
5’-3’ WK FINITE and PUSHDOWN 
AUTOMATA 

Benedek Nagy 
Eastern Mediterranean University, Famagusta 

nbenedek.inf@gmail.com 

 

Brno, 2017 

mailto:nbenedek.inf@gmail.com


Outline of the talk 

• Chomsky hierarchy   (preliminaries) 

– 5’-3’ WK finite automata 

– Pushdown automata 

• 5’-3’ WK pushdown automata 

– Definition 

– Examples 

– Some results (semi-linearity, pumping property) 

• Concluding remarks 
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NEW CLASSES (DET-NonDET) 



Motivation 

• Context-free grammars/languages are popular 
– Theory well-developed 

– Several applications 

• Non context-free 
– In several cases, CF is not enough 

– CS is to large (very complex languages are included) 

• AIM: larger than CF, but moderate complexity 

• Regular-linear  
(finite automata – 2-head finite automata) 
analogy 



Finite automata 

• (Q,s,V,F,d) 
Q: set of states, s: initial state (in Q) 
V: input alphabet (terminal alphabet in 
grammars) 
F: set of final states (subset of Q) 
d: transition function  

• Deterministic:           d:QxVQ 

• Non-deterministic:    d:Qx(VU{})2Q  
( is also used in the role of the empty word)  

 



Linear languages 

• Definition by grammar: 
 

• Normal form for the grammar: 

 

• Even-linear languages (normal form): 

 



Linear languages – parallelism in automata 

• Finite automata 
– With 2 heads: reading the word from the 

beginning and from its end, parallely: 

(Q,s,V,d,F)  non-deterministic version: 

d:Qx(VU{})x(VU{})2Q   

(deterministic version, if at most 1 transition 
allowed in any configuration, i.e., QxV* )  

 



Linear languages – 2-head finite 
automata 



2-head automata - results 

• the non-deterministic 2-head automata accept 
exactly the linear languages. 

• for each 2-head automaton there is an 
equivalent one (with 2-head), in which in each 
step (transaction) only one of the heads are 
moving. (normal form)  

• The deterministic version of the 2-head 
automata is weaker : new class: 2detLin 



 Examples (two possible notions) 

•Palindromes: 

 

 

 

 

 

•   



Pushdown automata 
(input) tape, finite control, stack (memory) 

(nondeterministic) : 

• Σ tapealphabet, Q set of states, q0 initial state 

•  stackalphabet, Z0 initial symbol in the stack 

•  transition function: (T{})xQx)  2*xQ    (finite) 
 

Configuration: (v,q,z)  

• v the remaining part of the input word 

• z the contents of the stack; q actual state 

• initial: (w, q0,Z0), accepting: (,q, )  OR (,qf, z)  



2-Head Pushdown Automata (2hpda) 

• The ordered septuple M = (Q,,, s,Z,F) is a  
2-head pushdown automaton (2hpda), where  

– Q is the finite set of states,  

– s  Q is the initial state,  

– F  Q is the set of final (or accepting) states,  

– , are the input and stack alphabets with  

– the initial stack symbol Z  .  

– The transition function  is defined as a mapping 
from Qx({})2x into finite subsets of Q x *. 



How 2hpda works 



First results 

• The class of languages that are accepted by 
empty-stack by some 2hpda and the class of 
languages that are accepted by nal state by 
some 2hpda are the same. 

• Notation: 

•   



Technical results – normal forms 

1. A 2hpda is in head normal form if in each 
transition at most one of its heads moves. 

2. A 2hpda is in stack normal form if each of its 
transitions is 

 

 

3. A 2hpda is in strong normal form if it is in both 
head normal form and stack normal form. 



 

 

• Now, to underline the efficiency of 2hpda’s 
some interesting examples are presented. 

 

• But, first, we recall the concept of  
Mildly context-sensitive language classes 



Mildly context-sensitive languages 

• From motivation of formal linguistics 

• Mildly context-sensitive classes of languages 

– Containing all CF languages 

– Containing only semi-linear languages 

– Polynomial word problem 

– They contain the 3 linguistically important non 
context-free languages: 



Mildly CS examples 

• aaabbbccc s    Z 
•   aabbbcc  s          XZ 
•     abbbc  s        XXZ 
•       bbb  s     XXXZ 
•         bb  p       XXZ 
•            b  p         XZ 
•            -        p           Z 
•            -  q  -     ACCEPT 

determinsitic 



Mildly CS examples 

• The language of triple (multiple) agreement 

 

 

   is accepted. 



Mildly CS examples 

• The language of crossed dependencies 
 
 
is recognized. 

determinsitic 



Mildly CS examples 

• The accepted language is the copy language, 
that is 

 

 

• Observe: non-deterministic. 



Mildly CS examples 

• Marked copy is accepted: 

determinsitic 



Properties of 2HPDA Languages 

• Each 2hpda language is semi-linear. 

 



Properties of 2HPDA Languages 

• Each 2hpda language is semi-linear. 

 

 

 

 

 

• HINT: 2hpda  letter equivalent PDA 

 



The place in the hierarchy 



Closure properties 

The language class accepted by the class of  
2-head pushdown automata is closed under 
operations  

• union,  

• reversal and  

• homomorphisms. 



NON-Closure properties 

We need some tools… 



Pumping of 2hpda languages 

• Let L be a 2hpda language. If L is infinite, then 
there is a value n  N such that each word  
w  L with |w| > n can be written in the form  
w = u0v1u1v2u2v3u3v4u4 such that |v1v2v3v4| > 0 
and for each r  N  



CF-composability 

• Let L be a 2hpda language. Then, 
•  

following properties 



NON-Closure properties 

The language class accepted by the class of  
2-head pushdown automata is NOT closed 
under operations  

• intersection,  

• complement (union-yes,intersection-noNO)  

• concatenation 

• and square, Kleene-star, Kleene-plus. 

 



Some relations 

New type of automata: 

Finite Automata  Pushdown Automata 

 

2-head finite automata 2hpda 

 



Some relations 

New type of automata: 

Finite Automata  Pushdown Automata 

               Regular     CF 

2-head finite automata 2hpda 

               Linear                      NEW CLASS of LANG. 

 



NEW CLASS of LANG. 

Semi-linear, all CF lang. are included 

Important mildly CS languages 

Pumping and closure properties 

 

Parsing (in P, actually, n5) 

Special subclasses of 5’-3’ WK-PDA: 
deterministic, stateless,  
 



• to introduce the determinsistic variants, 
acceptance with final states will be more 
important 

 

• We have seen some examples already: marked 
copy, multiple agreement, cross 
dependencies.  

 



2hPDA and control PDA 



Properties of det2HPDA 

• A deterministic PDA may run into loops during 
input processing, if -movements are allowed. 
The PDA may stuck in an infinite loop of  -
movements either leaving unprocessed letters on 
the input tape, or it may successfully read the 
input word, and then get into an infinite loop. 
These loops can be eliminated. 

• We have proven similar result for det2hPDA: 

• Each det2hpda is equivalent with a loop-free 
det2hpda. 

 



Properties of det2HPDA Languages 

• The deterministic 2hPDA language family contains 
the deterministic context-free language family and 
also det.LIN and 2detLIN families. 

• Based on loop elimination, the deterministic 2hPDA 
language family is closed under complement. 

• This class is incomparable with LIN and CF. 

• Anti-closure properties: it is not closed under union, 
intersection, concatenation, Kleene-star.  

• Closure: it is closed under reversal (detCF is NOT!); 
closed under intersection with regular languages 

 



Stateless / simple variants 

• Every language of the class of 5’ – 3’ WK pda 
languages can be accepted by a stateless (N)  
5’ – 3’ WK pda. 

 

• Every language of the class of 5’ – 3’ WK pda 
languages can be accepted by a 5’ – 3’ WK pda 
with the property that at most one of the 
heads read some symbol(s) in each transition. 
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