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Finite automata 

 (Q,s,V,F,d) 
Q: set of states, s: initial state (in Q) 
V: input alphabet (terminal alphabet in grammars) 
F: set of final states (subset of Q) 
d: transition function  

 Deterministic:           d:QxVQ 

 Non-deterministic:    d:Qx(VU{})2Q  
( is also used in the role of the empty word) 

 NOTE: allowing to read strings or even ” regular expressions”, 
still exactly the regular languages are accepted!   
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Linear languages 

 Definition by grammar: 
 

 

 Normal form for the grammar: 

 

 Even-linear languages (normal form): 
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 Several new paradigms of computing are based on the 

structure and natural operations of DNA. They appeared 

at the end of the last century. In contrast, the theory of 

finite automata is well developed and intensively used 

in both theory and practice. 

 The Watson-Crick automata, introduced in (Freund et 

al., 1997), relate to both fields. They are important in 

the field of (DNA) computing and have important 

relation to formal language and automata theory as well. 

 

DNA computing & automata 



Biological Background and Motivation, 

the DNA 

 Five chemical elements can be found in DNA molecules: 

Hydrogen (1 connection),   

Oxygen (2 connections),   

Nitrogen (3 connections),   

Carbon (4 connections), and   

            Phosphorus (5 connections).  

 They can be connected in various ways by covalent bond 

(one of the strongest chemical bonds). 

 There are four possible nukleotide bases: 

Adenine(A), Cytosine (C), Guanine (G) and Thymine (T). 

 



 The bases are connected to sugar, which is connected to the 

Phosphate group. Each nucleotide has three components: a 

base (that can be four types in a DNA molecule), a sugar 

and a Phosphate. 

 The sugar has five Carbon atoms which can be identified as 

1′ through 5′. The Phosphate is connected to the 5′ Carbon. 

Two nucleotides can be bonded through the Phosphate 

group (a water molecule H2O appears; this process is 

catalyzed by the Ligase enzyme in a DNA molecule): the 

connection goes from the 3′ Carbon to the Phosphate of the 

next nucleotide. 

 

  

the DNA 



  

the DNA 



 Thus, a DNA strand is a directed sequence of 

nucleotides and can be interpreted as a string over the 

alphabet {A,C,G,T}. 

 A DNA molecule consists of two strands. Watson and 

Crick discovered the double helix structure of DNA and 

the fact that the two strands are elementwise 

complementary of each other. 

 On one end of the strand, there is a 5′ side, and on the 

other end, a 3′ side of a base. 

 

  

the DNA 



 
  

the DNA 



 Motivation 

 DNA computing 

                            finite automata 

 5’ - 3’ ends of DNA strands 
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 DNA molecule 
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finite automata (NFA) 
A = (𝑉,𝑄,𝑞0,𝐹, 𝛿)  
V input alphabet 
Q: set of states 
T: set of terminals 
𝑞0  Q  initial state 
F  Q : final (or 
accepting) states 
𝛿: transition function 
Q x (V  {})  2Q 



 

 DNA molecule 

                            finite automata 

 5’ - 3’ ends of DNA strands 
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• W                      K    

 

 

finite automata (NFA) 
A = (𝑉,𝑄,𝑞0,𝐹, 𝛿)  
V input alphabet 
Q: set of states 
T: set of terminals 
𝑞0  Q  initial state 
F  Q : final (or 
accepting) states 
𝛿: transition function 
Q x (V  {})  2Q 



 

 DNA molecule 

                            finite automata 

 5’ - 3’ ends of DNA strands 

 

 

 

The title 

Linear context-free 
grammars & languages 
 
G = (N,T,S,P) 
N,T alphabets: 
N: set of nonterminals 
T: set of terminals 
S  N  start or 
sentence symbol 
P: set of poductions, 
 
A  uBv 
A,B  N, u,v  T* 



The two strands of the DNA molecule have opposite 5′ → 3′ 
orientations.  

5’-3’ variant of Watson-Crick finite automaton that parses two strands 

of the Watson-Crick tape in opposite directions. 

 

 

 

 

 

 

 

 

Definitions 

Initial configuration An accepting configuration 

with a final state 𝑞 



A possible figure of a  
5’- 3’ Watson-Crick 

automaton. The two 
strands of the DNA 

molecule is read by an 
enzyme simultaneously. 

The first head has 
already read CTGTAGC 

and is 
reading G, while the 

second head has read 
TGAGC and is reading T. 



Linear languages – 2-head finite 
automata 



Watson - Crick Automata – WK tape 

 WK-automata are (finite) automata working on a Watson-

Crick tape, that is a double-stranded sequence (or 

molecule) in which the lengths of the strands are equal and 

the elements of the strands are pairwise complements of 

each other: 

                       
𝑎1

𝑏1
 

𝑎2

𝑏2
 … 

𝑎𝑛

𝑏𝑛
 = 

𝑎1 𝑎2    … 𝑎𝑛

𝑏1 𝑏2    … 𝑏𝑛
 

     with 𝑎𝑖,𝑏𝑖 ∈V and (𝑎𝑖,𝑏𝑖)∈ρ (i=1,...,n). 

 where 𝜌 ⊆ V × V is a symmetric relation, the Watson-

Crick complementarity. 

 

 

 

 



 

The 5′ → 3′ WK automaton is sensing if the heads sense that they are meeting. 

Formally, a Watson-Crick automaton is a 6-tuple 𝑀 = (𝑉, 𝜌, 𝑄, 𝑞0, 𝐹, 𝛿). 

 

 

 𝑉 is the (input) alphabet, 

 𝜌 ⊆ 𝑉 × 𝑉 denotes a complementarity relation, 

 𝑄 represents a finite set of states, 

 𝑞0 ∈ 𝑄 is the initial state,  

 𝐹 ⊆ 𝑄 is the set of final states and  

 𝛿 is called transition mapping and it is of the form 𝛿: 𝑄 ×
𝑉∗

𝑉∗ ⟶ 2𝑄 such 

that it is non empty only for finitely many triplets 𝑞, 𝑢, 𝑣 , 𝑞 ∈ 𝑄, 𝑢, 𝑣, ∈
𝑉∗. 

 



In sensing 5′ → 3′ WK automata every pair of positions in the Watson-Crick 

tape is read by exactly one of the heads in an accepting computation, and 

therefore the complementarity relation cannot play importance, instead, we 

may assume that it is identity relation (that is we can work with usual strings). 

Let us define the radius of an automaton by 𝑟 which shows the maximum 

length of the substring of the input that can be read by the automaton in a 

transition. 

A configuration of a Watson-Crick automaton is a pair (𝑞, 𝑤). 

 

 

 

For 𝑤′, 𝑥, 𝑦 ∈ 𝑉∗, 𝑞, 𝑞′ ∈ 𝑄, a transition between two configurations can be 

written as: 

𝑞, 𝑥𝑤′𝑦 ⇒ 𝑞′, 𝑤′  if and only if 𝑞′ ∈ 𝛿 𝑞, 𝑥, 𝑦 . 

For a given w ∈ V∗, an accepting computation is a sequence of transitions  

𝑞0, 𝑤 ⇒∗ 𝑞𝐹 , 𝜆 . 

 

 

The current state  the part of the input word 

which has not been read 

yet. 



The language accepted by a WK automaton 𝑀 is: 

𝐿 𝑀 = 𝑤 ∈ 𝑉∗ 𝑞0, 𝑤 ⇒∗ 𝑞𝐹 , 𝜆 , 𝑞𝐹 ∈ 𝐹 . 

The shortest nonempty word accepted by 𝑀is denoted by 𝑤𝑠, if it is uniquely 

determined or any of them if there are more than one such word(s). 

 

There are some restricted versions of WK automata which can be defined as 

follows: 

 N: stateless: if 𝑄 = 𝐹 = 𝑞0 ; 

 F: all-final: if 𝑄 = 𝐹; 

 S: simple: 𝛿: 𝑄 × 𝜆, 𝑉∗ ∪ 𝑉∗, 𝜆 → 2𝑄 . 

 1: 1-limited: 𝛿: 𝑄 × 𝜆, 𝑉 ∪ 𝑉, 𝜆 → 2𝑄 . 

We can define additional version using multiple constrains such as F1, N1, FS, 

NS WK automata. 

 

 



 Examples (two possible notions) 

Palindromes: 

 

 

 

 

 

 

 

   



 

 

 

 

 

 

Figure A sensing 5′ → 3′ WK automaton of type N1 accepting the language 
𝑎𝑛𝑏𝑚 𝑛, 𝑚 ≥ 0 . 

 

 

 

 

 

 

Figure A sensing 5′ → 3′ WK automaton of type NS accepting the language 
𝑎3𝑛𝑏2𝑚 𝑛, 𝑚 ≥ 0 . 

NS type can accept only regular languages! 

 

 

 



                        ′ → 𝟑′ WK automaton: 

              

                     

                                                                 



→𝟑𝟑′ WK automaton: 

Example of NS sensing 𝟓′ → 𝟑′ WK automaton: 

              

                     

                                                                 



𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

Language:   𝑎 3 3𝑛 3𝑛 𝑎 3𝑛  𝑏 2𝑚  𝑛, 𝑚 ≥ 0 . 

              

                     

                                                                 



𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

Word: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 

              

                     

                                                                 



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

Word: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 

By using transition 𝑞0, 𝑎𝑎𝑎, 𝜆 : (𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) ⇒ 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏  



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 

By using transition 𝑞0, 𝑎𝑎𝑎, 𝜆 : (𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) ⇒ 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝑎𝑎𝑎, 𝜆 : 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏  



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 

By using transition 𝑞0, 𝑎𝑎𝑎, 𝜆 : (𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) ⇒ 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝑎𝑎𝑎, 𝜆 : 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝜆, 𝑏𝑏 : 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏  



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 

By using transition 𝑞0, 𝑎𝑎𝑎, 𝜆 : (𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) ⇒ 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝑎𝑎𝑎, 𝜆 : 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝜆, 𝑏𝑏 : 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏  

𝑞0, 𝜆, 𝑏𝑏 : 𝑞0, 𝑎𝑎𝑎𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎  



 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 𝑞 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑛𝑛 𝑎 3𝑛  𝑏 2𝑚 𝑏𝑏 𝑏 2𝑚 2𝑚𝑚 𝑏 2𝑚   𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 𝑛𝑛,𝑚𝑚
≥0  𝑎 3𝑛  𝑏 2𝑚  𝑛,𝑚≥0 . 

→𝟑𝟑′ WK automaton: 

A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 
A configuration of a Watson-Crick automaton: 

( 𝑞 0 0 0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) 

                     

                                                                 

By using transition 𝑞0, 𝑎𝑎𝑎, 𝜆 : (𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) ⇒ 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝑎𝑎𝑎, 𝜆 : 𝑞0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏  

𝑞0, 𝜆, 𝑏𝑏 : 𝑞0, 𝑎𝑎𝑎𝑏𝑏𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎𝑏𝑏  

𝑞0, 𝜆, 𝑏𝑏 : 𝑞0, 𝑎𝑎𝑎𝑏𝑏 ⇒ 𝑞0, 𝑎𝑎𝑎  

𝑞0, 𝑎𝑎𝑎, 𝜆 : 𝑞0, 𝑎𝑎𝑎 ⇒ 𝑞0, 𝜆  



                                                       

                                                                       
               

                                         ′ → 3′ WK finite automata, 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



Theorem. The following classes of languages coincide: 

                                                                       
               

                                         ′ → 3′ WK finite automata, 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



Theorem. The following classes of languages coincide: 

 the class of linear context-free languages defined by linear 

context-free grammars, 

                                         ′ → 3′ WK finite automata, 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



′→3′ WK finite automata, 

Theorem. The following classes of languages coincide: 

 the class of linear context-free languages defined by linear 
context-free grammars, 

 the language class accepted by sensing 5′ → 3′ WK finite 
automata, 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



′→3′ WK automata, 

′→3′ WK finite automata, 

Theorem. The following classes of languages coincide: 

 the class of linear context-free languages defined by linear context-

free grammars, 

 the language class accepted by S sensing 5′ → 3′ WK automata, 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



′→3′ WK automata. 

′→3′ WK automata, 

′→3′ WK finite automata, 

Theorem. The following classes of languages coincide: 

 the class of linear context-free languages defined by linear context-
free grammars, 

 the language class accepted by 1 sensing 5′ → 3′ WK automata. 

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



′→3′ WK automata. 

′→3′ WK automata, 

′→3′ WK finite automata, 

Theorem. The following classes of languages coincide: 

 the class of linear context-free languages defined by linear context-
free grammars, 

  

                                           ′ → 3′ WK automata, 

                                           ′ → 3′ WK automata. 

   

 

 
 Sensing 5′ → 3′ WK automata 

characterizing the linear languages 



 Let G (N,T,S,P) be a linear grammar, then 

 Define A (T, id, N  { qf }, S, { qf }, 𝛿) with  

  𝛿  as follows: 

 for each production of P of form A  uBv  with nonterminal B 
on the right side, let 
B  (A,u,v)  and 

 for each production of P of form A  u  without nonterminal 
on the right side, let 
qf  (A,u,). 

 Sucessful derivations in G coincide to accepting 
computations in A. 

 

 

Constructive proofs 



 Let A (V, id, Q, q0, F, 𝛿) be a 5’-3’ WK automaton, then 
if Q and V are not disjunct rename the names of the 
states (!) 

 define G (Q,V, q0,P) with  

  P as follows: 

 for each transition q’  (q,u,v)   of 𝛿, let 
q  u q’ v  in P and 

 moreover, for each q  F  let 
q      in P. 

 Again, sucessful derivations in G coincide to accepting 
computations in A. 

 

 

Constructive proofs 



 Each transition q’  (q,u,v) of a WK automaton can 
be broken to 2 consecutive transitions by adding a 
new (intermediate) state to the automaton: 

 

 q’’  (q,u, ) 

    q’  (q’’, ,v) 

 Further, reading strings of lenght n can be broken to n 

consecutive transitions reading them letter by letter...  

Restricted variants 



 
 Hierarchy by sensing 5′ → 3′ WK 

automata 

 Some restricted variants can only accept sublinear or 
even subregular language classes.... 



Lemma 1. Let 𝑀 be an 𝑭𝟏 sensing 5′ → 3′ WK automaton and let the word 

𝑤 ∈ 𝑉+ that is in 𝐿(𝑀). Let 𝑤 = 𝑘, then for each 𝑙, where 0 ≤ 𝑙 ≤ 𝑘, there is 

at least one word 𝑤𝑙 ∈ 𝐿(𝑀) such that 𝑤𝑙 = 𝑙. 

 

Proof. According to the definition of 𝑭𝟏 sensing 5′ → 3′ WK automaton, 𝑤 

can be accepted in 𝑘 steps such that in each step, the automaton can read 

exactly one letter. Moreover, each state is final, therefore by considering the 

first 𝑙 steps of 𝑘 steps, the word 𝑤𝑙 = 𝑤′𝑙𝑤′′𝑙 is accepted by 𝑀, where 𝑤′𝑙 is 

read by the left head and 𝑤′′𝑙 is read by the right head during these 𝑙 steps, 

respectively. 

 

Remark 1. Since, by definition every N1 sensing 5′ → 3′ WK automaton is 

F1 sensing 5′ → 3′ WK automaton at the same time, Lemma 1 applies for all 

N1 sensing 5′ → 3′ WK automata also. 

 



Theorem 2. The class of languages that can be accepted by N1 sensing 

5′ → 3′ WK automata is properly included in the language class accepted by 

NS sensing 5′ → 3′ WK automata. 

Proof. We can prove the theorem by using the language 

𝐿 = 𝑎3𝑛𝑏2𝑚 𝑛, 𝑚 ≥ 0 . In this language 𝑤𝑠 is 𝑏𝑏 and it can be accepted by 

these transitions: 𝑏𝑏, 𝜆  or 𝜆, 𝑏𝑏 . Although using Lemma 1, 𝑤𝑠 cannot be 

the shortest nonempty accepted word in a language accepted by an N1 sensing 

5′ → 3′ WK automaton (see the Figure below). 

 

 

 

 

 

 



Theorem 3. The class of languages that can be accepted by NS sensing 
5′ → 3′ WK automata is properly included in the language class accepted by N 
sensing 5′ → 3′ WK automata. 

Proof. The language 𝐿 = 𝑎(2𝑛+𝑚)𝑏(2𝑚+𝑛) 𝑛, 𝑚 ≥ 0  proves the proper 

inclusion. The 𝑤𝑠 of 𝐿 is 𝑎𝑎𝑏 (or 𝑎𝑏𝑏) and it can be accepted by one of the 
following loop transitions: 𝑎𝑎𝑏, 𝜆 , 𝜆, 𝑎𝑎𝑏 , (𝑎𝑏𝑏, 𝜆) or (𝜆, 𝑎𝑏𝑏) by an NS 
sensing 5′ → 3′ WK automaton. Each of mentioned transitions can lead to 

accept different language from the language  𝑎(2𝑛+𝑚)𝑏(2𝑚+𝑛) 𝑛, 𝑚 ≥ 0 . 

Therefore, the language 𝐿 cannot be accepted by NS sensing 5′ → 3′ WK 
automata.   

 

 

 

 

 

 

Figure 4: An N sensing 5′ → 3′ WK automaton accepts the language 𝐿. 

 

 

 

 

 



Theorem 4. The class of languages that can be accepted by F1 sensing 5′ → 3′ 
WK automata is properly included in the language class accepted by FS 

sensing 5′ → 3′ WK automata. 

Proof. Consider the language 𝐿 = 𝑎𝑎 𝑛 𝑏𝑏 𝑚 𝑚 ≤ 𝑛 ≤ 𝑚 + 1, 𝑚 ≥ 0 . 

The word 𝑤𝑠 can be 𝑎𝑎 and by Lemma 1, 𝑤𝑠 cannot be the shortest nonempty 

accepted word for an F1 sensing 5′ → 3′ WK automaton.  

 

 

 

 

 

 

Figure 5: A sensing 5′ → 3′ WK automaton of type FS accepting the 

language 𝑎𝑎 𝑛 𝑏𝑏 𝑚 𝑚 ≤ 𝑛 ≤ 𝑚 + 1, 𝑚 ≥ 0 . 



Theorem 5. The class of languages that can be accepted by FS sensing 5′ → 3′ 
WK automata is properly included in the language class accepted by F sensing 

5′ → 3′ WK automata. 

Proof. Let us assume, contrary that 

𝐿 = 𝑎2𝑛+𝑞𝑐4𝑚𝑏2𝑞+𝑛 𝑛, 𝑞 ≥ 0, 𝑚 ∈ 0,1 is accepted by an FS sensing 

5′ → 3′ WK automaton. Let the radius of this automaton be r. Let 𝑤 =
𝑎2𝑛+𝑞𝑏2𝑞+𝑛 ∈ 𝐿 with 𝑛, 𝑞 ≥ 𝑟 such that 𝑤 = 3𝑛 + 3𝑞 > 𝑟. Then the word 

𝑤 cannot be accepted by using only one of the transitions (from the initial 

state), i.e., 𝛿 𝑞0, 𝑎2𝑛+𝑞𝑏2𝑞+𝑛, 𝜆  or 𝛿 𝑞0, 𝜆, 𝑎2𝑛+𝑞𝑏2𝑞+𝑛  is not possible. 

Therefore, by considering the position of the heads after using any of the 

transitions from the initial state 𝑞0 in FS sensing 5′ → 3′ WK automaton, it is 

clear that either a prefix or a suffix of 𝑤 with length at most 𝑟 is accepted by 

the automaton. But neither a word from 𝑎+, nor from 𝑏+ is in 𝐿. This fact 

contradicts to our assumption, hence 𝐿 cannot be accepted by any FS sensing 

5′ → 3′ WK automata. 

 

However, L can be accepted by an F sensing 5′ → 3′ WK automaton (next) 

 

 

 

 

 

 

 

 

 



Figure 6: A sensing 5′ → 3′ WK automaton of type F accepting the language 

𝑎2𝑛+𝑞𝑐4𝑚𝑏2𝑞+𝑛 𝑛, 𝑞 ≥ 0, 𝑚 ∈ 0,1 . 

 

 

 

 

 

 

 



Theorem 6. The language class accepted by F sensing 5′ → 3′ WK automata 
is properly included in the language class of sensing 5′ → 3′ WK automata. 

 

Proof. A sensing 5′ → 3′ WK automaton (without restrictions) accepts the 
language 𝐿 = 𝑎𝑛𝑐𝑏𝑛𝑐 𝑛 ≥ 1 . Now we show that there is no F sensing 
5′ → 3′  WK automaton which accepts 𝐿 . Assume the contrary that the 
language 𝐿 is accepted by an F sensing 5′ → 3′ WK automaton. Let the radius 
of the automaton be 𝑟. Let 𝑤 = 𝑎𝑛𝑐𝑏𝑛𝑐 ∈ 𝐿 with 𝑚 ≥ 𝑟. Thus the word 𝑤 
cannot be accepted by applying exactly one transition from the initial state 𝑞0. 
Now, suppose that there exists 𝑞 ∈ 𝛿(𝑞0, 𝑤1, 𝑤2) such that 𝑤 can be accepted 
by using transition(s) from 𝑞. Since in F sensing 5′ → 3′ WK automaton all 
states are final, then the concatenation of 𝑤1 and 𝑤2 is accepted, thus, it must 

be in 𝐿 (i.e. 𝑤1𝑤2 ∈ 𝐿). Therefore 𝑤1𝑤2 = 𝑎𝑚′
𝑐𝑏𝑚′

𝑐 where 2𝑚′ + 2 ≤ 𝑟 ≤
𝑚. To expand both blocks 𝑎+ and 𝑏+ to continue the accepting path of 𝑤, the 

left head must be right after the subword 𝑎𝑚′
, and the right head must be right 

before after the subword 𝑏𝑚′
. However, this is contradicting the fact that the 

two heads together already read  𝑎𝑚′
𝑐𝑏𝑚′

𝑐. 

 



 

 

 

 

 

 

Figure 7: A sensing 5′ → 3′ WK automaton accepts the language 𝐿 =
𝑎𝑛𝑐𝑏𝑛𝑐 𝑛 ≥ 1 . 

 



Proposition 1. The language 𝐿 = 𝑎𝑛𝑏𝑚 𝑛 = 𝑚 𝑜𝑟 𝑛 = 𝑚 + 1  can be 

accepted by F1 sensing 5′ → 3′ WK automata, but cannot be accepted by N1, 

NS and N sensing 5′ → 3′ WK automata. 

  

 

 

 

 

Figure 9: An F1 sensing 5′ → 3′ WK automaton accepts the language 

𝐿 = 𝑎𝑛𝑏𝑚 𝑛 = 𝑚 𝑜𝑟 𝑛 = 𝑚 + 1 . 

 

Remark 2. The following statements follow from Proposition 1: 

 N1⊂ F1 

 NS⊂FS 

 N⊂F 

 

 



Theorem 7. The class of languages that can be accepted by N sensing 5′ → 3′ 
WK automata is incomparable with the classes of languages that can accepted 
by FS and F1 sensing 5′ → 3′ WK automata under set theoretic inclusion. 

 

Proof. The language 𝐿 = 𝑤𝑤𝑅 𝑤 ∈ 𝑎, 𝑏 ∗  can be accepted by an N 
sensing 5′ → 3′ WK automaton. Suppose that an FS sensing 5′ → 3′ WK 
automaton accepts 𝐿. Let the radius of this automaton be 𝑟. Let 𝑤2 = 𝑤1𝑤1

𝑅 ∈
𝐿 with 𝑤1 = (𝑏𝑏𝑏𝑎𝑎𝑎)𝑚 and 𝑚 > 𝑟. The word 𝑤2 cannot be accepted by 
using only one of the transitions from the initial state 𝑞0, i.e., 𝛿 𝑞0, 𝑤1𝑤1

𝑅 , 𝜆  
or 𝛿 𝑞0, 𝜆, 𝑤1𝑤1

𝑅  is not possible (because the length of 𝑤2). Therefore there 
exists either 𝑞 ∈  𝛿 𝑞0, 𝑤3𝑤3

𝑅 , 𝜆 , 𝑤3 ∈ 𝑉∗ or 𝛿 𝑞0, 𝜆, 𝑤3𝑤3
𝑅 ,𝑤3 ∈ 𝑉∗ such 

that 𝑤2 can be accepted by using transition(s) from q. Since the word 𝑤3𝑤3
𝑅 

should be in the language 𝐿 (i.e., it is an even palindrome) and the length of 
𝑏𝑏𝑏 and 𝑎𝑎𝑎 patterns in 𝑤2 is odd, the only even palindrome proper prefix 
(suffix) of 𝑤2 is 𝑏𝑏. Thus 𝑤3𝑤3

𝑅 = 𝑏𝑏 must hold. 

 

 
Incomparability results 



Without loss of generality, assume that there exists 𝑞 ∈  𝛿 𝑞0, 𝑏𝑏, 𝜆  in the 

automaton. By continuing the process, we must have at least one of 𝑞′ ∈
 𝛿 𝑞, 𝑤4, 𝜆  or 𝑞′ ∈  𝛿 𝑞, 𝜆, 𝑤4  such that 𝑏𝑏𝑤4 ∈ 𝐿 and 𝑤4 is either the prefix 

or the suffix of the remaining unread part of word  𝑤2 , i.e., 

𝑏𝑎3 𝑏3𝑎3 𝑚−1 𝑎3𝑏3 𝑚, with length less than 𝑚. Clearly, 𝑤4 cannot be a 

prefix, and it can be only the suffix 𝑏𝑏. Thus, in 𝑞′ the unprocessed part of the 

input is 𝑏𝑎3 𝑏3𝑎3 𝑚−1 𝑎3𝑏3 𝑚−1𝑎3𝑏. Now the automaton must read a prefix 

or a suffix of this word, let us say 𝑤5 such that 𝑏𝑏𝑤5𝑏𝑏 ∈ 𝐿, that is 𝑤5 itself is 

an even palindrome, and its length is at most 𝑟 < 𝑚. But such a word does not 

exist, the length of 𝑏𝑏𝑏 and 𝑎𝑎𝑎 patterns in the unread part is odd and their 

length is more than 𝑟. It contradicts to accept the language 𝐿 by any FS 

sensing 5′ → 3′ WK automaton.  

The language 𝐿 = 𝑎𝑛𝑏𝑚 𝑛 = 𝑚 𝑜𝑟 𝑛 = 𝑚 + 1  proves the other direction 

which is accepted by an F1 sensing 5′ → 3′ WK automaton as it is shown in 

Figure 8 . 

 

 

 



 

 

 

 

 

Figure 10: A sensing 5′ → 3′ WK automaton of type N accepting the language 

of even palindromes 𝐿 = 𝑤𝑤𝑅 𝑤 ∈ 𝑎, 𝑏 ∗ . 

 

 



Theorem 8. The class of languages that can be accepted by NS sensing 

5′ → 3′ WK automata is incomparable with the language class accepted by F1 

sensing 5′ → 3′ WK automata. 

Proof. Consider the language 𝐿 = 𝑎3𝑛𝑏2𝑚 𝑛, 𝑚 ≥ 0 . It can be accepted by 

NS sensing 5′ → 3′ WK automaton (Figure 3). Although, according to Lemma 

1, 𝑤𝑠 is 𝑏𝑏 and it cannot be the shortest nonempty accepted word for an F1 

sensing 5′ → 3′ WK automaton. Therefore, this language cannot be accepted 

by an F1 sensing 5′ → 3′ WK automaton. 

Now let us consider the language 𝐿 = 𝑎𝑛𝑏𝑚 𝑛 = 𝑚 𝑜𝑟 𝑛 = 𝑚 + 1  which 

can be accepted by an F1 sensing 5′ → 3′ WK automaton (Figure 9). By 

proposition 1, it is already shown that 𝐿 cannot be accepted by N sensing 

5′ → 3′  WK automata and obviously by any NS sensing 5′ → 3′  WK 

automata, neither. 

 

 



Table 1: Some specific languages belonging to language classes accepted by 

various classes of WK automata. Reference to figures indicate a specific 

automaton that accept the given language. × indicates that the language cannot 

be accepted by the automata type of the specific column. Trivial inclusion are 

shown, e.g., in the first line N1in, e.g., column F means that every N1 

automaton is, in fact, also an F automaton. 

 

Languages N1 NS N F1 FS F WK 

𝑎𝑛𝑏𝑚 𝑛, 𝑚 ≥ 0  + N1 N1 N1 N1 N1 N1 

𝑎3𝑛𝑏2𝑚 𝑛, 𝑚 ≥ 0  × + NS NS NS NS NS 

𝑤𝑤𝑅 𝑤 ∈ 𝑎, 𝑏 ∗  × × + × × N N 

𝑎𝑛𝑏𝑚 𝑛 = 𝑚 𝑜𝑟 𝑛 = 𝑚 + 1  × × × + F1 F1 F1 

𝑎𝑎 𝑛 𝑏𝑏 𝑚 𝑚 ≤ 𝑛 ≤ 𝑚 + 1, 𝑚 ≥ 0  × × × × + FS FS 

𝑎2𝑛+𝑞𝑐4𝑚𝑏2𝑞+𝑛 𝑛, 𝑞 ≥ 0, 𝑚 ∈ 0,1  × × × × × + F 

𝑎𝑛𝑐𝑏𝑛𝑐 𝑛 ≥ 1  × × × × × × + 



Figure 11: Hierarchy of sensing 5′ → 3′ WK  finite automata languages in a 

Hasse diagram. 

 



Deterministic sensing 5′ →3′WK automata 

Now, we consider the deterministic variants of these 

automata. If at each possible configuration at most one 

transition is possible, then a WK automaton is 

deterministic. We note that for the traditional WK 

automata reading both stands completely, there are various 

definitions of determinism (related also to the used 

complimentary relation), but for our automata there is only 

one of them applicable. 

 

2detLIN is a proper of subset of LIN. 



Theorem. The language class that can be accepted by deterministic 

𝑵 sensing 5′ → 3′  WK automata is properly included in the 

language class accepted by deterministic 𝑵𝑺 sensing 5′ →3′ WK 

automata. 

Proof. We can prove it easily by the definition. Let us consider the 

language 𝐿 =  { 𝑎𝑏 𝑛|𝑛 ≥ 0} . The word 𝑤𝑠  is ab and in NS 

sensing 5′ →3′WK automaton it can be accepted by one of the 

transitions: (𝜆, 𝑎𝑏) or (𝑎𝑏, 𝜆). By Lemma 2, 𝑤𝑠  cannot be the 

shortest nonempty word accepted by an N1 sensing 5′ →3′ WK 

automaton. In the other hand, the language L, as shown in Figure 9, 

can be accepted by an NS sensing 5′ →3′WK automaton. 

A deterministic sensing 5′ →3′ WK 

automaton of type NS accepting the 

language { 𝑎𝑏 𝑛|𝑛 ≥ 0}. 

 

Remember: NS contains only regular. 



A non regular example for determinsitic no state 

automaton: 

 

A deterministic sensing 5′ →3′WK automaton of type N 

accepting the language {𝑎2𝑛𝑏2𝑛|𝑛 ≥ 0}. 



Theorem. The language class that can be accepted by deterministic 

𝑭𝟏  sensing 5′ → 3′ WK automata is properly included in the 

language class accepted by deterministic 𝑭𝑺 sensing 5′ →3′ WK 

automata. 

Proof. Let us consider the language 𝐿 =  { 𝑎𝑏 𝑛𝑐2𝑚|𝑛 ≥ 0, 𝑚 ∈
{0, 1}}. The word 𝑤𝑠 of this language is ab or cc which can be 

accepted by (𝜆, 𝑎𝑏), (𝑎𝑏, 𝜆), (𝑐𝑐, 𝜆) or (𝜆, 𝑐𝑐) in FS sensing 5′ →3′ 

WK automaton. According to Lemma 2, 𝑤𝑠 cannot be the shortest 

nonempty accepted word in F1 sensing 5′ →3′ WK automaton. But 

L can be accepted by FS sensing 5′ →3′WK automata. 

A deterministic sensing 5′ →3′ WK automaton of type FS accepting 

the language { 𝑎𝑏 𝑛𝑐2𝑚|𝑛 ≥ 0, 𝑚 ∈  {0, 1}} 



Theorem. The class of languages that can be accepted by 

deterministic 𝑭𝑺 sensing 5′ →3′ WK automata is properly 

included in the language class of deterministic 𝑭 sensing 

5′ →3′ WK automata. 

Proof. The inclusion is obvious by the definition. Now, we 

present the language 𝐿 =  {𝑎2𝑛𝑐5𝑞𝑏2𝑛|𝑛 ≥ 0, 𝑞 ∈ {0, 1}} . 

Suppose that this language is accepted by FS sensing 5′ →3′ 

WK automaton. Therefore, 𝑤𝑠  is accepted by one of the 

transitions: (𝜆, 𝑎𝑎𝑏𝑏) or (𝑎𝑎𝑏𝑏, 𝜆). If this transition is a loop, 

then the automaton can accept all the words of { 𝑎𝑎𝑏𝑏 𝑛|𝑛 ≥
0} which is not a subset of L. Therefore, automaton should 

has one of transitions from initial state to another state.  



In this case, it is impossible for the machine to accept the 

word(s) which contains 𝑎2𝑛𝑏2𝑛 where 𝑛 ≥ 2 after reading 

(𝜆, 𝑎𝑎𝑏𝑏)  or (𝑎𝑎𝑏𝑏, 𝜆)  transitions. Indeed, in each 

transition by considering position of heads, the automaton 

can only read and accept from one of the blocks 𝑎2𝑛 or 

𝑏2𝑛. Since the automaton is deterministic, it is impossible 

to have another transition from initial state to other states 

by reading any a and b letters by the first and second 

heads, respectively. Therefore, L cannot be accepted by 

any FS sensing 5′ → 3′ WK automata, but it can be 

accepted by. F sensing 5′ →3′WK automata. 

Figure 12: A deterministic sensing 5′ →3′ WK automaton of type F 

accepting the language {𝑎2𝑛𝑐5𝑞𝑏2𝑛|𝑛 ≥ 0, 𝑞 ∈ {0, 1}} 



 A linear grammar is k-rated linear  
                          (for a non-negative rational value of k) 
if for every production with nonterminal on the right 
side, e.g., A  uBv the ratio |v| / |u| = k. 

 

 k=0: regular 

 k=1: even linear (e.g., palindromes, anbn)   
   both-head stepping 5’-3’ WK automata 

 

 Fix-rated linear languages are in 2detLIN. 

Even linear and fix-rated linear 
languages 



 Note: 

 2detLIN  is incomaparble with detLIN (defined by 
determinsitic one-turn automata) 

 

 The language of palindromes is in 2detLIN, 

 

 {an bn}   {an c b2n}  is in detLIN... 



Thank you! 

 



The end. 


