear scattered context grammar G = (V, T, P, S)
- P is a finite set of productions of the following two forms:
 - 1 (S) \rightarrow ($x_1A_1...x_kA_k$), where $A_i \in (V-T)-\{S\}$, $x_i \in T^*$ for all $1 \le i \le k$, for some $k \ge 1$,
 - $(A_1,\ldots,A_k) \to (z_1,\ldots,z_k)$, where $A_i \in (V-T)-\{S\}$, and either
 - $\mathbf{z}_i = x_i B_i$, where $x_i \in T^*$, $B_i \in (V T) \{S\}$, or
 - $z_i \in T^*$

for all $1 \le i \le k$, for some $k \ge 1$

Language Families

- $\mathcal{L}(SC, LIN, n)$ linear scattered context grammars of degree n
- $\mathcal{L}(SC, RLIN, n)$ right-linear scattered context grammars of degree n

Results

Theorem

For each $n \geq 1$,

$$\mathscr{L}(SC, LIN, n) \subset \mathscr{L}(SC, LIN, n + 1),$$

 $\mathscr{L}(SC, RLIN, n) \subset \mathscr{L}(SC, RLIN, n + 1),$
 $\mathscr{L}(SC, RLIN, n) \subset \mathscr{L}(SC, LIN, n).$

- $\mathscr{L}(SC, LIN) = \bigcup_{n=1}^{\infty} \mathscr{L}(SC, LIN, n)$

Theorem

$$\mathscr{L}(\mathit{CF}) - \mathscr{L}(\mathit{SC}, \mathit{LIN}) \neq \emptyset, \ \mathscr{L}(\mathit{CF}) - \mathscr{L}(\mathit{SC}, \mathit{RLIN}) \neq \emptyset,$$

$$\mathscr{L}(\mathit{SC}, \mathit{RLIN}) \subset \mathscr{L}(\mathit{SC}, \mathit{LIN}) \subset \mathscr{L}(\mathit{PSC}).$$

n-Limited Derivations

 $|x|_W$ denotes the number of occurrences of symbols from set W in x

n-Limited Derivation Step

If
$$(A_1, \ldots, A_k) \to (x_1, \ldots, x_k) \in P$$
,
$$u = \underbrace{u_1 A_1 u_2 \ldots u_k A_k u_{k+1}}_{v = u_1 x_1 u_2 \ldots u_k x_k u_{k+1}},$$

and u satisfies

$$|u_1A_1\ldots u_kA_k|_{V-T}\leq n,$$

then $u \stackrel{n}{\lim} \Rightarrow_G v$

n-Limited Derivation

■ derivation $x \xrightarrow[\lim]{n} \Rightarrow_G^* y$ in which every derivation step $u \xrightarrow[\lim]{j} \Rightarrow_G v$ satisfies i < n

Results

Language of Order n

 $L(G, \lim, n) = \{x \in T^* : S_{\lim}^n \Rightarrow_G^* x\}$

Language Families

- $\mathcal{L}(PSC, \lim, n)$

Theorem

$$\mathscr{L}(\mathit{CF}) = \mathscr{L}(\mathit{PSC}, \mathsf{lim}, 1) \subset \ldots \subset \mathscr{L}(\mathit{PSC}, \mathsf{lim}, \infty) \subset \mathscr{L}(\mathit{CS}).$$

Leftmost Derivations

much simplified proof of the result proved by V. Virkkunen in 1973

Propagating Scattered Context Grammar which Uses Leftmost Derivations

• propagating scattered context grammar G = (V, T, P, S) whose language is defined as

$$L(G, \operatorname{Im}) = \{ x \in T^* : S_{\operatorname{Im}} \Rightarrow_G^* x \}$$

Language Family

 $\mathcal{L}(PSC, Im)$

Theorem

$$\mathscr{L}(PSC, Im) = \mathscr{L}(CS).$$

Maximal and Minimal Derivation

Maximal Derivation Step

Let $p \in P$. If

- 1 $u \Rightarrow v [p]$
- 2 for every $r \in P$ such that $u \Rightarrow w[r] : \operatorname{len}(p) \ge \operatorname{len}(r)$ then $u \xrightarrow{\max} v[p]$

Minimal Derivation Step

Let $p \in P$. If

- 2 for every $r \in P$ such that $u \Rightarrow w[r] : \operatorname{len}(p) \leq \operatorname{len}(r)$

then $u_{\min} \Rightarrow v[p]$

Results

Maximal and Minimal Languages

- $L(G, \max) = \{x \in T^* : S_{\max} \Rightarrow^* x\}$
- $L(G, \min) = \{ x \in T^* : S_{\min} \Rightarrow^* x \}$

Language Families

- $\mathcal{L}(PSC, \max)$
- $\mathcal{L}(PSC, \min)$

Theorem

$$\mathscr{L}(\mathit{CS}) = \mathscr{L}(\mathit{PSC}, \max).$$

Theorem

$$\mathcal{L}(CS) = \mathcal{L}(PSC, \min).$$

Production Labels

Production Label

- for every grammar G, lab(G) denotes the set of its production labels
- each $p \in lab(G)$ uniquely identifies one production:

$$p:(A_1,\ldots,A_n)\to(x_1,\ldots,x_n)$$

Derivation Made by Productions

• if $x \Rightarrow y$ by $p: (A_1, \dots, A_n) \rightarrow (x_1, \dots, x_n)$, we write

$$x \Rightarrow y [p]$$

• if $x \Rightarrow^* y$ by productions labeled with p_1, \ldots, p_n , we write

$$x \Rightarrow^* y [p_1 \dots p_n]$$

Proper Generator of Its Sentences With Their Parses

Parse (Szilard Word, Control Word)

lf

$$S \Rightarrow^* \mathbf{x} [\rho],$$

where $x \in T^*$, $\rho \in lab(G)^*$, then x is a sentence generated according to parse ρ

Proper Generator of Its Sentences With Their Parses

■ G = (V, T, P, S), where lab $(G) \subset T$, which satisfies

$$L(G) = \{x : x = y\rho, y \in (T - lab(G))^*, \rho \in lab(G)^*, S \Rightarrow {}^*x [\rho]\}$$

■ leftmost generator makes every successful derivation in a leftmost way

Results

- G = (V, P, S, T) is a proper generator of its sentences with their parses
- weak identity π from V^* to $(V lab(G))^*$:
 - $\pi(a) = a$ for each $a \in (V lab(G))$
 - $\pi(p) = \epsilon$ for each $p \in lab(G)$

Theorem

For every recursively enumerable language L, there exists a propagating scattered context grammar G such that G is a proper generator of its sentences with their parses and $L = \pi(L(G))$.

Theorem

For every recursively enumerable language L, there exists a propagating scattered context grammar G = (V, T, P, S) such that G is a proper leftmost generator of its sentences with their parses, $|V - T| \le 6$, and $L = \pi(L(G))$.

Applications in Linguistics

Applications in Linguistics

there are scattered dependencies in natural languages

He usually, but not always, goes to work early.

there is a scattered dependency between the subject (he) and the predicator (goes):

I usually, but not always, goes to work early.

the dependency can be easily captured by productions of scattered context grammars:

$$(He, goes) \rightarrow (I, go)$$

transforms the original sentence to

I usually, but not always, go to work early.

Example

Consider the language L consisting of these grammatical English sentences:

Your grandparents are all your grandfathers and all your grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Your great-great-grandparents are all your great-great-grandfathers and all your great-great-grandmothers.
:

In brief,

 $L = \{ \text{your } \{ \text{great-} \}^i \text{grandparents are all your } \{ \text{great-} \}^i \text{grandfathers}$ and all your $\{ \text{great-} \}^i \text{grandmothers} : i \ge 0 \}.$

Example

Introduce the scattered context grammar G = (V, T, P, S), where

 $\mathcal{T} = \{\mathsf{all}, \mathsf{and}, \mathsf{are}, \mathsf{grand} \mathsf{fathers}, \mathsf{grand} \mathsf{mothers}, \mathsf{grand} \mathsf{parents}, \mathsf{great}\text{-}, \mathsf{your}\},$

 $V = T \cup \{S, \#\}$, and P consists of these three productions:

 $(S) \rightarrow (your \#grandparents are all your \#grandfathers)$ and all your #grandmothers), $(\# \# \#) \rightarrow (\#grand \#grand #grand #grand$

$$(\#,\#,\#) \rightarrow (\#\mathsf{great}\text{-},\#\mathsf{great}\text{-},\#\mathsf{great}\text{-}), \\ (\#,\#,\#) \rightarrow (\varepsilon,\varepsilon,\varepsilon).$$

Obviously, this scattered context grammar generates L; formally, L = L(G).

Conclusion

Further Investigation

Possibilities of Practical Applications

- applications in compilers
- applications in natural language processing

Main Open Problem

 $\mathscr{L}(PSC) = \mathscr{L}(CS)?$

Journal Articles by the Authors

- 2009 A. Meduna and J. Techet: An infinite hierarchy of language families generated by scattered context grammars with *n*-limited derivations, *Theoretical Computer Science*, 2009, in press
- 2008 Masopust T., Techet J.: Leftmost Derivations of Propagating Scattered Context Grammars: A New Proof, *Discrete Mathematics* and Theoretical Computer Science, 10, 39–46
- 2008 A. Meduna and J. Techet: Scattered context grammars that erase nonterminals in a generalized *k*-limited way, *Acta Informatica*, 45(7), 593–608
- 2007 Meduna A., Techet J.: Canonical Scattered Context Generators of Sentences with Their Parses, *Theoretical Computer Science*, 389, 73–81
- 2005 Meduna A., Techet J.: Generation of Sentences with Their Parses: the Case of Propagating Scattered Context Grammars, Acta Cybernetica, 17, 11–20

Conference Contributions by the Authors

- 2007 Meduna A., Techet J.: Maximal and Minimal Scattered Context Rewriting, FCT 2007 Proceedings, Budapest, 412–423, (LNCS)
- 2007 Meduna A., Techet J.: Reduction of Scattered Context Generators of Sentences Preceded by Their Leftmost Parses, *Proceedings of DCFS 2007*, High Tatras, 178–185