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Turing Machine

 All recursively enumerable functions
 All algorithmically described languages
e Type-0O grammars

* AlImost all problems are undecidable and
many are untractable (nBtwith small n)

= restrict space of TM
= reduce power but better tractabllity




4/31

'Space-bounded Turing Machines

 Assume: 2-way, read-only input, read-write wonsea

« Complexity measure: Space (Strongly, Weakly)

 Log-space: Model independent

e Constant-space: Power?

» Sublog-space: How small bit of information impreviaite

automaton?

* Differences of log vs sublog bounded-space TMs:
* Depends on the machines models & modes of space
complexity (but lower bound same for many models).
 L(n)=log n closed under catenation, ngin) = o(log n);

Below logn, no unbounded non-decreasing function is

fully space constructible.
* More sophisticated proof techniques.
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Turing Machine

Turing Machine (TM) Is a sixtuple
M=(Q,2T,09,0q, F), where

e Q/7 finite set ofstates

e > /7 aninput alphabet

[ [/ atape alphabetvith the blank symbob LI T,

* g, U QL/ start state

o F [1 Q// aset of accepting states

o 0. QxZ{ » 4} xI" - Powel(MFr{o}) xQx{R, N, L}?) [/
the transition functiordescribing rules of the form

ptr - tVVAW'[ inn

wherep, qUQ, 20z, t, t, 0, A, A, L{R N, L}.

Wt?
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Deterministic Turing Machine

Deterministic Turing Machine(DTM) M is a
TM where
O: OxZO{ » 4} xI" - (T{o}) xQx{R, N, L}?

In other words:
For every(p, 4, t.),

there Iis at most ong,, g, A, A,) INO(p, 7, t,),
wherep, qUQ, aUZ, t, t, U, A, A L{R N, L}.

 One-way TM:input head cannot move to the left
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Configuration

Configuration of M on an input w

(> w,gaw, €, x.q

) or (I, x,gx)

where( 1 Q, W = waw,[13", 0<i < |w|+1
X = X U(M—{o})’

In addition:w[0] = », wj|w

+1] = <, X[|x]+1] =o

 Input tape CANNOT change
e Just possition of input head is sufficient

Initial Configuration :

(»g,w+«, g.) or simply (1,0,€)
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Computation

Computation step

(I’ P ):> (|'1 g ) [ ptr - twAwthin]
where x| =] — 1,M does:

writet,, onx[j];

do actiom,,on the work tape;

do actiomA,, on the input tape;

change the current statedo

B N

M cannot enter more than c configurationsvhere

¢ = |QI LAIwl+2) x| AT
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Internal Configuration

« final configuration= no computation step possible
« accepting configuratios final configuration with accepting state
« computation= finite or infine sequence of configurations

Internal Configuration of M:

g

whereq [ Q,
X = X%, O (FT{o})",
andj Is theposition of the work hegadL < | < |x|+1.

Upper bound for the number of all internal
configurations dX = |QJ x| 4T |
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Space Complexity

» the maximal space used by configurations of the compmurtati
e recall that every visited cell is non-blank

L(n) be a function on natural number. et |n|.

Strongly L(n) space-bounded TM
If no accessible configuration @any input w uses
more tharlL(n) cells on the work tape.

Weakly I(n) space-bounded TM
If for every accepted input, at least one accepting computation uses at
mostL(n) space.

Middle L(n) space-bounded TM

If no accessible configuration on any accepted inpuses more thah(n)
space.
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Space Complexity Classes

DSPACHL(n)], NSPACHL(n)] — class of
languages accepted bgterministic and
nondeterministic TM, respectively.

» Add prefix strong weak or middle if needed; otherwise the
results holds for all types of the definition.

Notation:(In literature: = corresponds fo)

f(n) = O(g(n)) if there existsc > 0, s. t.f(n) < cg(n).
f(n) <<g(n) if liminf___(f(n)/g(n)) = O.

f(n) =o(g(n)) if lim,_(f(n)/g(n)) = O.

* The logarithm functiorlog n is in base 2
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TM with Logarithmic Space

 TM with logarithmic or greater space can

e store on the work tape numbers up to the size of
the input;

* remember any position on the input tape.

* Eg. GAP (Graph accessibility problem) language
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Example 1: Primes

{a": nis prime}

e counts the letters of an input
e stores the number in binary on the work tape
e checks one by one for each k< n,
whetherk dividesn
e accepts If nk dividesn.
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Example 2: Reflection

fwwh:w {0,117}

e compare the first letter with the last one

e compare the second with the last by one
e Just track the current position in binary on
the work tape
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Pebble Automata

A k-pebble finite automatorik-PA):

* two-way read-only input tap@o work tape),

 k pebblesvhich can be placed on and removed
from the input tape (bound to the concrete cell),
e finite set of rule®f the form

gaP - g{N, R, L}{drop, take}

wherep, g U Q, 2 LI 2, P Is a set of pebbles on the
current cell.
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Example 3: Reflection in PA

fwwh:w {0,117}

 How much pebbles do we need?

 \What Is the power of 1-pebble automata?

* \What Is the power ok-pebble automata?
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Power of Pebble Automata

Theorem: k-PA = log-space-TM
with k depending on the number of
work tape symbols.

Proof:
See page 16-18.
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GAP Language

GAP language consists of encoded directed graphs
which have a path from the first to last vertex

A directed grapltc = (V, E), whereE 1 V x V.
Encoded as
Fagtay 178y o8y, A8 A 5 By,

Thus, lists of vertices reachable from the list head.
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NSPACE(logn) Complete Languagesi

Lemma: GAP O NSPACHlog n).
Proof: page 18

Lemma: GAP I1s NSPACHIlog n) complete

Proof: page 19
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NSPACE(logn) Complete Language4

Lemma: If A, Is log-space reducible t&, and
A, 1 DSPACH]Iog n) thenA, [1 DSPACH]og n).

Proof. page 19

Theorem: GAP L DSPACH]log n)
Iff NSPACHlog n) = DSPACH]Iogn) .
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TM with Sublogarithmic Space

« Constant space-bounded M accepts regular
languages (Hopcroft and Ullman 1979)

e L(n) << logn: e.g. Primes (even primes are trivial)
e a little tricky definition of <<
* The first real non-regulasublog-spacdanguage
e Stearns et al. 1965
W, = by # b, # ... #b,

whereb, Is binary description of the number
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Example 4: Numbers

W, = by #b, # ... #D,

» compareb, with b,

e compared, with b,

e Just track the current position in binary
representation db

L(n) = Llogllogk] ]+ 1
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Example 5: What is log l0g?

n logn log logn
2 1 0
4 2 1
16 4 2
256 8 3
65536 16 4
4294967296 32 5
1,84467E+19 64 6
3,40282E+38 128 7
1,15792E+77 256 8




24/31

Example 6: Nonequivalence

A= {ab™: k# m}
e Ais non-regular
Al weakDSPACH]Iog log n]
* A [l weakoneway-NSPACHIog log n]
*Trick (For proof see pages 22 through 24)
M guesseg such thak # m (modj) and
| <clog k+m|.
e A 1 strongNSPACHsublog n]

What are the lower bounds?
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Lower Bounds for Accepting
Non-regular Languages

* Gap theorems no use of constant-bounded or
less thand log logn) bounded-space to get non-
regular languages.

* Lower bound for weakly space-bounded one-way
TMs is logn for deterministic and log log for
nondeterministic (Alberts 1985).

 TMs with 2-dimensional inputs can be space-
bounded by loth or log®¥n
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Lower Bounds for Two-way TMs

Theorem: Let M be aweakly L(n) space-
boundeddeterministic or non-deterministic
TM. Then either:

* L(n) > clog logn with ¢c> 0 and inf. many,
or

M accepts aegular languageand space
used byM Is bounded by a constant
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Proof: k-equivalent suffixes

C(k, M) —set of allk space-bounded (s-b) internal cfgs af/

(B, B,) O P(k, M, w) iff there isk s-b computation oM start-
Ing Iin B, at w[1] reachesp, just after it leavesw to the left.

(B) U Q(k, M, w) iff there isk s-bacceptingcomputation o
starting inp at leftmost letter of w acceptswithout leavingw.

k-equivalent u and yu,v [ >":
us=s, v iff
P(k, M, u) = P(k, M, v) andQ(k, M, u) = Q(k, M, V).

Intuitively : M cannot distinguislk-equivalent
suffixes when using space.
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Proof: Auxiliary Lemma

Lemma: Letu, v, x 12", andu =, v. Then:
There isk s-b accepting computation df on xu iff
there isk s-b accepting computation df on xv.

Proof (see page 29):

e Study crossing-u boundary: divide computation into
segmentsy, ..., o;, Whereo; satisfy (a) with odd entersx,
and (b) with even entersu.

* From assumption =, v, for ; and even, there is
corresponding; (by analogy for evep).

 For even, replacen; by 6, and we obtain computation &
on xv.
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Proof of Theorem

‘ Part:L(n) > c log logn with ¢> 0 and inf. many

Proof (page 29) Part 1) Contradition of; =w; andw, =, ;W)

e SUPpPOSe No constant upper s=hinf. manyk andw.
* W= a,8,...a,theshortestinput accepteth k space
‘W =&...a, W, =8&...a, | <|.

* Supposev, = w, andw; =, ,w; for some 1<i <] <n.
 From lemma, there |Es b accepting computation
ONW'= a,8,...8,.18;...8,

* Asw s the shortest input &=, ;w;, W' cannot use
less thank; otherwisew also accepted In less space.
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Proof of Theorem

‘ Part:L(n) > c log logn with ¢> 0 and inf. many

Proof (Part 2, page 29Recall:=, is an equivalence

relation; Let ¢ =dX = |Q| /X|4¥ [¥, where X| =k and W| =n.
* The number of possible equivalence classges

fo =, #P(k, M, w) 3HQ(K, M, w)* = 2(cl) [P¢ < 4(cE)
* Since two diff. suffixesy;, w; cannot belong to the same
equivalence classes sf and=, ,, it requires that

(402 > f, [T} = (4 HCT) > n
log (4°9)2>log n
log (2dX [dX') > log logn
k>hlog logn.

* Hence L(n) > hlog logn for const.n > 0 & infinite manyn.
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Conclusion

e Open problems:
e deterministic vs non-deterministic TMs

 Read the book!

Discussion




