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We define the "quasi code" H as follows: Let > and A be two finite al-
phabets. Denote H a finite subset of AT \ #. We define the function
f : X~ — H, where f is called "quasi coding" of . A quasi code H is
called decipherable if, whenever f(x1),..., f(zn), f(y1),..., f(ym) are

in H and satisfy f(xz1)...f(xn) = f(y1)...f(ym), then n = m and
f(x;) = f(y;) foralli, 1 <i<n.



Example:

> = {a,b}

A ={1,0}

227\ 0 = {{0},{1},{0, 1}, {00}, {01} ...}
H = {{0,1},{0,110,1}}

a— {0,1}

b — {0,110, 1}



In general (non quasi codes) a code is a set of sequences of letters:
C ={01,0,100}

a— 01
b— 0
c — 100

The main question: decipherability
0100=0 100=01 O O

0100 = bc = abb

The decipherability only depends on the code set for quasi codes, too.



Basic notions

We call the set >~ an alphabet, the elements of 3 letters. A word over > is
a finite sequence of elements of some finite non-empty set 3. The empty
word )\ consisting of zero letters. The length |w| of a word w is the number
of letters in w. Thus |A\| = 0. fu = x1---zyand v = x4 - x4 are
words over an alphabet > (with zq,..., 2k, T4 1,..., 2 € X) then their
catenation (which is also called their product) uv = x1 - - xpxK41 - Ty
Is also a word over >. In addition, for every word v = x1 ---xj over >
(with x1,...,2 € X), uA = du = u (= x1---x). Moreover, A\ = .
Obviously, for every u,v € Z*, |uv| = |u| 4 |v|. Clearly, then, for all words
u,v,w (over X) u(vw) = (uv)w. Catenation is an associative operation
and the empty word X is the identity with respect to catenation. We extend
this operation on words to sets.



Let U, V be sets of words.

Then the catenation (or product) of these two sets is UV = {uv : u €
Uv eVl

A word u is a factor (or subword) of a word v if v = vquwvo for some
words v and v»,.

If v1 IS empty we say that u is a prefix of v, and if v is empty, we say that
u IS a suffix of v. Since catenation is an associative operation, for arbitrary
X1,...,Xn CX*theset X = X7 --- Xy is uniquely defined. We say that
X1 ---Xpisa decomposition of X.

{abc, abac} = {a}{bc, bac} = {ab}{c, ac}



If » i1s a subword (prefix, suffix) of v such that © # v then we speak about
proper subword ( proper prefix, proper suffix).

If the nonempty set X C > * is closed under taking factors of its elements,
then X is called a factorial set.

{abc, A, a, b, c,ab, bc}

By definition, the empty set is not factorial, and each factorial set contains
at least the empty word ).



Similarly, if a nonempty set X C 3>* contains all non-empty prefixes of its
elements (i.e., is closed under taking a non-empty prefix), we say that it is
prefixial.

{abc, a,ab}

Analogously, if it is closed under taking a non-empty suffix, we say that it is
suffixial.

{abc, ¢, bc}

Clearly, each factorial set is prefixial and also suffixial.



Proposition 1 Every catenation of (finitely many) prefixial (suffixial) sets
Is also prefixial (suffixial).

Proof 1 Given two nonempty prefixial (suffixial) sets X1, X> C X*, let
u € X1 and v € X». It is enough to prove that all prefixes (suffixes) of
uv are in X1 Xo. Let r be a prefix (suffix) of uv with |u| < || (Jv] < |r]).
Then there exists a decomposition » = ur’ (r = 7'v), where ' is a prefix
of v (suffix of u). But X7 is prefixial (suffixial). Thus ' € X5 (' € X3).
Hence » € X1 X5. Suppose that r is a prefix (suffix) of uv with |u| > |r|
(|lv| > |r|). Then r is a a prefix of u (suffix of v) and thus r € X1 (r € X5).
Because ) is a prefix (suffix) of all words and X»> = 0 (X1 #= 0), A € X»
(A € X1). Hence r € X1 X5 again. []



Remark 1 Every catenation of (finitely many) factorial sets is also factorial.

(Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages
(2005))

Proposition 2 Given a finite nonempty set X C >*, for all nonempty suf-
fixial sets X1, X> C %, X X1 = X X5 implies X1 = X>.

Proof 2 Suppose that, contrary to our statement, there are a finite nonempty
set X C X*, nonempty suffixial sets X1, X> C >* having X X1 = XX>»
and X7 # Xo». In this case one of X7 and X» should have an element
which is not in the another one. Say, » € X5 but r ¢ X7.

Because of the finiteness of X, there exists a word u € X which is not a
proper prefix of any word in X. (For example, u has this property if it is one



of the longest words in X.) By XX = XX5 and ur € XX», there are
words u1 € X,r1 € X7 with uyry = ur.

By our conditions, u IS not a proper prefix of w1. Therefore, u1r1 = wur
implies that r is a suffix of 1. Recall that X is suffixial. Therefore, contrary
to our assumptions, r1 € X7 implies » € X1 because r is a suffix of ry.
This completes the proof. []

Remark 2 The above statement can not be extended for arbitrary infinite
sets X C X*. Take, for example, X1 = {z1},Xo = {xp}, 1,20 €
> ,x1 # xoandlet X C 2* be an arbitrary infinite set having the property
that

Vre X i rxq,rxo € X.
Then X X1 = X X», but X1 # Xo.



A factorial set X C > * is said to be indecomposable if X = AB implies
X = A or X = B for all factorial sets A, B C >*; otherwise we say that
X is decomposable. Given set X C >*, a collection of indecomposable
factorial languages X1,..., X, C Z*, wesay that X = X7 --- X, is a
canonical decomposition of X if one of the following two cases arises:

e X =X, ={\},n=1;

o X = {A},X;#={\}Lie{l,...,n}, moreover,
X#£ Xy - X; 1X/X;41---Xnforeachi € {1,...,n} and a facto-
rial language X; & X;.



Theorem 1 Each factorial set X has a unique canonical decomposition
into factorial sets.

(Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages
(2005))



Quasi codes

For every z; € X we define the set of strings H; by H; = {p;,,...pi,,} €
AT \ (. Let us interpret the decipherability on the mapping f(x;) = H,.

A quasi code H over A is a finite subset of AT \ 0. The elements of a
qguasi code H are called code sets, the elements of H* are called mes-
sages. Let the injective mapping f : =+ — H be given. Let the equation

flx1...zn) = f(x1) ... f(xn);Vx; €
hold, therefore f can be given by the function f, where
f: X — H.

The function f : ¥ — H is the determination of quasi code H belonging
to 3. The function f : =~ — H is called quasi coding.



Let the decipherability of quasi codes be defined analogously as in the
case of verbatim codes, i.e. the mapping is decipherable if from the equa-
tion

f(x1) ... flzn) = f(y1) - [(ym)
we get, that
n=mand f(x;) = f(y:), Ti = v;-

We say that a quasi code H is decipherable, if every message has at most
one decomposition. Formally, if the equation

f(x1) ... flzn) = f(y1) - f(ym)
holds, thenn = m and f(x1) = f(y1),..., f(zn) = f(yn).

By Remark 1, every catenation of factorial sets is also factorial. Therefore,
using Theorem 1, we can derive the following result.



Corollary 3 Every quasi code X1,..., Xy, with X; € X0 # j,1 <

1,7 < n, consisting of indecomposable factorial sets is uniquely decipher-
able.



Criteria of decipherability of quasi codes

Let a set A C > * is called prefix-free foraset B C >*, if da € A such
that aa = b and ba % a forVa € >* and for Vb € B. Thatis da € A such
that a is not a prefix of any b € B and thereisno b € B suchthat b is a
prefix of a.

Example 1 Let A = {baa,ab,b} and let B = {baa, bba}. In this case the
set A is prefix-free for the set B, because ab € A is not a prefix of any
element of the set B and for any element of B the element is not a prefix
of ab.

Example 2 Let A = {baa,ab,b} B = {baa,a,bba,aa}. In this case the
set A is not prefix-free for the set B. The string ab € A is not a prefix of
any element of the set B, but a € B is a prefix of ab € A.



Proposition 4 The properties of the relation prefix-free for a set:

e the relation is irreflexive

e the relation is not symmetric

e the relation is not transitive



Two sets A, B C >* are prefix-free (for each other), if A is prefix free for
B, or B is prefix-free for A. Here "or" does not mean "exclusive or".

Example 3 The following sets A;, B, are prefix-free for each other:
1 = {ab}, B1 = {a,aa}; A = {a,aa}, Bo = {ab}; A3 = {a}, B3 =
{b}
Proposition 5 The properties of the relation prefix-free for each other:
e the relation is irreflexive

e the relation is symmetric

e the relation is not transitive



Let the set H consist of subsets of >*. The set H is called prefix-free, if
any two elements of H are prefix-free for each other.

Theorem 2 If a quasi code consisting of nonempty suffixial sets is prefix-
free, then the quasi code is decipherable.

Proof 3 The proof we give here is an indirect one. Assume that a quasi
code consisting of nonempty sufficial sets is prefix-free, but it is not deci-
pherable. Since the quasi code is not decipherable, there is a set G, such
that we get G from the quasi code in at least two ways. Denote by H; the
set f(x;). Take the following two different decompositions:

G:Hil...HiSandGijl...Hjt

Because of the indirect hypothesis there is a positive integer [ such that
H; = Hsz for Vk < [. But, Hil = Hjl' If ] = 1 then Hil o= Hjl and
H; H; = H; ... Hj

1 o o o ]to



Otherwise, using the suffix Proposition 1, all of the decompositions H;, ... H;, .,
H; ...H; ,H;...H;,H;...H; are suffixial sets. Therefore, applying
Proposition 2, from equatlons

H Hzl 1H H’Ls:Hjl"'Hl—lHjl"'Hjt

and

Hil ce Hil—l =

we have that

. H;

!/ S
G'=H;...H;, = H, i

) Gy - -
Moreover, H; # Hj, Is assumed.

Thus, Vp € G’ could be written in the form p = 28 = yv, where = € H;,
y € Hj. Thatis, za = y or x = ya, where o € ™.



It is easy to see that there exists p € G’ such that p = 8 = y~ for
Vx € H; and for Vy € Hj because of the catenation property of sets.
Therefore, there is a« € 3" for all z € H;, such that za = y or x = ya
holds for some y € H;,.

Consequently, H;, is not prefix-free for H; (analogously, we have that H,
Is not prefix-free for H; ). Thus, the sets H; and H; are not prefix-free
for each other. Therefore, the quasi code is not prefix-free. We have a
contradiction and hence the theorem is proved. []



Theorem 3 There exists a quasi code consisting of nonempty prefixial
sets such that it is prefix-free but not decipherabile.

Proof 4 Let Hi = {b,ba,baa}, H> = {a, aa, aaa, aaaa, ab, aaab, aaaab},
H3 = {a,aa, aaa, aaaa, ab, aab, aaaab}. None of the elements of HyUH3
Is a prefix of some element in H1 and none of the elements of H is a pre-
fix of some element in H, U H3. On the other hand, aaab € H»> is not a
prefix of any element of H3 and aab € Hs3 IS not a prefix of any element
In H>. Therefore, the quasi code Hq, H>, H3 is prefix-free. On the other
hand, it is clear that all of H1, Hy, H3 are prefixial. To show H1Hy, =
H, H3, we have to consider the catenations of all elements in H; and
aaab € Ho, moreover, the catenations of all elements in H{ and aab € Hs.
But (b)(aaab) = (ba)(aab), (ba)(aaab) = (b)(aaaab), (baa)(aaab) =
(ba)(aaaab), and simultaneously, (b)(aab) = (ba)(ab), (ba)(aab) =
(b)(aaab), (baa)(aab) = (b)(aaaab). Therefore, H1 H>, = HqiH3 holds



such that H>, # H3. In other words, the considered quasi code is not de-
cipherable. []

Remark 3 It is easy to see that there are decipherable prefix quasi codes.
One of the most simple examples is H{ = {a}, H> = {ab}.

Theorem 4 If A and A* are elements of a quasi code H, then the quasi
code H is not decipherable.

Proof 5 Let f(z) = A; f(y) = A*. Thus, f(z)...f(z) = A...A = AF,
Y k
f(y) = AF. Therefore,

In ZE=m: f(x;)...f(x,) = f(zj,)...f(x},)



Consequently the quasi code is not decipherable. []

We give a generalized form of the previous theorem:

Theorem5 34 = [[", A% € H (m > 1,k; > 1,A1,Ap,..., Ay €
H), then the quasi code H is not decipherable.

Proof 6 Let f(z) = A = [[™; A%, f(y1) = A1, ... f(ym) = Am. This

impliesthat f(z) = A =[["", Afi and f(y;) - fly) ... ... S (ym) - flym) =
k1 km

ki
| Ai . Thus,

In #=m: f(xz;)... f(x,) = f(x;)...f(z,)

Therefore, the quasi code H is not decipherable. []



Application of the Sardinas—Patterson algorithm for

guasi codes

The decipherability of codes was solved by the Sardinas—Patterson algo-
rithm. Let us try to use it for quasi codes. The application of the algorithm
forms the following power set system:

Let X and Y be two subsets of the set 227 \ 0. Let X~ 1Y denote the
following set: {C | 3A € X, B €Y : AC = B}.

As a straightforward extension of the Sardinas-Patterson algorithm, con-
sider the following algorithm (called Quasi-Code SP):



Let the set I be a subset of the set 2287 \ 0, and

Uy
Us

H-1H\ {\}
Hlu;uU; H

. (1)
U,y1= H U uU;H.

If there existi > 5 > 1 with U; = U; and A € Uy for any k£ < ¢ then let
the Quasi-Code SP algorithm answer that the quasi-code is decipherable.
Otherwise let it answer that the quasi-code is not decipherabile.



Theorem 6 There exist quasi-codes for which the Quasi-Code SP-algorithm
does not give a correct answer.

Proof 7 Based on the Sardinas—Patterson theory our conjecture was the
following:

If 34, 5 such that U; = U; and {\} ¢ U, then the quasi code H is deci-
pherable. Unfortunately, this statement is false. The behaviour of sets of
strings is not similar to the behaviour of strings with respect to the opera-
tion of catenation. The following holds for strings:

Let x,y,z € %\ {\}, then xzy = xz implies that y = 2. The Sardinas—
Patterson algorithm is based on this connection. Of course, each set X
admits two trivial decompositions X = AB, where one of the sets A and
B is equal to {\}, where ) is the empty word, and the other is equal to set
X.



If a set has only trivial decompositions, it is natural to call it a prime set.
However, even a finite set can have several non-trivial decompositions to
prime sets, and an infinite set can have none of them . Our conjecture was
the following: if the sets A, B, C are prime sets, then AB = AC implies
B = C'. Itis not true, for example in the sets L, L1, L» are prime sets, but
LLq1 = LL» holds. Namely

L = {b, ba, baa, c, caa, caaa, caaaa}

L1 = {ab, aaab, aaaab, c}, Lo = {ab, aaaab, c}

Thus, if we form a quasi code with these sets, thatis H = {L, L1, Lo}
and if we apply the Sardinas—Patterson-like algorithm for H, then we have
U1 = 0 by the first step. (Note that U; = () implies Uy = 0, i.e., U; = U;
with s = 1 and 5 = 2.) The quasi code seems decipherable according to
the Sardinas—Patterson-like algorithm, but, in fact, it is not. Let the following



guasi code
f(x1) =L, f(z2) = L1, f(z3) = L

be given. f(z2) 7 f(z3), but the equation f(z1)f(z2) = f(z1)f(x3)
holds. Therefore, the quasi code is not decipherable. []

By our explanation, it seems that there exists no straightforward extension
of the Sardinas-Patterson algorithm for quasi-codes.



Decomposition of quasi codes

We use the algorithm which decides the prime property of sets to deter-
mine a decomposition (Mateescu, A., Salomaa, A., Yu, S.: On the decom-
position of finite languages):

Let R be aregular language over the alphabet >, and let A = (Q, X, 9, q0, Q)
be the minimal deterministic finite automaton for R. (Here @ is the set of
states, qg is the initial state, Q g is the set of final states, and ¢ is the tran-
sition function.) We extend § to words over 3. Thus, 6(q, w) = ¢’ means
that the word w takes A from the state g to the state ¢’ (and, by definition,

R ={w € Z* | §(qo,w) € QF}). For a nonempty subset P C Q, we
consider the following two languages:

Ry = {w|é(qo, w) € P},



RS = {w|é(p,w) € Qp,p € P}.

Theorem 7 Let R and A be defined as above. Assume that R = LqLo»,
where L1 and L, are arbitrary languages. Define P C () by

P={p e Q|6(q0,w) = p, forsome w € L1}.

Then R = R{RE, moreover, Ly C R{ and L, C RY.

By definition, a nonempty subset P C () iIs a decomposition set (for a regu-
lar language R), if R = RY R5. The decomposition R = R{ RE is referred
to as the decomposition of R induced by the decomposition set P. We say
that the decomposition L. = L4 L, of a language L is included in the de-
composition

L=L1L5ifL; CL,i=1,2.



Theorem 8 Every decomposition of a regular language R is included in
a decomposition of R induced by a decomposition set. The problem of
primality is decidable for regular languages.

Using these notations we form the following automaton:

Let A = (Q, A, d, qp0,Qr) be the minimal deterministic finite automa-
ton for some finite set X C H* where H = {f(x1),...,f(xn)} Is a
given quasi code. (Here @ is the set of states, gg is the initial state,
Qr 1S the set of final states, and ¢ Is the transition function.) We ex-
tend § to words over > as we did above. Thus, é(x,w) = y means
that the word w takes A from the state x to the state y (and, by definition,
X =A{{w e A* | §(q0,w) € Qp}). For non-empty subsets P;, P> C Q,
we consider the following language:

Rp, p, = {w|d(p,w) € P>,p € P1}



Theorem 9 Let H and A be defined as above. Assume, that X = f(z;,) -
- f(=;, ), where f(z;,),... f(z;, ) € H. Define the sets P, ..., P, C Q
by

Po = {q0}

Py = {p € Q|6(q0,w) = p, for some w € f(z;,)}.
(Itis evident, that f(z;,) C Regoy.py-)

P> = {p € Q|6(q0,w) = p, forsome w € f(z;,)f(x;,)}

P, = Qr = {p € Q|6(q0,w) = p, forsome w € f(z;)--- f(z;)}.

Then X = RP@,Pl T RPk—laPk and f(xZ]_) C RPo,P17 SR f(xzk) C RPk:—laPk'



Proof 8 First, we establish the inclusions. To prove the inclusion f(x; ) C
Rp . p,» assume the contrary: for some w; € f(z;,) andp € Pp,_1,
6(p,w;,,) € Pm. Choose a word w € f(z;,)---f(z; _,) such that
d(qo,w) = p. Since
ww;, € f(xq,) - f(x;,,), we have 6(qo, ww;,,) € Pm. Buté(qo, ww;,,) =
6(p, wi,,) € Pm. This contradiction proves the inclusion f(x;,,) € Rp__ ., p,.-

Second, we establish the statement X = Rp, p, --- Rp,_, p_. Consider
an arbitrary word wy - - - wg, where wm, € Rp | p,_. Since, wi € Rp, p,,
0(qo,w1) = p1. By the definition of Py, we have p; € P;. By the def-
inition of Rp, p,, d(p1,w2) = po € P> and similarly forall 1 < m < k
that (by the definition of Rp . p ), (Ppm—1,wm) = pm € Pm. Thus,
6(qo, w1 - - - wy) = 6(p1,wz - - wy) = =
O(pp_1,wr) = pr € Qp, and thus, wq---wp € X, therefore X D
Rp, p, -+ Rp,_, p. Consider an arbitrary w € X. We can write w =



w1q - W, where W C fz; ),
1 < m < k. By the already proved inclusion f(z;,,) € Rp__, p,,, We con-
clude that wm € Rp_ | p,,» Where 1 < m < k. Thus, w = wy---wy, €
Rp, p, -+ Rp,_, p.- Therefore, X C Rp, p,---Rp__, p . Having these
two inclusions, we getthat X = Rp, p, - - Rp__ | p, - []

Consider a set of nonempty subsets {P;,...,P._1}, where P, C @,
m € {1,...,k — 1} is a decomposition set for a finite set X and a quasi
code

H = {f(x1),..., f(xn)}, where X = Regorv,py - By 1,05 The de-
composition

X = Reovp - Bp,_ . Wil be referred to as the decomposition of
X induced by the decomposition set { Py, ..., P,_1}. We say that the de-
composition X = X7 --- X} of a finite set X is included in the decomposi-
tion X = X7 X,’{ if Xm C X!,
m=1,2,...k.



Theorem 10 Every decomposition of a finite set X is included in a decom-
position of X induced by a decomposition set. The problem of decipher-
ability is decidable for finite sets.

Proof 9 The first part of Theorem 10 follows by Theorem 9. To perform the
verification for all possible decompositions of a finite set X, check through
all sets of nonempty subsets { P, ... P,_1}, where Py, C Q. If more than
one of them induces a nontrivial decomposition, we conclude that H is not
decipherable. []

Of course, there are non-decipherable quasi codes such that they have one
or zero decompositions for a set. For example, the set H = {{a}, {aa}, {b}}
has one decomposition {b}{a} for the set X = {ba}.



