Jumping Grammars

Zbynék Kfivka
krivka@fit.vutbr.cz
Brno University of Technology
Faculty of Information Technology
Czech Republic

Seminar of FM Research Group at FIT BUT,
March 31, 2015

1/38

krivka@fit.vutbr.cz

Outline

Introduction

Definitions and Examples

Results
Generative Power of Jumping Grammars
Properties of Jumping Derivations

Conclusion

2/38

Introduction

3/38

Motivation

» Typical grammars and automata work strictly continuously

4/38

Motivation

» Typical grammars and automata work strictly continuously
» Adaptation of classical models to work on words discontinuously

4/38

Motivation

» Typical grammars and automata work strictly continuously
» Adaptation of classical models to work on words discontinuously
» Models structure unchanged; only the computation is adapted

4/38

Motivation

v

Typical grammars and automata work strictly continuously

v

Adaptation of classical models to work on words discontinuously

v

Models structure unchanged; only the computation is adapted

v

Jumping Finite Automata — ideas applied to Grammars

4/38

Motivation

v

Typical grammars and automata work strictly continuously

v

Adaptation of classical models to work on words discontinuously

v

Models structure unchanged; only the computation is adapted

v

Jumping Finite Automata — ideas applied to Grammars

4/38

Motivation

v

Typical grammars and automata work strictly continuously

v

Adaptation of classical models to work on words discontinuously

v

Models structure unchanged; only the computation is adapted

v

Jumping Finite Automata — ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
» applied mathematics
» computational linguistics
» bioinformatics (DNA computing)
» strongly-scattered information processing

4/38

Basic Idea of Jumping Grammars

» We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

5/38

Basic Idea of Jumping Grammars

» We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

» Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

5/38

Basic Idea of Jumping Grammars

» We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

» Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

» Classical grammars:

Let z = uxv. By using x — y, G rewrites uxv to uyv.

5/38

Basic Idea of Jumping Grammars

» We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

» Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

» Classical grammars:
Let z = uxv. By using x — y, G rewrites uxv to uyv.
» Jumping grammars:
Let z = uxv. By using x — y, G performs:

5/38

Basic Idea of Jumping Grammars

v

We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

v

Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

v

Classical grammars:
Let z = uxv. By using x — y, G rewrites uxv to uyv.

v

Jumping grammars:
Let z = uxv. By using x — y, G performs:
1. selects an occurrence of x in z;

5/38

Basic Idea of Jumping Grammars

v

We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

v

Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

v

Classical grammars:
Let z = uxv. By using x — y, G rewrites uxv to uyv.

v

Jumping grammars:
Let z = uxv. By using x — y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;

5/38

Basic Idea of Jumping Grammars

v

We take a grammar of some type (Chomsky classification, etc.) with
productions of form

X—Yy

v

Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

v

Classical grammars:
Let z = uxv. By using x — y, G rewrites uxv to uyv.

v

Jumping grammars:
Let z = uxv. By using x — y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5/38

Trivial Example — DNA Computing

» DNA is a string over {G,A, T, C}. For instance,
GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

6/38

Trivial Example — DNA Computing

» DNA is a string over {G,A, T, C}. For instance,
GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

» We want to study all strings with the same number of Cs and Gs and
the same number of As and T's. For instance,

CGGCATCCGGTA, but CGCACCGGTA

6/38

Trivial Example — DNA Computing

» DNA is a string over {G,A, T, C}. For instance,
GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

» We want to study all strings with the same number of Cs and Gs and
the same number of As and T's. For instance,

CGGCATCCGGTA, but CGCACCGGTA

» Consider the jumping right-linear grammar with productions
1-C2,2->5G1,1-3,3-544,4>T73,3 > ¢

6/38

Similar devices

» Algebraic approach
» Commutative language closure
» Formal Macroset Theory - a sentence as a multiset of symbols, order
of symbols is totally irrelevant (Kudlek & Martin-Vide & Paun, 2000)
» Accepting devices = Automata
» Jumping Finite Automata (Meduna & Zemek, 2012)
» Generating devices =

» Commutative Grammars (Crespi-Reghizzi & Mandrioli, 1976)
> Insertion-Deletion Systems (Kari, 1991+, Verlan, 2000+)
» Petri Nets

7/38

Definitions and Examples

Formal Language Theory - Basic Notions

» For an alphabet, V, V* represents the free monoid generated by V
under concatenation.

» Unit of V* is denoted by &.

» The set of all permutations of w, perm(w), is defined as
perm(w) = {b1by--b, | b; € alph(w) foralli = 1,2,...,n,and
(b1,by, ..., by) is a permutation of (aj,as,...,a,) where
w=aja---dy}.

9/38

Definition 1 (General Grammars).
A general grammar (GG for short) is a quadruple, G = (V, T, P, S), where
» Vis an alphabet,

» T C Vis an alphabet of terminals, N = V — T is an alphabet of
nonterminals,

» P is a finite relation from V* — T* to V* (a member is called rule or
production), we write p: x — y, and

» S eV -Tisthe start nonterminal.

10/38

Definition 2 (Four modes of derivation steps).
Let u, v € V*. We define the four derivation relations over V* as follows
(i) u (= vin Giff there existx — y € Pand w,z € V* such that u = wxz
and v = wyz;

(i) u =V in G iff there existx —» y € Pand w,t,z € V* such that u = wixz
and v = wytz;

(i) u =V in G iff there exist x » y € P and w, 1,z € V* such that
u = wxtz and v = wtyz;

iv) u =2>vinGiffu .= voru .=vinG.
J lj 7j

> Transitive-reflexive and transitive closures of ,= are denoted by , ="
and , =", for h € {s, Ij, 1j, j}.

> Letk >0and ,=; = {(x,y) | (x,y) € ,=, occur(N, x) <k,
occur(N,y) < k}.

11/38

Definition 3 (Generated Language).
Let G = (V,T,P,S) be a GG. Set

L(G, =) ={xeT"|S ,="x}.

> h

L(G, ,=) is said to be the language that G generates by using ,=

For any X C I'gg, set

Z(X, ,=)=1{L(G, ,=)|GeX}.

12/38

Grammars Subclasses

Let G be a GG.
» G is a monotonous grammar (MONG) if every x — y € P satisfies
el < [yl.
G is a context-sensitive grammar (CSG) if every x — y € P satisfies
x=aABandy = ayBsuchthatA e N, a,f € V*,andye V™.
G is a context-free grammar (CFG) if every x — y € P satisfies x € N.

v

v

v

G is an e-free context-free grammar (CFG™®) if G is a CFG and every
x — y € P satisfies y # ¢.

v

G is alinear grammar (LG) if Gisa CFG and every x > ye P
satisfies y € T*NT* U T".

G is aright-linear grammar (RLG) if Gis a CFG and every x —» y € P
satisfiesy e T"NU T™.

G is a regular grammar (RG) if G is a CFG and every x » y € P
satisfiesy e TNUT.

v

v

13/38

Language Families

Grammar Classes

Let I'y denote the set of all X grammars, for all X € {GG, MONG, CSG,
CFG, CFG*, LG, RLG, RG}.

Definition 4 (Well-known Language Families).
Set
» REG = Z(Trig, =),
LIN = Z(T16, =),
CF = Z(Tcrg, =),
CS = Z(Tyone, =), and
RE = Z(Tgg, =)-
Let k be a positive integer. Set CF; = ¥ | Z(T¢re, ;=) and

ix1
CFj, = (L | L € CF;, for some i > 1} (grammars of finite index).

v

v

v

v

v

Recall FIN ¢ REG c LIN c CFg, c CF c CS c RE

14/38

Jumping Grammars — Examples

Example 5 (Example of Jumping Regular Grammar).
Consider RG

G = ({A,B,C,a,b,c},X = {a,b,c},P,A)
where P ={A - aB, B —> bC,C — cA, C — ¢}.

L(G, =) = {abclabc}* € REG, but

L(G, ji) = {w e X" | occur({a}, w) = occur({b},w) = occur({c},w)} € CS.

15/38

Jumping Grammars — Examples

Example 6 (Example of Jumping Context-Sensitive Grammar).
Consider CSG G = ({S, A, B, a, b}, {a, b}, P, S) with productions:

S
S
AB
aA
Bb

L(G, (=) = {a"b" | n > 1).

Ll Ll

aABb
ab
AABB

aa
bb

Using j=» We can make the following derivation sequence:
S = aABb i~ aAABBb = aAABbb = aaABbb i aBbbaa = abbbaa

Notice: L(G, ;=) € CF, but we cannot generate it by any jumping CFG,

CSG or even MONG.

16/38

Results

17/38

Jumping grammars are weak with sequences

Lemma 7.
{a}"{o} ¢ Z(Tmong, =)-

Proof Idea.
> Assume MONG G = (V. T,P,S) such that L(G, ;=) = {a}*{b}".

18/38

Jumping grammars are weak with sequences

Lemma 7.
{a}* (b} ¢ Z (T mone, j:>)-

Proof Idea.
> Assume MONG G = (V. T,P,S) such that L(G, ;=) = {a}*{b}".

> Letp: x > yePandS ="uxv =w [p] where w € L(G, j:),
u,ve T*and y € {a}" U {b}t U{a}T{b}T.

18/38

Jumping grammars are weak with sequences
Lemma 7.
{a}"{o} ¢ Z(Tmong, =)-

Proof Idea.
> Assume MONG G = (V. T,P,S) such that L(G, ;=) = {a}*{b}".

> Letp: x > yePandS ="uxv =w [p] where w € L(G, j:),
u,ve T*and y € {a}" U {b}t U{a}T{b}T.

» In addition, assume that the sentential form uxv is longer than x such
that uv € {a} " {b}T.

18/38

Jumping grammars are weak with sequences
Lemma 7.
{a}* (b} ¢ Z (T mone, j:>)-

Proof Idea.

> Assume MONG G = (V. T,P,S) such that L(G, ;=) = {a}*{b}".
> Letp: x> yePandS =" uw = w[p] where w € L(G, ;=),
u,ve T*and y € {a}" U {b}t U{a}T{b}T.

» In addition, assume that the sentential form uxv is longer than x such
that uv € {a} " {b}T.

(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}*{b}{a, b}*{al{a, b}* that does not belong to {a}*{b}*.

18/38

Jumping grammars are weak with sequences

Lemma 7.
{a}* (b} ¢ Z (T mone, j:>)-

Proof Idea.
> Assume MONG G = (V. T,P,S) such that L(G, ;=) = {a}*{b}".

> Letp: x> yePandS =" uw = w[p] where w € L(G, ;=),
u,ve T*and y € {a}" U {b}t U{a}T{b}T.
» In addition, assume that the sentential form uxv is longer than x such
that uv € {a} " {b}T.
(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}*{b}{a, b}*{al{a, b}* that does not belong to {a}*{b}*.
(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

18/38

Jumping grammars are weak with sequences

Lemma 7.
{a}* (b} ¢ Z (T mone, j:>)-

Proof Idea.
» Assume MONG G = (V, T, P,S) such that L(G, j:>) = {a}*{b}*.
> Letp: x> yePandS =" uw = w[p] where w € L(G, ;=),
u,ve T*and y € {a}" U {b}t U{a}T{b}T.
» In addition, assume that the sentential form uxv is longer than x such
that uv € {a} " {b}T.
(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}*{b}{a, b}*{al{a, b}* that does not belong to {a}*{b}*.
(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

» This is a contradiction.

18/38

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:
» REG and 2 (Tyone, j:);

» CF and Z(TyoneG, j:');
> REG and . (Trc, =);
> CF and Z(T'gg, =)

Proof.

» Since REG c CF, it is sufficient to prove that REG - .Z (T yonG, J.=>),
Z(Trg, =) — CF, and REG n Z(T'xg, ;=) are non-empty

19138

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:
» REG and 2 (Tyone, j:);

» CF and Z(TyoneG, j:');
> REG and . (Trc, =);
> CF and Z(T'gg, =)

Proof.

» Since REG c CF, it is sufficient to prove that REG - .Z (T yonG, J.=>),
Z(Trg, =) — CF, and REG n Z(T'xg, ;=) are non-empty

» By previous lemma 7, {a}*{b}* € REG — Z (T yoneG, j:>).

19138

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

» REG and £ (T yonG, J-:’)f
> CF and Z (Tmone. ;=);

> REG and & (Trg, =);

» CF and £ (T, j=>)-

Proof.

» Since REG c CF, it is sufficient to prove that REG — X(I‘MONG,J.

Z(Trg, =) — CF, and REG n Z(T'xg, ;=) are non-empty
» By previous lemma 7, {a}*{b}* € REG — Z (T yoneG, j:>).
» For Z(Tgs, j=>) — CF # 0, see Example 5.

=),

19138

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

» REG and £ (T yonG, J-:’)f
> CF and Z (Tmone. ;=);

> REG and & (Trg, =);

» CF and £ (T, j=>)-

Proof.

» Since REG c CF, it is sufficient to prove that REG - .Z (T yonG, J.=>),

Z(Trg, =) — CF, and REG n Z(T'xg, ;=) are non-empty
» By previous lemma 7, {a}*{b}* € REG — Z (T yoneG, j:>).
» For Z(Tgs, j=>) — CF # 0, see Example 5.

» Regular language {a}* € £ (T, j:>), so REG N % (T, j:>) is
non-empty.

19138

Open Problems

Since simple regular language such as {a}"{h}" cannot be generated by
jumping CSGs or even jumping MONGSs, we pinpoint the following open
problem:

Problem 9.
» Is L (Tcre, i:") c Z(Tcse. _,:3’) proper?

20/38

Open Problems

Since simple regular language such as {a}"{b}* cannot be generated by
jumping CSGs or even jumping MONGSs, we pinpoint the following open
problem:
Problem 9.
> Is Z(Tcre, =) € £ (Tesa, j=) proper?
» Is £ (Tese, j=>) c Z(Tmone, j=>) proper?

20/38

Context-sensitive jumping is weaker than classical one
Theorem 10.
g(rMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).

21/38

Context-sensitive jumping is weaker than classical one
Theorem 10.
X(FMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).
» Set Vg = NyUT and Ny = NgU{X | X € V).

21/38

Context-sensitive jumping is weaker than classical one

Theorem 10.
X(FMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).
» Set Vg = NyUT and Ny = NgU{X | X € V).

> Let 7 be the homomorphism from V7, to V;; defined by (X) = X for
all X € V5. Set Py = P; U P, where

21/38

Context-sensitive jumping is weaker than classical one

Theorem 10.
X(FMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).

» Set Vg = NyUT and Ny = NgU{X | X € V).

> Let 7 be the homomorphism from V7, to V;; defined by (X) = X for
all X € V5. Set Py = P; U P, where

> P1 = Uaopergla = n(B), n(B) — B}

21/38

Context-sensitive jumping is weaker than classical one

Theorem 10.
X(FMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).
» Set Vg = NyUT and Ny = NgU{X | X € V).
> Let 7 be the homomorphism from V7, to V;; defined by (X) = X for
all X € V5. Set Py = P; U P, where
> P1 = Uaspersla = n(B), n(B) — B}

> Py = Ugospeps (Xn(B) = n(B)X, n(B)X — Xn(B) | X € V)

21/38

Context-sensitive jumping is weaker than classical one

Theorem 10.
X(FMONG, j=>) c CS.

Proof.

» By demonstrating transformation of any jumping MONG,
G = (Vi,T,Pg,S), to an equivalent MONG, H = (Vy, T, Py, S).
Set Vg = NyuUT and Ny = NgU{X | X € Vg}.
Let 7 be the homomorphism from V7, to V;; defined by #(X) = X for
all X € V5. Set Py = P; U P, where

P = UaaﬁePG{a - ﬂ(ﬂ)! ﬂ(ﬁ) - B}

» Py = Ugospep, (Xn(B) — n(B)X, n(B)X — Xn(B) | X € Vi)

v

v

v

Clearly, {a}*{b}* € CS, so CS — Z(Tmonc, j:>) is non-empty. Hence,
this theorem holds.

21/38

Dyck Language with Finite Index?
Example 11.

Consider Dyck language of all well-written arithmetic expression only with

(,)and [,].
By classical CFG G

E— (E)E,E - |[E|E,E > ¢

But G is not of a finite index!

22/38

Dyck Language with Finite Index?

Example 11.
Consider Dyck language of all well-written arithmetic expression only with

(,)and [,].
By classical CFG G

E— (E)E,E— [EJE,E—> ¢
But G is not of a finite index!

By jumping RLG H

Observe that H is of index 1.

22/38

Jumping Finite Automata

Definition 12.
A general jumping finite automaton (GJFA) is a quintuple
M = (Q,%,R,s,F), where
» Qs finite set of states
» X is the input alphabet, QNX = 0,
» R C O xX*xQis finite, member are called rules, instead of
(p,y,q) € R, we write py — g € R,
s € Q is the start state, and

v

v

F C Qis a set of final states.

23/38

Jumping Finite Automata

Definition 12.
A general jumping finite automaton (GJFA) is a quintuple
M = (Q,%,R,s,F), where
» Qs finite set of states
» X is the input alphabet, QNX = 0,
» R C O xX*xQis finite, member are called rules, instead of
(p,y,q) € R, we write py — g € R,
s € Q is the start state, and

v

v

F C Qis a set of final states.

If py = g € Rimplies that [y| < 1, then M is a jumping finite automaton
(JFA).

23/38

Jumping Finite Automata — Language

Definition 13.
A configuration of M is any string in £*Q*. The binary jumping relation,

symbolically denoted by ~, over 2*Q03.*:
» Letx, z, ', 7 € £* such that xz = x’7’ and py — ¢ € R; then, M makes
a jump from xpyz to x’gz’, symbolically written as xpyz ~ x'qz’.
» In the standard manner, we extent ~ to ~"*, where m > 0, ~™, and

.

The language accepted by M, denoted by L(M), is defined as

LM) ={uv|uyveX uv~*f,f€F}

GJFA and JFA denote the families of languages accepted by GJFAs and
JFAs, respectively.

Recall known' results
JFA c GJFA, FIN c GJFA, and FIN and JFA are incomparable.

See “A. Meduna and P. Zemek, Jumping Automata. Int. J. Found. Comput.
Sci. 23(2012) 1555-1578."

24/38

GJFA = g(FRLG, j:>)

Lemma 14.
GJFA C .i”(l"RLG, j:>).

Proof.

For every GJFAM = (Q, %, R, s, F), we construct a RLG
G=(QUXU{S}, %, P,S), where S is a new nonterminal, S ¢ Q U %, such
that L(M) = L(G, ;=).

P={S—>flfeFlulg—oxp|lpx —>qeRU{g—x|sx > qg€cR)

Basic Idea

» Principle: analogous to conversion from classical general (lazy) finite
automata to equivalent RLGs

25/38

GJFA = g(FRLG, j:>)

Lemma 14.
GJFA C .i”(l"RLG, j:>).

Proof.
For every GJFAM = (Q, %, R, s, F), we construct a RLG

G=(QUXU{S} L, P,S), where S is a new nonterminal, S ¢ Q UX, such
that L(M) = L(G, ;=).

P={S—>flfeFlulg—oxp|lpx —>qeRU{g—x|sx > qg€cR)

Basic Idea

» Principle: analogous to conversion from classical general (lazy) finite
automata to equivalent RLGs

» First, S is nondeterministically rewritten to some f in G. Let w = uv.

i

usv ~N ypxy’ ~zq77 [px— gl A~ finM
is simulated in G by
S = f =" 2q" = yxpy [q - xp] =" w, where yy = zZ'Z".
25/38

GJFA = g(FRLG, j:>)

Lemma 15.
X(FRLG, j:>) Cc GJFA.

Proof.

Forevery RLG G = (V, T, P, S), we constructa GIFAM = (NU{c}, T, R,

o, {S}), where o is a new start state, o ¢ V.and N = V — T, such that
L(G, J.=>) = L(M).

R={Bx—>A|A—>xBeP,AABeEN,xeT*}U
fox >A|A—>xeP,xeT"

Basic Idea

» The start nonterminal of G corresponds to the only final state of M.
S =" WA = B [A > xB| =w
is simulated by M’s jumping moves as
uov ~* zBx7 ~ yAy'y” [Bx > A] ~* S, where yy'y” = zz’ and
W = Uuv.

26/38

Equivalence with Jumping Finite Automata

Theorem 16.
GJFA = g(FRLG, j:)'

Proof.
This theorem holds by Lemmas 14 and 15. O

Theorem 17.
JFA = Tk, =)

Proof.

» Consider jumping finite automata that processes only one input
symbol in one move.

27/38

Equivalence with Jumping Finite Automata

Theorem 16.
GJFA = g(l—‘RLG’ j:)'

Proof.
This theorem holds by Lemmas 14 and 15. O

Theorem 17.
JFA = Tk, =)

Proof.

» Consider jumping finite automata that processes only one input
symbol in one move.

» Proof is analogical to the proof of Theorem 16 with x € T.

27/38

Right-Linear, Linear and Finite Index Jumping Grammars
Theorem 18.
Z(Treg: =) = Z(Ti6, =) = Ukt £ (Tcra, =)
Idea.
» Since X(FRLGa j:) - ,Z”(I”Lg, j:) - Ukzl X(FCF(;, j:k) follows

from the definitions, it suffices to proof that
Uke1 £ (Tcres =) € Z(Trig, ;=) (transform G to H).

28/38

Right-Linear, Linear and Finite Index Jumping Grammars
Theorem 18.

Z(Treg: =) = Z(Ti6, =) = Ukt £ (Tcra, =)

Idea.

» Since g(l—‘RLGa j:) - ,Z”(I”Lg, j:) C Urs1 X(FCF(;, j:k) follows
from the definitions, it suffices to proof that

U1 Z (T cre, j=>k) C Z(Trics j=>) (transform G to H).

k .
» Vg ={x)|xe€ 'QI(VG— T)l}U T

28/38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
g(FRLGa j:>) = X(FLGa jﬁ) = Ukzl g(rCFG’ j:>k)'

Idea.

» Since g(l—‘RLGa j:) - X(Fw, j:) C Urs1 X(FCF(;, j:k) follows
from the definitions, it suffices to proof that

Uke1 £ (Tcres =) € Z(Trig, ;=) (transform G to H).
k .
> Vg = {(X) | x € ~!1(VG — T)l} uT

» Py = {{@AB) — t(x){y) | A - x € P, @, € N*, y = afin(x),
1<yl<klU{(A) > x|A > x€Pg,xeT"}

28/38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
g(FRLGa j:>) = X(FLGa jﬁ) = Ukzl g(rCFG’ j:>k)'

Idea.

» Since g(l—‘RLGa j:) - X(Fw, j:) C Urs1 X(FCF(;, j:k) follows
from the definitions, it suffices to proof that

Uke1 £ (Tcres =) € Z(Trig, ;=) (transform G to H).
k .
> Vg = {(X) | x € ~!1(VG — T)l} uT

» Py = {{@AB) — t(x){y) | A - x € P, @, € N*, y = afin(x),
1<yl<klU{(A) > x|A > x€Pg,xeT"}

28/38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
g(FRLGa j:>) = X(FLGa jﬁ) = Ukzl g(rCFG’ j:>k)'

Idea.

» Since g(l—‘RLGa j:) - X(Fw, j:) C Urs1 X(FCF(;, j:k) follows
from the definitions, it suffices to proof that

Uke1 £ (Tcres =) € Z(Trig, ;=) (transform G to H).
k .
> Vg = {(X) | x € ~!1(VG — T)l} uT

» Py = {{@AB) — t(x){y) | A - x € P, @, € N*, y = afin(x),
1<yl<klU{(A) > x|A > x€Pg,xeT"}

Problem 19.
Is Uizt <Z (Tcra, =) € £ (Terg, =) proper?

28/38

General Jumping Grammars are Turing Complete

Lemma 20.
RE ¢ Z(Tgg, j:>).

Construction.

» For every GG G = (Vg, T, P, Sg), we construct another GG
H = (Vg = Vg U {Sy,$.#,, 1}, T, Py, Sy) such that
L(G, =) =L(H, =).

29/38

General Jumping Grammars are Turing Complete
Lemma 20.

RE C g(rgg, j:>).

Construction.

» For every GG G = (Vg, T, P, Sg), we construct another GG
H = (VH = Vs U {Sy, $, #, LT, P[-],SH) such that
L(G, =) =L(H, =).
» Sy, $.#,|, and | are new nonterminal symbols in H.
Py ={Su - #S, # > 8, L] - # # > &} U
{$a —1B | a@ — B € Pg}.

29/38

General Jumping Grammars are Turing Complete

Lemma 20.
RE C g(rgg, j:>).

Construction.

» For every GG G = (Vg, T, P, Sg), we construct another GG
H= (Vg = V5U{Sy.$.#.1. 1}, T, Py, Sy) such that
L(G, (=) =L(H, =)
» Sy, $.#,|, and | are new nonterminal symbols in H.
Py ={Sy = #Sg, # = |$, L] > # # > g} U
{$a —1B | a@ — B € Pg}.
» |dea: Every application of @« — S in G is simulated in H:

..#...a/...j:> ...L$a...j=>...uﬁ...j:> LHLBL

29/38

General Jumping Grammars are Turing Complete

Lemma 20.
RE C g(rgg, j:>).

Construction.

» For every GG G = (Vg, T, P, Sg), we construct another GG
H= (Vg = V5U{Sy.$.#.1. 1}, T, Py, Sy) such that
L(G, =) =L(H, =).
» Sy, $.#,|, and | are new nonterminal symbols in H.
Py ={Su - #S, # > 8, L] - # # > &} U
{$a —1B | a@ — B € Pg}.

» |dea: Every application of @« — S in G is simulated in H:

..#...a/...j:> S =B D H#LLBL

J J

Theorem 21.
.i”(l"g(;, j=>) = RE.

29/38

Language Families Hierarchy - Results Summary

RE—— {20)

ZTcse, =)

(£ (TCcro, =) —{ £ (Terg+, =) |

"\

[f(FRLG,ﬁ)J—{Ukz;f(ch, =) —{GIrA|

30/38

Semilinearity

Definition 22.

» Letwe V*with V ={ay,...,a,}.

» We define Parikh vector of w by
wy(w) = (oceur(ay, w),occur(az, w),...,occur(a,, w)).

» A set of vectors is called semilinear if it can be represented as a union
of a finite number of sets of the form
vo+ 2" avila; € N, 1 <i<m}wherev;for0<i<misan
n-dimensional vector.

» Alanguage L C V* is called semilinear if the set
wy(L) = {yv(w) | we L} is a semilinear set.

» A language family is semilinear if all its languages are semilinear.

31/38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X € {RG, RLG, LG, CFG}, £ (Ix, j=>) is semilinear.

Proof.

» By Parikh’s Theorem, for each context-free language L € V*, yy(L) is
semilinear.

32/38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X € {RG, RLG, LG, CFG}, X(FX, j=>) is semilinear.
Proof.

» By Parikh’s Theorem, for each context-free language L € V*, yy(L) is
semilinear.

» Let G be a CFG such that L(G, ;=) = L.

32/38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X € {RG, RLG, LG, CFG}, Z(FX, j=>) is semilinear.

Proof.
» By Parikh’s Theorem, for each context-free language L € V*, yy(L) is
semilinear.
» Let G be a CFG such that L(G, ;=) = L.
> From the definition of ;= and CFG it follows that
¥(L(G, =)) = ¢(L(G, =)) therefore ¢/(L(G, ;=)) is semilinear as
well.
]

32/38

Multiset Grammar and Language

Definition 24.

Let G = (V,T,P,S) € I'gc be a grammar and u,v € V*; then,

u ,,=v[x—y|inGiff there existx - y € Pand t,¢,z,7 € V* such that
ixt’ € perm(u) and zyz’ € perm(v). Then, L(G, ,,=) is called multiset
language.

Lemma 25.
Let G € T'gg; then, w € L(G, ,,=) implies that perm(w) C L(G, ,=).

Proof.
Consider Definition 24 with v representing every permutation of v in every
u ,= vin G to see that this lemma hold true.]

33/38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
Z(Tese, j:>) is not semilinear. Neither is £ (T yongG, J.=>).

Idea.

» Recall that .2 (T yone, ,,=) contains non-semilinear languages? and

2See Theorem 1 in “M. Kudlek, C. Martin-Vide, and Gh. Paun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158:%

34/38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
Z(Tese, j=>) is not semilinear. Neither is £ (T yongG, J.=>).

Idea.

» Recall that .2 (T yone, ,,=) contains non-semilinear languages? and
» Z(Tese, j:>) < Z(Tyone, j:>) follows from the definition.

2See Theorem 1 in “M. Kudlek, C. Martin-Vide, and Gh. Paun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158:%

34/38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
Z(Tese, j=>) is not semilinear. Neither is £ (T yongG, J.=>).

Idea.

» Recall that .2 (T yone, ,,=) contains non-semilinear languages? and
» Z(Tese, j:>) < Z(Tyone, j:>) follows from the definition.
> We only need to prove that . (Iyong, n=) € -Z(Lcse, ;=)

2See Theorem 1 in “M. Kudlek, C. Martin-Vide, and Gh. Paun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158:%

34/38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
Z(Tese, j=>) is not semilinear. Neither is £ (T yongG, J.=>).

Idea.

» Recall that .2 (T yone, ,,=) contains non-semilinear languages? and
» Z(Tese, j:>) < Z(Tyone, j:>) follows from the definition.
> We only need to prove that . (Iyong, n=) € -Z(Lcse, ;=)

2See Theorem 1 in “M. Kudlek, C. Martin-Vide, and Gh. Paun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158:%

34/38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
Z(Tese, j=>) is not semilinear. Neither is £ (T yongG, J.=>).
Idea.
» Recall that .2 (T yone, ,,=) contains non-semilinear languages? and

» Z(Tese, =) € Z(Tmone, j:>) follows from the definition.
» We only need to prove that £ (T'yonG, =) € -Z(Tese, J:).

Corollary 27.
g(rcpc, j:) C .,S,”(FCSG, j=>).

2See Theorem 1 in “M. Kudlek, C. Martin-Vide, and Gh. Paun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158:%

34/38

Closure Properties of Jumping Grammars - Work in

Progress

Operations U Complement Reversal
Z(Tire, =) + + +
Z(Tric, j=>) + - +
Dg(rcp(;, j:>) + - +?
Z(chg, j:) + -

Z(Tmone, ;=) | + -

X(I’G& j:) + - +

Table: Empty cell = unknown

35/38

Conclusion

36/38

Extensions and Future

Jumping Grammars

» Closure properties

37/38

Extensions and Future
Jumping Grammars

» Closure properties
» Right and Left jumps

37/38

Extensions and Future

Jumping Grammars

» Closure properties
» Right and Left jumps
» Alternative Jumping Context-Sensitive Grammars

37/38

Extensions and Future

Jumping Grammars

» Closure properties

» Right and Left jumps

» Alternative Jumping Context-Sensitive Grammars
» Relationship with Formal Macroset Theory

37/38

Extensions and Future

Jumping Grammars

» Closure properties

» Right and Left jumps

» Alternative Jumping Context-Sensitive Grammars
» Relationship with Formal Macroset Theory

37/38

Extensions and Future

Jumping Grammars

» Closure properties

» Right and Left jumps

» Alternative Jumping Context-Sensitive Grammars
» Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

» Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

37/38

Extensions and Future

Jumping Grammars

» Closure properties

» Right and Left jumps

» Alternative Jumping Context-Sensitive Grammars
» Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

» Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

» Grammar systems with jumping components?

37/38

Extensions and Future

Jumping Grammars

» Closure properties

» Right and Left jumps

» Alternative Jumping Context-Sensitive Grammars
» Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

» Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

» Grammar systems with jumping components?

> DR

37/38

Thanks for your attention!

	Introduction
	Definitions and Examples
	Results
	Generative Power of Jumping Grammars
	Properties of Jumping Derivations

	Conclusion

