Syntax Driven Japanese-Czech Translation

Petr Horáček

Department of Information Systems Faculty of Information Technology Brno University of Technology

November 4, 2010

Outline

- Introduction
 - Motivation
 - Idea
- 2 Definitions
 - Preliminaries
 - Parse Translation Grammar
 - Parse Translation Matrix Grammar
- 3 Examples
 - Translating Japanese sentence structure to Czech

Outline

- Introduction
 - Motivation
 - Idea
- 2 Definitions
 - Preliminaries
 - Parse Translation Grammar
 - Parse Translation Matrix Grammar
- 3 Examples
 - Translating Japanese sentence structure to Czech

Motivation

Automated Translation of Natural Languages

- One of the major NLP tasks
- Practical applications
- Japanese-Czech translation little research

Syntax Driven Translation

- Well-known concept
- Used in practice (compilers)
- Corresponds to human learning of languages

Syntax Driven Translation

Translation grammar (basic idea)

- A grammar that generates two corresponding sentences (input and translation) in one derivation
- Based on CFG (usually)
- Each rule has two right-hand sides one generates the input sentence, other the corresponding output sentence
- One left-hand side always rewriting the same nonterminal

Example

• Rule:

$$1: \mathsf{E} \to \mathsf{E} + \mathsf{T}, \mathsf{E} \mathsf{T} +$$

Derivation step:

$$(E, E) \Rightarrow (E + T, E T +) [1]$$

Parse Driven Translation

Idea

- Based on the the idea of syntax driven translation and translation grammars
- Two grammars (input and output), corresponding rules share labels
- Input sentence and output sentence same parse (sequence of rules used in derivation, denoted by their labels)
- Example rules:

 Note: the two corresponding rules do not need to rewrite the same nonterminal

Parse Driven Translation

Translation in practice (idea)

 Parse the input sentence using input grammar – we get a sequence of rules (parse)

$$S_I \Rightarrow^* x_I[\alpha]$$

② Generate the translation using output grammar – apply the rules of output grammar according to the sequence from step 1

$$S_O \Rightarrow^* x_O[\alpha]$$

Parse Driven Translation

Dealing with context

- CFG might not have enough generative power to describe natural languages
- We can use grammars with regulated rewriting, such as matrix grammar

Matrix grammar - motivation

- Relatively simple and straightforward extension of CFG
- Easy to describe and translate grammatical rules, structures and relations
- Practical use? (not "too powerful")

Outline

- Introduction
 - Motivation
 - Idea
- 2 Definitions
 - Preliminaries
 - Parse Translation Grammar
 - Parse Translation Matrix Grammar
- 3 Examples
 - Translating Japanese sentence structure to Czech

Context-Free Grammar

Definition

A context-free grammar (CFG) is a quadruple G = (N, T, P, S), where

- N is a finite set of nonterminal symbols
- T is a finite set of *terminal* symbols, $N \cap T = \emptyset$
- P is a finite relation from N to $(N \cup T)^*$, usually represented as a finite set of *rules* (productions) of the form $A \to x$, where $A \in N$ and $x \in (N \cup T)^*$
- $S \in N$ is the start symbol

Derivation step and generated language

Let $u, v \in (N \cup T)^*$ and $p = A \rightarrow x \in P$. Then, uAv directly derives uxv according to p in G, written as $uAv \Rightarrow_G uxv[p]$ or simply $uAv \Rightarrow uxv$.

$$L(G) = \{w : w \in T^*, S \Rightarrow^* w\}$$

Matrix Grammar

Definition

A matrix grammar is a pair H = (G, M), where

- G = (N, T, P, S) is a context-free grammar
- M is a finite language over $P(M \subseteq P^*)$

Notation

- Let $N = A_1, \ldots, A_m$ for some $m \ge 1$
- ullet For some $m_i=p_{i_1}\dots p_{i_j}\dots p_{i_{k_i}}\in M$,

$$p_{i_i}:A_{i_j}\to x_{i_j}$$

Matrix Grammar

Derivation step

For $x, y \in (N \cup T)^*$, $m \in M$,

$$x \Rightarrow y[m]$$

in H if there are x_0, \ldots, x_n such that $x = x_0, x_n = y$, and

- \bullet $x_0 \Rightarrow x_1[p_1] \Rightarrow x_2[p_2] \Rightarrow \cdots \Rightarrow x_n[p_n]$ in G, and

Generated language

$$L(H) = \{x : x \in T^*, S \Rightarrow^* x\}$$

Parse Translation Grammar

Definition

A parse translation grammar is a 5-tuple

$$H = (G_I, G_O, \Psi, \varphi_I, \varphi_O)$$

where

- $G_I = (N_I, T_I, P_I, S_I)$ and $G_O = (N_O, T_O, P_O, S_O)$ are context-free grammars and card $P_I = \text{card } P_O$
- Ψ is a set of symbols (*rule labels*), φ_I is a bijection from Ψ to P_I and φ_O a bijection from Ψ to P_O

Parse Translation Grammar

Notation

$$p: A_I \to x_I$$
 where $p \in \Psi, A_I \to x_i \in P_I$ $x_I \Rightarrow_{G_I} y_I[p]$ where $x_I, y_I \in (N \cup T)^*, p \in \Psi$ $x_I \Rightarrow_{G_I}^n y_I[p_1 \dots p_n]$ where $x_I, y_I \in (N \cup T)^*, p_i \in \Psi$ for $1 \le i \le n$ Analogous for output grammar G_O .

$$\varphi_I(p) = A_I \to x_I$$

one derivation step in G_I , applying rule $\varphi_I(p)$ derivation in G_I , applying rules $\varphi_I(p_1) \dots \varphi_I(p_n)$

Translation

Translation T(H) is a set of pairs of sentences:

$$T(H) = \{(w_I, w_O) : w_I \in T_I^*, w_O \in T_O^*, S_I \Rightarrow_{G_I}^* w_I[\alpha], S_O \Rightarrow_{G_O}^* w_O[\alpha]\}$$

where $\alpha \in \Psi^*$

Parse Translation Matrix Grammar

Definition

A parse translation matrix grammar is a 7-tuple

$$H = (G_I, M_I, G_O, M_O, \Psi, \phi_I, \phi_O)$$

where

- ullet (G_I,M_I) and (G_O,M_O) are matrix grammars and card $M_I=$ card M_O
- Ψ is a set of symbols (matrix labels), φ_I is a bijection from Ψ to M_I and φ_O a bijection from Ψ to M_O

Parse Translation Matrix Grammar

Notation

$$\begin{split} & m: t_I \\ & \text{where } m \in \Psi, t_I \in M_I \\ & x_I \Rightarrow_{(G_I, M_I)} y_I[m] \\ & \text{where } x_I, y_I \in (N \cup T)^*, m \in \Psi \\ & x_I \Rightarrow_{(G_I, M_I)}^n y_I[m_1 \dots m_n] \\ & \text{where } x_I, y_I \in (N \cup T)^*, \\ & m_i \in \Psi \text{ for } 1 \leq i \leq n \end{split}$$

$$\varphi_I(m) = t_I$$

one derivation step in (G_I, M_I) ,
applying matrix $\varphi_I(m)$

applying matrix $\varphi_I(m)$ derivation in (G_I, M_I) , applying matrices $\varphi_I(m_1) \dots \varphi_I(m_n)$

Translation

Translation T(H) is a set of pairs of sentences:

$$T(H) = \{(w_I, w_O) : w_I \in T_I^*, w_O \in T_O^*, S_I \Rightarrow_{(G_I, M_I)}^* w_I[\alpha], S_O \Rightarrow_{(G_O, M_O)}^* w_O[\alpha] \}$$

where $\alpha \in \Psi^*$

Outline

- Introduction
 - Motivation
 - Idea
- 2 Definitions
 - Preliminaries
 - Parse Translation Grammar
 - Parse Translation Matrix Grammar
- 3 Examples
 - Translating Japanese sentence structure to Czech

Example 1: Subject and Verb (1/2)


```
\mathsf{S} \to \mathsf{SP} \; \mathsf{VP}
p2: SP \rightarrow NP_{3sm}
p3: \mathsf{NP}_{3sm} \to \mathsf{N}_{3sm} wa
p4: VP \rightarrow NP \ ni \ V
p5: V \rightarrow V_{pas}
p6: NP \rightarrow N
  1:
         p1
        p2 p5
  3:
         р3
  4:
         p4
  5:
         p6
         1 4 2 3 5
```

Example 1: Subject and Verb (2/2)

p 1:	$S \to SP \; VP$
p 2:	$SP o NP_{3\mathit{sm}}$
p 3:	$NP_{3sm} o \mathit{N}_{3sm}$
p 4:	$VP \to V \; \textit{do} \; NP$
p 5:	$ extsf{V} ightarrow V_{ extsf{pas}3 extsf{sm}}$
p 6:	$NP \to N$
1:	p1
2:	p 2 p 5
3:	p 3
4:	p 4
5:	p 6
	1 4 2 3 5

Example 2: Verb Phrase – Object

References

- A. Meduna: Elements of Compiler Design, T & F, New York, US, 2008
- J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory, Akademie-Verlag, Berlin, 1989.
- E. Banno, Y. Ohno, Y. Sakane, C. Shinagawa: Genki 1: An Integrated Course in Elementary Japanese, The Japan Times, 1999

Thank you for attention