
Context-free languages and primitive words

Pál Dömösi ∗

Combinatorial properties of words play an important role in mathematics
and theoretical computer science. One of the well-known open problems is
related to the language of primitive words. A word is called primitive if it is
not a repetition of another word. (Thus the empty word is non-primitive.)

We conjectured that the language Q of all primitive words over a non-
singleton alphabet is not context-free (Dömösi, S. Horváth, M. Ito [1991]).
The problem seems to be simple but we could not solve it yet.

Apart from the conditions of Wise Lemma (D. S. Wise [1976]), Q has
all well-known iteration conditions of context-free languages (P. Dömösi, S.
Horváth, M. Ito, L. Kászonyi, M. Katsura [1992,1993]). 1 Another test
of context-freeness is the so-called Interchanging Lemma (W. Ogden, R. J.
Ross, K. Winklmann [1982]). It is also proved that Q fulfils the conditions
of this test (S. Horváth [1995]). Therefore, Q resists almost all well-known
tests of context-freeness.

It is also well-known that an intersection of a regular and a context-free
language is again a context-free language. Therefore, if we find a regular
language R such that R ∩ Q is not context-free then we can show that Q
is not context-free. By results of L. Kászonyi and M. Katsura [1996, 1997,
1999a, 1999b], this direction also seems to be hopeless.

Maybe an appropriate homomorphic characterization of languages could
help to prove our conjecture about the context-freeness of Q. (N. Chomsky
and M. P. Schützenberger [1963], R. J. Stanley [1965]), S. Hirose and M.
Yoneda [1985], P. Dömösi and S. Okawa [2003]).

∗Nýıregyházi Főiskola, Matematika és Informatika Intézet,
H-4400 Nýıregyháza, Sóstói út 31/B, e-mail: domosi@nyf.hu

1Note that the applicability problem of the Wise Lemma is equivalent to the original
problem.)
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1 Concepts

alphabet - non-empty and finite set - Σ

non-trivial alphabet - |Σ| > 1

letter - an element of the alphabet

word - a finite string of letters

p = x1 · · · xk, q = xk+1 · · · xℓ, x1, . . . , xℓ ∈ Σ ⇒ pq = x1 · · · xℓ

p0 = λ, where λ is the empty word; pk = ppk−1; p∗ = {pk | k ≥ 0}; p+ =
p∗ \ {λ}

the set of all words : Σ∗ including the empty word λ

the set of non-empty words : Σ+ = Σ∗ \ {λ}

primitive word: it is not a repetition of another word

language : L ⊆ Σ∗

bounded language : there exists w1, . . . , wn ∈ Σ∗ with L ⊆ w∗
1 · · ·w∗

n

slender language: ∃c > 0 : ∀n > 0 : |L ∩ {w ∈ Σ∗ : |w| = n}| ≤ c

k-slender language: ∃c > 0 : ∀n > 0 : |L ∩ {w ∈ Σ∗ : |w| = n}| ≤ cnk

paired loop language : {uvnwxny : u, v, w, x, y ∈ Σ∗, n ≥ 0}

Non-crossing 1-time paired loop language : paired loop language

Non-crossing k + 1-times paired loop language : k ≥ 1 :
L = {uvnLxny|n ≥ 0} for some u, v, w, x, y ∈ Σ∗ and a non–crossing k-times
paired loop language

Moreover, if L1 is a non-crossing k-times paired loop language and L2 is a
non–crossing ℓ-times paired loop language then L1L2 is called a non-crossing
k + ℓ-times paired loop language

Non-crossing paired loop language : non-crossing k-times paired loop
language for some k
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All primitive words over Σ : Q

grammar - G = (V,Σ, S, P ), where

P ⊂ {W → Z | W ∈ (V ∪ Σ)∗, Z ∈ (V ∪ Σ)+}

direct derivation : W ⇒
G

Z,
where W = W1W

′W2, Z = W1Z
′W2,W

′ → Z ′ ∈ P

derivation : W
∗
⇒
G

Z, where either W = Z (and then n = 1) or
∃W1, . . . ,Wn : W1 = W,Wn = Z,Wi

⇒
G

Wi+1, i = 1, . . . , n − 1 (and then
n > 1)

language generated by G : L(G) = {p ∈ Σ∗ | S
∗
⇒
G

p}

The grammar G = (V,Σ, S, P )-t is called i-type if

• i = 0: and there exists no further restriction (Phrase-structural grammar)
• i = 1: All elements of P has the form W1QW2 → W1RW2, where W1,W2 ∈
(V ∪ Σ)∗, Q ∈ V , R ∈ (V ∪ Σ)∗ \ {λ}; or S → λ ∈ P, but then S does not
appear on the right side of any derivation rule (Context-free grammar)
• i = 2: All elements of P have the form Q → R, where Q ∈ VN , R ∈
(VN ∪ VT )

∗. (Context-free grammar)
• i = 3: All elements of P have one of the forms Q → pR or Q → p, where
Q,R ∈ VN , p ∈ V ∗

T . (Right-linear grammar)

Conjecture (Dömösi-Horváth-Ito, 1991) : The language of all primitive
words over a non-trivial alphabet is not context-free.
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1.1 Iteration Properties

Y. Bar-Hillel, M. Perles and S. Shamir [1961]:

Theorem 1 [ Bar-Hillel Lemma ] For each context-free language L there
exists a positive integer n with the following property: each word z in L,
|z| > n, is of the form uvwxy, where |vwx| ≤ n, |vx| > 0, and uviwxiy is in
L, for all i ≥ 0.

We say that L satisfies the Bar-Hillel condition if it has the above prop-
erties in Theorem 1.

G. Borwein (published by C. M. Reis and H. J. Shyr [1978]):

Theorem 2 [ Borwein Lemma ] Let u ∈ Σ+, u /∈ a+, a ∈ Σ. Then at least
one of ua, u must be primitive.

P. Dömösi, S. Horváth, M. Ito, and L. Kászonyi [1994]:

Theorem 3 Q satisfies the Bar-Hillel condition.

Proof: Let w ∈ Q, |w| ≥ 2 and denote by m the maximal positive integer
with w = pamq, p, q ∈ Σ∗, a ∈ Σ. By the well-known Borwein Lemma (see
Theorem 2), if b ∈ Σ, pq ∈ Σ+ \ b+ and pbq ∈ Σ+ \Q then pq ∈ Q. If m > 1
then, using this result, either pam−1q ∈ Q or pam−2q ∈ Q. On the other hand,
by the maximality of m we have pam+jq ∈ Q, j ≥ 0. Therefore, we obtain
uviwxiy ∈ Q, i ≥ 0 if either pam−1q ∈ Q, u = pam−1, v = a, w = x = λ, y = q,
or pam−2q ∈ Q, u = pam−2, v = a2, w = x = λ, y = q.

If m = 1 then pq ∈ Q (by |pq| > 0) and pajq ∈ Q, j > 0 trivially hold.
Thus we get uviwxiy ∈ Q, i ≥ 0 with u = p, v = a, w = x = λ, y = q. 2
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Dömösi, S. Horváth, M. Ito [1991]:

Theorem 4 The language of all non-primitive words over a non-trivial al-
phabet is not context-free.

Proof: Given the language Q over a non-trivial alphabet Σ∗, let us suppose
that, contrary to our statement, Σ∗ \Q is context-free. By Theorem 1, there
exists a positive integer n with the following property: each word z in Σ∗ \Q,
|z| > n, is of the form uvwxy, where |vwx| ≤ n, |vx| > 0, and uvmwxmy is
in Σ∗ \Q, for all m ≥ 0.

Let a, b ∈ Σ, a ̸= b such that (an+1bn+1)2 is of the form uvwxy with
|vwx| ≤ n, |vx| > 0, and uvmwxmy is in Σ∗ \ Q, for all m ≥ 0. Then
for m = 0 we have uwy ∈ {aibjasbt | i, j, s, t ≥ 1, (i, j) ̸= (s, t)} ⊆ Q,
contradicting uwy ∈ Σ∗ \Q. 2

Stated by P. C. Fischer 1963 without proof; shown by L. H. Haines [1965]
and also by S. Ginsburg and S. A. Greibach [1966] :

Theorem 5 A language L ⊆ Σ∗ is deterministic context-free if and only if
Σ∗ \ L is deterministic context-free. 2

Dömösi, S. Horváth, M. Ito [1991]:

Corollary 6 Q is not deterministic context-free.

In the next two statements we shall use two types of marked positions :
”distinguished” and ”excluded” positions, respectively, such that the same
position may be distinguished and excluded at a time.

Ch. Bader and A. Moura [1982] :

Theorem 7 [ Bader-Moura Lemma ] For any context-free language L, there
exists a positive integer n such that for every z ∈ L, if δ(z) positions in z are
”distinguished” and ϵ(z) positions are ”excluded,” with δ(z) > nϵ(z)+1, then
there are u, v, w, x, y such that z = uvwxy and

(i) vx contains at least one distinguished position and no excluded
positions;

(ii) if r is the number
of distinguished positions and s is the number of excluded
positions in vwx, then r ≤ ns+1;

(iii) for every positive integer i, uviwxiy ∈ L.
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S. Horváth [1986] :

Theorem 8 [ Strong Bader-Moura Lemma ] For any context-free language
L, there exists a positive integer n depending only on L such that for every z ∈
L, if δ(z) positions in z are ”distinguished” and ϵ(z) positions are ”excluded,”
with δ(z) > nϵ(z)+1, then there are u, v, w, x, y such that z = uvwxy and

(i) either each of u, v, w or each of w, x, y contains a distinguished
position and vx contains no excluded positions;

(ii) if r is the number of distinguished positions and s is the number
of excluded positions in vwx, then r ≤ ns+1;

(iii) for every positive integer i, uviwxiy ∈ L. 2

Non-empty version : all of u, v, w, x, y are nonempty

Dömösi, M. Ito, M. Katsura and C. Nehaniv [1996] :

Theorem 9 (Dömösi-Ito-Katsura-Nehaniv Lemma) For any context-
free grammar G, there exists an effectively computable positive constant c
depending only on G such that for any z ∈ L(G), if |z| ≥ ce (e > 0) and e
positions of z are excluded, then z has the form uvwxy where |vx| > 0, vx
does not contain any excluded positions, and uviwxiy is in L(G) for all i ≥ 0.

Dömösi, S. Horváth, M. Ito, L. Kászonyi, and M. Katsura [1993] :

Theorem 10 Q satisfies the condition of the Non-empty Version of Strong
Bader-Moura Lemma with Bader-Moura constant n = 5, which is the small-
est possible such constant for Q. Moreover, we can always effectively find
a suitable iteration factorization (if the distinguishing-excluding condition is
fulfilled in the given primitive word).
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2 Interchanging property

W. Ogden, R. J. Ross, K. Winklmann [1982] :

Theorem 11 [ Interchanging Lemma ] for every context-free language L
there exists constant cL > 0 such that for all positive integers n,m with
n ≥ m ≥ 2, and all subsets H ⊆ L ∩ Σn there exists Z = z1, z2, . . . , zk ⊆ H
with k ≥ |H|

cL·n2 and words zi, i = 1, . . . , k such that

(i) zi = wixiyi, i = 1, . . . , k
(ii) |w1| = |w2| = · · · = |wk|,
(iii) |y1| = |y2| = · · · = |yk|,
(iv) m

2
< |x1| = |x2| = · · · = |xk| ≤ m,

(v) wixjyi ∈ L ∩ Σn for all 1 ≤ i, j ≤ k.

We say that a language L ⊆ Σ∗ satisfies the strengthened interchange
property if and only if there is c > 1 (depending only on L) such that for
all n ≥ 2, i ≥ 0 and j ≥ 1 with j < n and i + j ≤ n, and for all non-
empty subsets H of L ∩ Σn, there is H ′ ⊆ H with the following properties:
|H ′| > |H|

c
and for any two words x and y in H ′, if x = x1x2x3 and y = y1y2y3

with |x1| = |y1| = i, |x2| = |y2| = j, we have x1y2x3, y1x2x3 ∈ L, and in this
case we shortly say that H ′ (and also, that any pair of elements of H ′) is
i− j-interchangeable.

We remark that the strengthened interchange property is much stronger
that the Ogden, Ross and Winklmann’s interchange property since in the
former property we have |H ′| > |H|

cn2 , and also, unlike the original Ogden,
Ross and Winklmann’s interchange property, in the strengthened interchange
property there are no restrictions on the beginning (i) and length (j) of the
middle subwords to be exchanged, other than excluding the trivial cases j = 0
and j = n.

S. Horváth [1995] :

Theorem 12 Q satisfies the strengthened interchange property (with c = 8,
moreover, even c = 4 is enough in the following three cases:

(1) n is of the form n = 2k, k ≥ 1;
(2) n is odd;
(3) n is of the form n = 2pk where p is an odd prime, the smallest odd

prime divisor of n, k ≥ 1, and min{j, n− j} ≤ n(p−1)
2p

= (p− 1)k (the

latter condition is simply implied by min{j, n− j} ≤ n
3
.)
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S. Horváth [1995] :

Theorem 13 Q is nonlinear.

3 Kászonyi-Katsura Theory

The Kászonyi-Katsura Theory asserts that the intersection of Q and any
member of a special, infinite class of regular languages, is a context-free
language.

Y. Bar-Hillel, M. Perles, and E Shamir [1961] :

Theorem 14 L is context-free if and only if for every regular language R,
L ∩R is context-free.

Definition 15 A set F ⊆ INm where IN = {0, 1, . . .} and m ≥ 1 is called
a stratified linear set if and only if either F = ∅ or there exist r ≥ 1 and
v0, . . . , vr ∈ INm such that

(1). F = { v0 +
∑r

i=1 kivi | ki ≥ 0 }

and for the vector set P = { vi | 1 ≤ i ≤ r }

(2). every v ∈ P has at most two non-zero components, and

(3). there exist no natural numbers i, j, k, l, with 0 ≤ i < j < k < l ≤ m−1,
and no vectors u = (u0, . . . , um−1) and x = (x0, . . . , xm−1) from P such
that uixjukxl ̸= 0.

The vector v0 and the vector-set P appearing in (1) are often called
preperiod and the set of periods of F , respectively.

Therefore, in short, E is a stratified linear set if it is a linear set with a
stratified set of periods.

S. Ginsburg and E. H. Spanier [1964] :

Theorem 16 (Ginsburg-Spanier Theorem) Let L be a bounded language
over the alphabet Σ. Language L is context-free if and only if set

E(L) = { (e0, . . . , em−1) ∈ INm | we0
0 . . . w

em−1

m−1 ∈ L }, (1)

where the words w0, . . . , wm−1 are the corresponding words of L, is a finite
union of stratified linear sets.
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unpublished result of Kászonyi [2011] :

Theorem 17 If (1/p1 + · · ·+ 1/pk) + 1/p1p2 < 1 and (1/p1 + · · ·+ 1/pk) +
1/p3 < 1 then Qn is context-free.

P. Dömösi, S. Horváth, M. Ito, L. Kászonyi, and M. Katsura [1993] :

Theorem 18 Let a, b ∈ Σ, a ̸= b, n = pr or n = prqs, where p, q are
different prime numbers, r, s ≥ 1. Let further L = (ab∗)n or L = (a+b+)n.
Then Q ∩ L is a context-free language.

L. Kászonyi and M. Katsura [1999] :

Theorem 19 Let a, b ∈ Σ, a ̸= b and n = pf1qf2rf3, where p, q and r are
pairwise different prime numbers, f1, f2, f3 ≥ 1. Let further L = (ab∗)n.
Then Q ∩ L is a context-free language.

4 Kászonyi’s Conjecture

L. Kászonyi [1997] (?) :

Conjecture 20 Let a, b ∈ Σ, a ̸= b and n be an arbitrary positive integer.
Then Q ∩ (ab∗)n is a context-free language.

Maybe even a more general statement is true.

Problem: Is L ∩Q context-free for every bounded language L?

Some further steps in this direction:

P. Dömösi, C. Martin-Vide, V. Mitrana [2004] :

Theorem 21 For any slender context-free language L, the set L∩Q is also
context-free. 2
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P. Dömösi, C. Martin-Vide, and A. Mateescu [2005] (It can also be di-
rectly derived from the results in D. Raz [1997], L. Ilie, G. Rozenberg, A.
Salomaa [2000]) :

Theorem 22 Every bounded context-free language is a finite union of non-
crossing multiple paired loop languages.

5 The proof of Theorem 21

H. J. Shyr and G. Thierrin [1977] :

Theorem 23 Let i ≥ 1 and uv ∈ {pi : p ∈ Q}. Then vu ∈ {pi : p ∈ Q}, too.
Therefore, uv ∈ Q for some u, v ∈ Σ∗ if and only if vu ∈ Q. In other words,
the sets {pi : p ∈ Q} (i ≥ 1) are closed under cyclic permutations of words.2

R. C. Lyndon and M. P. Schützenberger [1962] :

Theorem 24 Let f, g ∈ Q, f ̸= g. If fgn /∈ Q then fgn+2 ∈ Q for all n ≥ 2.

R. C. Lyndon and M. P. Schützenberger [1962] :

Theorem 25 If u ̸= λ, then there exists a unique primitive word f and a
unique integer k ≥ 1 such that u = fk. 2

In this case we put
√
u = f and say that f is the primitive root of u.

M. Ito, M. Katsura, H. J. Shyr and S. S. Yu [1988] :

Proposition 26 Let p, q ∈ Σ+ such that
√
p ̸= √

q. Then |pq+ \Q| ≤ 1. 2

P. Dömösi and G. Horváth [2005], also (directly) from M. Ito, M. Katsura,
H. J. Shyr and S. S. Yu [1988] :

Theorem 27 Let f, g ∈ Q, f ̸= g and n ≥ 1. If fgn /∈ Q then fgn+k ∈ Q
for all k ≥ 1.

2By i = 1 this obviously means that uv ∈ Q for some u, v ∈ Σ∗ if and only if vu ∈ Q.
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Almost trivial (P. Dömösi, C. Martin-Vide, V. Mitrana [2004]) :

Proposition 28 Let ac, b ∈ Σ+ such that
√
ca ̸=

√
b. Then

|ab+c \Q| ≤ 1.

Proof: Using Theorem 23, it is enough to prove that |cab+ \Q| ≤ 1 whenever
ac, b ∈ Σ+ such that

√
ca ̸=

√
b. But this is a direct consequence of Proposi-

tion 26. 2

M. Latteux and G. Thierrin [1983] and later, independently, by L. Ilie
[1994] and D. Raz [1997] :

Theorem 29 Every slender context-free language is a finite disjoint union
of paired loop languages (DUPL in short). 2

P. Dömösi, C. Martin-Vide, V. Mitrana [2004] :

Proposition 30 Let ace, b, d ∈ Σ+ with |{k :
√
eabkc =

√
d}| = ∞. Then

{abncdne : n ≥ 1} ∩Q = ∅.

Proof: Case 1. eac = λ. Then, by |{k :
√
eabkc =

√
d}| = ∞, there exist

infinite-many k ≥ 1 with
√
bk =

√
d. On the other hand, for every k ≥ 1, we

have
√
bk =

√
d if and only if

√
b =

√
d. But this implies bkdk /∈ Q, k ≥ 1.

Case 2. eac ̸= λ. First we prove that
√
cea ̸=

√
b is impossible. Indeed,

assume
√
cea ̸=

√
b. If cea /∈ Q, then by Theorem 24, ceabn ∈ Q,n ≥ 2. If

cea ∈ Q, then by Theorem 27, ceabn ∈ Q,n ≥ 3. Therefore, by Theorem 23,
eabnc ∈ Q,n ≥ 3. But then for every s, t ≥ 3, we obtain

√
eabsc =

√
eabtc if

and only if s = t. Therefore, if
√
eabkc =

√
d then

√
eabk+ℓc ̸=

√
d, ℓ ≥ 1. But

then |{k :
√
eabkc =

√
d}| < ∞, a contradiction. Thus, we have

√
cea =

√
b

(with eac ̸= λ). But then
√
eabsc =

√
eabtc, s, t ≥ 1.

On the other hand, by |{k :
√
eabkc =

√
d}| = ∞, there exist infinite-

many k ≥ 1 having
√
eabkc =

√
d. Hence, using

√
eabsc =

√
eabtc, s, t ≥ 1,

we obtain
√
eabkc =

√
d, k ≥ 1. Thus, we get {abncdne : n ≥ 1} ∩ Q = ∅ as

we stated. 2
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P. Dömösi, C. Martin-Vide, V. Mitrana [2004] :

Proposition 31 Let ace, b, d ∈ Σ+ with |{k :
√
eabkc =

√
d}| < ∞. Then

|{abncdne : n ≥ 0} \Q| < ∞.

Proof: Case 1. d ̸= (eabic)j, i ≥ 0, j ≥ 1.
Observe that we have either b = (cea)s for some s ≥ 1 or there exists an

ℓ ≥ 1 such that eabnc ∈ Q for all n ≥ ℓ. Indeed, assume b ̸= (cea)s, s ≥ 1.
If eac ∈ Q then we can apply Proposition 28. Otherwise, by Theorem 23,
eac, cea ∈ {qi : q ∈ Q} for some i ≥ 2. Then, by Theorem 24, ceabn ∈ Q,n ≥
2. Considering Theorem 23, this implies eabnc ∈ Q,n ≥ 2.

Assume b = (cea)s for some s ≥ 1. Having d ̸= (eabic)j, i, j ≥ 1, we may
apply Theorem 24 such that eabncdn ∈ Q,n ≥ 2. Thus, by Theorem 23,
abncdne ∈ Q,n ≥ 2.

It remains to study the case when there exists an ℓ ≥ 1 such that eabnc ∈
Q for all n ≥ ℓ. Thus, applying Theorem 23, abnce ∈ Q for all n ≥ ℓ. But
then, considering Proposition 28 and assuming d ̸= (eabic)j, i ≥ 0, j ≥ 1,
there exists a k ≥ ℓ such that abncdne ∈ Q.

Case 2. d = (eabic)j for some i ≥ 0, j ≥ 1.
Then consider ea′bnc′dn, n ≥ 0 instead of eabncdn, n ≥ 1 such that a′ =

abi+1 and c′ = cdi+1. Obviously, d ̸= (ea′bsc′)t. Thus we may apply the
previous case such that a′bnc′dne ∈ Q whenever n ≥ k for an appropriate
k ≥ 1. But then abncdne ∈ Q whenever n ≥ i+ k + 1. 2
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P. Dömösi, C. Martin-Vide, V. Mitrana [2004] :

Theorem 32 Let L be a DUPL such that L =
∪k

i=1{uiv
n
i wix

n
i yi : n ≥ 0} for

some positive k and words ui, vi, wi, xi, yi, 1 ≤ i ≤ k with {uiv
n
i wix

n
i yi : n ≥

0} ∩ {ujv
n
j wjx

n
j yj : n ≥ 0} = ∅, 1 ≤ i < j ≤ k. Then L ∩ Q is also a DUPL

such that L =
∪2k

i=1 Li with Li ∩ Lj = ∅, 1 ≤ i < j ≤ 2k, where for every 1 ≤
i ≤ k, either Li = ∅ with Li+k ∈ {{uiwiyi}, ∅}, or Li = {uiv

ℓi+n
i wix

ℓi+n
i yi :

n ≥ 0}, ℓi ≥ 0, Li+k = ∅ if ℓi = 0, Li+k ⊆
∪ℓi−1

j=0 uiv
n
i wix

n
i yi if ℓi > 0.

Proof: Proof: It is enough to prove that for every 1 ≤ i ≤ k, {uiv
n
i wix

n
i yi :

n ≥ 0} ∩Q = {uiv
ℓi+n
i wix

ℓi+n
i yi : n ≥ 0} ∪ Li+k, ℓi ≥ 0 such that Li+k = ∅ if

ℓi = 0 and Li+k ⊆
∪ℓi−1

j=0 uiv
n
i wix

n
i yi if ℓi > 0.

If ui = vi = λ holds for some 1 ≤ i ≤ k, then {uiv
n
i wix

n
i yi : n ≥ 0}

obviously has this property. If ui = λ and vi ̸= λ, or symmetrically, if ui ̸= λ
and vi = λ, then we get the above property applying Proposition 28.

Let ui, vi ̸= λ for some 1 ≤ i ≤ k and suppose |{k :
√
yiuivki wi =

√
xi}| =

∞. Then we may apply Proposition 30.
Now let ui, vi ̸= λ for some 1 ≤ i ≤ k and suppose |{k :

√
yiuivki wi =√

xi}| < ∞. Then we can use Proposition 31. 2

By Theorem 32, we know that for every slender context-free language L,
the language L \Q is a DUPL language. Thus we have the next statement.

P. Dömösi, C. Martin-Vide, V. Mitrana [2004] :

Corollary 33 For any slender context-free language L, the set L∩Q is also
context-free. 2
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[6] Dömösi, P.; Horváth, S.; Ito, M.: Formal languages and primitive words.
Publ. Math. Debrecen 42 (1993), no. 3-4, 315–321.
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