
1/31

Zbyněk K řivka

RestrictedRestricted
TuringTuring MachinesMachines

basedbasedon on 
SzepietowskiSzepietowski, A.: , A.: TuringTuring MachinesMachineswithwith SublogarithmicSublogarithmic SpaceSpace. . 

SpringerSpringer, 1994 (, 1994 (ChaptersChapters 1 1 throughthrough 5)5)

Formal Model Research Group
Faculty of Information Technology,

Brno University of Technology, Czech Republic

���� krivka@fit.vutbr.cz



2/31

Contents

1. Definitions
• Turing Machine
• Complexity Measures
• Pebble Automata

2.   Results (Log-space, Sublog-space)   
3.   Maybe some proofs
4.   Discussion



3/31

• All recursively enumerable functions
• All algorithmically described languages
• Type-0 grammars
• …
• Almost all problems are undecidable and
many are untractable (not P with small n) 
⇒ restrict space of TM 
⇒ reduce power but better tractability

Turing Machine



4/31

• Assume: 2-way, read-only input, read-write work tape
• Complexity measure: Space (Strongly, Weakly)
• Log-space: Model independent 
• Constant-space: Power?
• Sublog-space: How small bit of information improves finite 
automaton?
• Differences of log vs sublog bounded-space TMs:

• Depends on the machines models & modes of space
complexity (but lower bound same for many models).
• L(n)≥log n closed under catenation, not L(n) = o(log n);
Below log n, no unbounded non-decreasing function is

fully space constructible.
• More sophisticated proof techniques.

Space-bounded Turing Machines



5/31

Turing Machine
Turing Machine (TM ) is a sixtuple

M = (Q, Σ, Γ, δ, q0, F), where
• Q finite set of states,
• Σ an input alphabet
• Γ a tape alphabetwith theblank symbol□ ∈ Γ,
• q0 ∈ Q start state,
• F ⊆ Q aset of accepting states,
• δ: Q×Σ∪{��} ×Γ → Power((Γ–{□}) ×Q×{ R, N, L} 2)
the transition functiondescribing rules of the form 

aptr →→→→ twAwt qAin
where p, q∈Q, a∈Σ, tr, tw∈Γ, Awt, Ain∈{ R, N, L}.



6/31

Deterministic Turing Machine

Deterministic Turing Machine(DTM) M is a 
TM where
δ: Q×Σ∪{��} ×Γ → (Γ–{□}) ×Q×{ R, N, L} 2

In other words:
For every(p, a, tr), 

there is at most one(tw, q, Awt, Ain) in δ(p, a, tr),
where p, q∈Q, a∈Σ, tr, tw∈Γ, Awt, Ain∈{ R, N, L}.

• One-way TM: input head cannot move to the left



7/31

Configuration
Configuration of M on an input w:

(�w1qaw2�, x1qx2) or (i, x1qx2)
whereq ∈ Q, w = w1aw2∈Σ* , 0 ≤ i ≤ |w|+1

x = x1x2∈(Γ–{□}) *

In addition: w[0] = �, w[|w|+1] = �, x[|x|+1] = □

• input tape CANNOT change
• just possition of input head is sufficient

Initial Configuration :
(�q0w�, q0εεεε) or simply (1, q0εεεε)



8/31

Computation

M cannot enter more than c configurations, where
c = |Q| ⋅ (|w|+2) ⋅ |x| ⋅ |Γ||x|

Computation step:
(i, x1px2) ⇒ (i', x1′qx2′) [aptr →→→→ twAwtqAin]

where |x1| = j – 1, M does: 
1. write tw on x[j];
2. do actionAwt on the work tape;
3. do actionAin on the input tape;
4. change the current state to q.



9/31

Internal Configuration

Internal Configuration of M:

x1qx2
whereq ∈ Q, 

x = x1x2 ∈ (Γ–{□}) *,
andj is theposition of the work head, 1 ≤ j ≤ |x|+1.

Upper bound for the number of all internal
configurations: d|x| = |Q| ⋅ |x| ⋅ |Γ||x|

• final configuration= no computation step possible
• accepting configuration= final configuration with accepting state
• computation= finite or infine sequence of configurations



10/31

Space Complexity

L(n) be a function on natural number. Let w = |n|.
Strongly L(n) space-bounded TM:

if no accessible configuration on any input w uses
more thanL(n) cells on the work tape.

Weakly L(n) space-bounded TM: 
If for every accepted inputw, at least one accepting computation uses at
most L(n) space.
Middle L(n) space-bounded TM: 
If no accessible configuration on any accepted inputw uses more thanL(n) 
space.

• the maximal space used by configurations of the computation
• recall that every visited cell is non-blank



11/31

Space Complexity Classes

DSPACE[L(n)], NSPACE[L(n)] – class of
languages accepted by deterministic and
nondeterministic TM, respectively.

Notation: (In literature: = corresponds to ∈)

f(n) = O(g(n)) if there existsc > 0, s. t. f(n) ≤ cg(n).
f(n) << g(n)   if lim infn→∞(f(n)/g(n)) = 0.
f(n) = o(g(n)) if lim n→∞(f(n)/g(n)) = 0.

• Add prefix strong, weak, or middle, if needed; otherwise the
results holds for all types of the definition.

• The logarithm functionlog n is in base 2.



12/31

TM with Logarithmic Space

• TM with logarithmic or greater space can

• store on the work tape numbers up to the size of
the input;

• remember any position on the input tape.

• Eg. GAP(Graph accessibility problem) language



13/31

Example 1: Primes

{ an : n is prime}

• counts the letters of an input
• stores the number in binary on the work tape
• checks one by one for each 1 < k < n, 

whetherk dividesn
• accepts if no k dividesn.



14/31

Example 2: Reflection

{ wwR : w ∈ {0,1} *}

• compare the first letter with the last one
• compare the second with the last by one
• …
• just track the current position in binary on 
the work tape



15/31

Pebble Automata
A k-pebble finite automaton(k-PA):

• two-way read-only input tape(no work tape),
• k pebbleswhich can be placed on and removed
from the input tape (bound to the concrete cell),
• finite set of rulesof the form 

qaP →→→→ q{N, R, L} {drop, take}
where p, q ∈ Q, a ∈ Σ, P is a set of pebbles on the

current cell.



16/31

Example 3: Reflection in PA

{ wwR : w ∈ {0,1} *}

• How much pebbles do we need?

• What is the power of 1-pebble automata?

• What is the power ofk-pebble automata?



17/31

Power of Pebble Automata

Proof:
See page 16-18.

Theorem: k-PA = log-space-TM, 
with k depending on the number of

work tape symbols.



18/31

GAPLanguage

A directed graphG = (V, E), whereE ⊆ V × V.

Encoded as 

** a1*a1,1*a1,2…a1,i1
** a2*a2,1*a2,2…a2,i2

**…

Thus, lists of vertices reachable from the list head. 

GAP language consists of encoded directed graphs
which have a path from the first to last vertex.



19/31

NSPACE(log n) Complete Languages

Proof: page 18

Lemma: GAP ∈∈∈∈ NSPACE(log n).

Lemma: GAP is NSPACE(log n) complete.

Proof: page 19



20/31

NSPACE(log n) Complete Languages

Proof: page 19

Theorem: GAP ∈ DSPACE(log n) 
iff NSPACE(log n) = DSPACE(log n) .

Lemma: If A1 is log-space reducible to A2 and
A2 ∈ DSPACE(log n) thenA1 ∈ DSPACE(log n).



21/31

TM with Sublogarithmic Space
• Constant space-boundedTM accepts regular
languages (Hopcroft and Ullman 1979)

• L(n) << log n: e.g. Primes (even primes are trivial)

• a little tricky definition of << 

• The first real non-regularsublog-spacelanguage

• Stearns et al. 1965

wk = b0 # b1 # ... # bk

wherebi is binary description of the numberi.



22/31

Example 4: Numbers

wk = b0 # b1 # ... # bk

• compareb0 with b1

• compareb1 with b2

• …
• just track the current position in binary
representation ofbi

L(n) =  log log k  + 1



23/31

Example 5: What is log logn?

82561,15792E+77

71283,40282E+38

6641,84467E+19

5324294967296

41665536

38256

2416

124

012

log lognlog nn



24/31

Example 6: Nonequivalence

A = {akbm : k ≠ m}

• A is non-regular
• A ∈ weak-DSPACE[log log n]
• A ∈ weak-one-way-NSPACE[log log n]
•Trick (For proof see pages 22 through 24): 

• M guessesj such thatk ≠ m (mod j) and
• j < c log |k + m|.

• A ∉ strong-NSPACE[sublogn]

What are the lower bounds?



25/31

• Gap theorems: no use of constant-bounded or
less than (d log logn) bounded-space to get non-
regular languages.

• Lower bound for weakly space-bounded one-way
TMs is log n for deterministic and log logn for
nondeterministic (Alberts 1985).

• TMs with 2-dimensional inputs can be space-
bounded by log*n or log(k)n

Lower Bounds for Accepting
Non-regular Languages



26/31

Lower Bounds for Two-way TMs

Theorem: Let M be a weakly L(n) space-
boundeddeterministic or non-deterministic
TM . Then either:

• L(n) ≥ c log logn with c > 0 and inf. many n,

or

• M accepts a regular languageand space
used by M is bounded by a constant.



27/31

Proof: k-equivalent suffixes

k-equivalent u and v, u,v ∈ Σ*:
u ≡k v iff

P(k, M, u) = P(k, M, v) andQ(k, M, u) = Q(k, M, v).

C(k, M) – set of allk space-bounded (s-b) internal cfgs ofM.

(β1, β2) ∈ P(k, M, w) iff there isk s-b computation ofM start-
ing in β1 at w[1] reachesβ2 just after it leavesw to the left.

(β) ∈ Q(k, M, w) iff there isk s-b acceptingcomputation ofM
starting inβ at leftmost letter of w acceptswithout leavingw.

Intuitively : M cannot distinguishk-equivalent
suffixes when usingk space.



28/31

Proof: Auxiliary Lemma
Lemma: Let u, v, x ∈ Σ*, andu ≡k v. Then:
There isk s-b accepting computation ofM on xu iff

there isk s-b accepting computation ofM on xv.

Proof (see page 29):
• Study crossingx-u boundary: divide computation into
segmentsα1, …, αj, whereαi satisfy (a) with oddi entersx, 
and (b) with eveni entersu.
• From assumptionu ≡k v, for αi and eveni, there is
correspondingδi (by analogy for evenj).
• For eveni, replaceαi by δi and we obtain computation ofM
on xv.



29/31

Proof of Theorem

Proof (page 29): Part 1) Contradition of (wi ≡kwj andwi ≡k-1wj)

• Suppose no constant upper s-b⇒ inf. manyk andw.
• w = a1a2…an theshortest input acceptedin k space.
• wi = ai…an, wj = aj…an, i < j.
• Supposewi ≡kwj andwi ≡k-1wj for some 1 ≤ i < j ≤ n.
• From lemma, there isk s-b accepting computation
on w′= a1a2…ai-1aj…an.
• As w is the shortest input & wi≡k-1wj, w′ cannot use 
less thank; otherwisew also accepted in less space.

Part: L(n) ≥ c log logn with c > 0 and inf. many n



30/31

Proof of Theorem

Proof (Part 2, page 29): Recall: ≡k is an equivalence
relation; Let c = d|x| = |Q|⋅|x|⋅|Γ||x|, where |x| = k and |w| = n.
• The number of possible equivalence classes≡k

fk = „#P(k, M, w) ⋅ #Q(k, M, w)“ = 2(c⋅c) ⋅ 2c ≤ 4(c⋅c)

• Since two diff. suffixeswi, wj cannot belong to the same
equivalence classes of≡k and≡k-1, it requires that

(4(c⋅c))2 ≥ fk ⋅ fk = (4(c⋅c))⋅(4(c'⋅c')) ≥ n
log (4(c⋅c))2 ≥ log n

log (2 d|x| ⋅ d|x| ) ≥ log logn
k ≥ h log logn.

• Hence, L(n) ≥ h log logn for const. h > 0 & infinite many n.

Part: L(n) ≥ c log logn with c > 0 and inf. many n



31/31

Conclusion

• Open problems:
• deterministic vs non-deterministic TMs

• Read the book!

DiscussionDiscussion


