
5’-3’ WK FINITE and PUSHDOWN
AUTOMATA

Benedek Nagy
Eastern Mediterranean University, Famagusta

nbenedek.inf@gmail.com

Brno, 2017

mailto:nbenedek.inf@gmail.com

Outline of the talk

• Chomsky hierarchy (preliminaries)

– 5’-3’ WK finite automata

– Pushdown automata

• 5’-3’ WK pushdown automata

– Definition

– Examples

– Some results (semi-linearity, pumping property)

• Concluding remarks

Recursively
Enumerable

Context-Sensitive

An extended Chomsky hierarchy

 Finite

 Union-free regular

 Regular

 Even/Fix-rated linear

 Linear

 Context-free

 Permutation

 Context-sensitive

 Recursively enumerable

Permutation

Context-Free

Linear

Even-Linear

Regular

Finite
U-free

Finite automata

5’-3’ WK finite
automata
Pushdown
automata

LBA,
 Turing machine

Recursively
Enumerable

Context-Sensitive

Automata for the Chomsky hierarchy

 Regular

 Linear

 Context-free



 Context-sensitive

 Recursively enumerable

Context-Free

Linear

Regular

Finite automata

2-head finite
automata
Pushdown
automata

LBA,
 Turing machine

NEW CLASSES (DET-NonDET)

Motivation

• Context-free grammars/languages are popular
– Theory well-developed

– Several applications

• Non context-free
– In several cases, CF is not enough

– CS is to large (very complex languages are included)

• AIM: larger than CF, but moderate complexity

• Regular-linear
(finite automata – 2-head finite automata)
analogy

Finite automata

• (Q,s,V,F,d)
Q: set of states, s: initial state (in Q)
V: input alphabet (terminal alphabet in
grammars)
F: set of final states (subset of Q)
d: transition function

• Deterministic: d:QxVQ

• Non-deterministic: d:Qx(VU{})2Q
( is also used in the role of the empty word)

Linear languages

• Definition by grammar:

• Normal form for the grammar:

• Even-linear languages (normal form):

Linear languages – parallelism in automata

• Finite automata
– With 2 heads: reading the word from the

beginning and from its end, parallely:

(Q,s,V,d,F) non-deterministic version:

d:Qx(VU{})x(VU{})2Q

(deterministic version, if at most 1 transition
allowed in any configuration, i.e., QxV*)

Linear languages – 2-head finite
automata

2-head automata - results

• the non-deterministic 2-head automata accept
exactly the linear languages.

• for each 2-head automaton there is an
equivalent one (with 2-head), in which in each
step (transaction) only one of the heads are
moving. (normal form)

• The deterministic version of the 2-head
automata is weaker : new class: 2detLin

 Examples (two possible notions)

•Palindromes:

•

Pushdown automata
(input) tape, finite control, stack (memory)

(nondeterministic) :

• Σ tapealphabet, Q set of states, q0 initial state

•  stackalphabet, Z0 initial symbol in the stack

•  transition function: (T{})xQx)  2*xQ (finite)

Configuration: (v,q,z)

• v the remaining part of the input word

• z the contents of the stack; q actual state

• initial: (w, q0,Z0), accepting: (,q, ) OR (,qf, z)

2-Head Pushdown Automata (2hpda)

• The ordered septuple M = (Q,,, s,Z,F) is a
2-head pushdown automaton (2hpda), where

– Q is the finite set of states,

– s  Q is the initial state,

– F  Q is the set of final (or accepting) states,

– , are the input and stack alphabets with

– the initial stack symbol Z  .

– The transition function  is defined as a mapping
from Qx({})2x into finite subsets of Q x *.

How 2hpda works

First results

• The class of languages that are accepted by
empty-stack by some 2hpda and the class of
languages that are accepted by nal state by
some 2hpda are the same.

• Notation:

•

Technical results – normal forms

1. A 2hpda is in head normal form if in each
transition at most one of its heads moves.

2. A 2hpda is in stack normal form if each of its
transitions is

3. A 2hpda is in strong normal form if it is in both
head normal form and stack normal form.

• Now, to underline the efficiency of 2hpda’s
some interesting examples are presented.

• But, first, we recall the concept of
Mildly context-sensitive language classes

Mildly context-sensitive languages

• From motivation of formal linguistics

• Mildly context-sensitive classes of languages

– Containing all CF languages

– Containing only semi-linear languages

– Polynomial word problem

– They contain the 3 linguistically important non
context-free languages:

Mildly CS examples

• aaabbbccc s Z
• aabbbcc s XZ
• abbbc s XXZ
• bbb s XXXZ
• bb p XXZ
• b p XZ
• - p Z
• - q - ACCEPT

determinsitic

Mildly CS examples

• The language of triple (multiple) agreement

 is accepted.

Mildly CS examples

• The language of crossed dependencies

is recognized.

determinsitic

Mildly CS examples

• The accepted language is the copy language,
that is

• Observe: non-deterministic.

Mildly CS examples

• Marked copy is accepted:

determinsitic

Properties of 2HPDA Languages

• Each 2hpda language is semi-linear.

Properties of 2HPDA Languages

• Each 2hpda language is semi-linear.

• HINT: 2hpda  letter equivalent PDA

The place in the hierarchy

Closure properties

The language class accepted by the class of
2-head pushdown automata is closed under
operations

• union,

• reversal and

• homomorphisms.

NON-Closure properties

We need some tools…

Pumping of 2hpda languages

• Let L be a 2hpda language. If L is infinite, then
there is a value n  N such that each word
w  L with |w| > n can be written in the form
w = u0v1u1v2u2v3u3v4u4 such that |v1v2v3v4| > 0
and for each r  N

CF-composability

• Let L be a 2hpda language. Then,
•

following properties

NON-Closure properties

The language class accepted by the class of
2-head pushdown automata is NOT closed
under operations

• intersection,

• complement (union-yes,intersection-noNO)

• concatenation

• and square, Kleene-star, Kleene-plus.

Some relations

New type of automata:

Finite Automata Pushdown Automata

2-head finite automata 2hpda

Some relations

New type of automata:

Finite Automata Pushdown Automata

 Regular CF

2-head finite automata 2hpda

 Linear NEW CLASS of LANG.

NEW CLASS of LANG.

Semi-linear, all CF lang. are included

Important mildly CS languages

Pumping and closure properties

Parsing (in P, actually, n5)

Special subclasses of 5’-3’ WK-PDA:
deterministic, stateless,

• to introduce the determinsistic variants,
acceptance with final states will be more
important

• We have seen some examples already: marked
copy, multiple agreement, cross
dependencies.

2hPDA and control PDA

Properties of det2HPDA

• A deterministic PDA may run into loops during
input processing, if -movements are allowed.
The PDA may stuck in an infinite loop of  -
movements either leaving unprocessed letters on
the input tape, or it may successfully read the
input word, and then get into an infinite loop.
These loops can be eliminated.

• We have proven similar result for det2hPDA:

• Each det2hpda is equivalent with a loop-free
det2hpda.

Properties of det2HPDA Languages

• The deterministic 2hPDA language family contains
the deterministic context-free language family and
also det.LIN and 2detLIN families.

• Based on loop elimination, the deterministic 2hPDA
language family is closed under complement.

• This class is incomparable with LIN and CF.

• Anti-closure properties: it is not closed under union,
intersection, concatenation, Kleene-star.

• Closure: it is closed under reversal (detCF is NOT!);
closed under intersection with regular languages

Stateless / simple variants

• Every language of the class of 5’ – 3’ WK pda
languages can be accepted by a stateless (N)
5’ – 3’ WK pda.

• Every language of the class of 5’ – 3’ WK pda
languages can be accepted by a 5’ – 3’ WK pda
with the property that at most one of the
heads read some symbol(s) in each transition.

Thank you!
1. B. Nagy: On 5'→3' sensing Watson-Crick finite automata (2007), DNA13, The 13th International Meeting on DNA

Computing, Memphis, Tennessee, USA, 327-336. (preproceedings)
2. B. Nagy: On 5'→3' sensing Watson-Crick finite automata, DNA 13, Lecture Notes in Computer Science - LNCS 4848

(2008), 256-262.
3. On a hierarchy of 5'→3' sensing WK finite automata languages, CiE 2009, Computability in Europe 2009: Mathematical

Theory and Computational Practice, Abstract Booklet, University of Heidelberg, Germany, 266-275.
4. with. P. Leupold, 5'→3' Watson-Crick automata with several runs, Workshop on Non-Classical Models of Automata and

Applications (NCMA), (satellite event of the International Symposium on Fundamentals of Computation Theory - FCT),
Wroclaw, Poland, (2009) 167-180.

5. 5'→3' Watson-Crick automata with several runs, Fundamenta Informaticae 104 (2010) 71-91. (co-author: Peter Leupold)
6. Benedek Nagy: 5' → 3' Sensing Watson-Crick Finite Automata, Sequence and Genome Analysis II – Methods and

Applications, iConcept Press (2010), 39-56.
7. with O. Egecioglu and L. Hegedüs: Stateless Multicounter 5'→3' Watson-Crick Automata, BIC-TA 2010, Fifth IEEE

International Conference on Bio-Inspired Computing: Theories and Applications, Liverpool, UK, (Volume II), 1599-1606.
8. Hierarchy Results On Stateless Multicounter 5' → 3' Watson-Crick Automata, IWANN 2011, LNCS 6691 (2011), 465-472.

(co-authors: Ö. Egecioglu, L. Hegedüs)
9. Hierarchies of Stateless Multicounter 5' → 3' Watson-Crick Automata Languages, Fundamenta Informaticae - FI 110

(2011), 111-123. (co-authors: Ö. Egecioglu, L. Hegedüs)
10.Benedek Nagy: A class of 2-head finite automata for linear languages, Triangle 8 (Languages. Mathematical Approaches)

(2012), 89-99.
11.László Hegedüs, Benedek Nagy, Ömer Egecioglu: Stateless Multicounter

5' → 3' Watson-Crick Automata: The Deterministic Case, Natural Computing 11 (2012), 361-368.
12.B. NAGY, On a hierarchy of 5’  3’ sensing Watson-Crick finite automata languages. Journal of Logic and Computation 23

(2013), 855-872.
13.Nagy Benedek: DNS számítógépek és formális modelljeik, Typotex, Budapest, 2014. (DNA computing and its formal

models, in Hungarian)
14.Benedek Nagy: A Family Of Two-Head Pushdown Automata, NCMA 2015: 7th Workshop on Non Classical Models of

Automata and Applications, Porto, Portugal, 177-191.
15.Dávid Angyal, Benedek Nagy: An extension of the LR parsing algorithm for two-head pushdown automata. NCMA 2017:

71-86

