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Motivation

Context-free grammars/languages are popular
— Theory well-developed

— Several applications

Non context-free

— In several cases, CF is not enough

— CS is to large (very complex languages are included)
AIM: larger than CF, but moderate complexity

Regular-linear
(finite automata — 2-head finite automata)
analogy



Finite automata

* (Q,s,V,F,d)
Q: set of states, s: initial state (in Q)

V: input alphabet (terminal alphabet in
grammars)

F: set of final states (subset of Q)
d: transition function

e Deterministic: d:QxV—=>Q

* Non-deterministic: d:Qx(VU{A})—>2%
(€ is also used in the role of the empty word)



Linear languages

e Definition by grammar:
A — v, A — vBw
* Normal form for the grammar:

A—aB,A— Ba,A—a (A Be N,acl)

* Even-linear languages (normal form):

A—aBbA—a A— )\



Linear languages — parallelism in automata

* Finite automata

— With 2 heads: reading the word from the
beginning and from its end, parallely:

(Q,s,V,d,F) non-deterministic version:
d:Qx(VU{A}Dx(VU{AL})—>2°

(deterministic version, if at most 1 transition
allowed in any configuration, i.e., QxV* )



Linear languages — 2-head finite

automata
<(-r:) S, I’;rr d‘r F>
d: Qx (VUle))x (VU{e}) — 29
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2-head automata - results

* the non-deterministic 2-head automata accept
exactly the linear languages.

* for each 2-head automaton there is an
equivalent one (with 2-head), in which in each
step (transaction) only one of the heads are
moving. (normal form)

e The deterministic version of the 2-head
automata is weaker : new class: 2detLin



Examples (two possible notions)

l ePalindromes:

: (a: | b) O - O _}!} O
)

l(a.b

T T - -
» e a"b" (n > 1)



Pushdown automata
(input) tape, finite control, stack (memory)
(nondeterministic) :
* 2 tapealphabet, Q set of states, q, initial state
| stackalphabet, Z, initial symbol in the stack
 J transition function: (TU{A})xQxI") = 2I7xQ (finite)

Configuration: (v,q,z)

* vthe remaining part of the input word

e z the contents of the stack; g actual state

* initial: (w, q,,Z,), accepting: (A,q, A) OR (A,q;, 2)



2-Head Pushdown Automata (2hpda)

 The ordered septuple M = (Q,2,1,05,Z,F) is a
2-head pushdown automaton (2hpda), where
— Q is the finite set of states,

— s € Q is the initial state,

— F < Qs the set of final (or accepting) states,
— 2,I" are the input and stack alphabets with
— the initial stack symbol Z € T".

— The transition function 0 is defined as a mapping
from Qx(ZU{A})?xI" into finite subsets of Q x '*.



How 2hpda works

A konfiguration] of a 2hpda is a triplet (¢, v,y) containing the actual state ¢, the unread (un-
processed) part v of the input and the actual content y of the stack (the top element is written
as the first symbol of y.) The initial configuration of M on input w is (s, w, Z). The transitions
of M are defined between pairs of its configurations: (q,avb, Xy) = (¢',v,xy), where ¢,¢" € Q,
a,be XU{A,ve X y,rel™and (¢,x) € 6(q,a,b, X). The reflexive and transitive closure
of this relation is denoted by F* (as usual).

M accepts the input w € 3* by a final statelif (s,w,Z) =" (¢, \,y) witha ge F (y € I'"). The

language L¢(M) accepted by M by final state contains exactly those words that M accepts by
a final state. Further, let £, denote the family of languages that are accepted by some 2hpda
by final state.

The input w € X* is accepted by M by empty stack|if (s,w,Z) F* (g, A\, A) with any ¢ € Q.

Consequently, the set of words accepted in this way form the language L.(M) accepted (or
recognized) by M by empty stack. The class of languages for that there are some 2hpda that
accept them by empty stack is denoted by L..



First results

* The class of languages that are accepted by
empty-stack by some 2hpda and the class of

languages that are accepted by nal state by
some 2hpda are the same.

* Notation: [, .4, Instead of L, and L.
o The class Loppaa contains all context-free languages.



Technical results — normal forms

1. A 2hpdaisin head normal form if in each
transition at most one of its heads moves.

2. A 2hpdais in stack normal form if each of its

transitions is
e cither a clear pop, i.c., it is of type (p, \) € 6(q,a,0,X) (p,qg € Q, a,b € ZU{\}, X € T');

e or a push with exactly one stack symbol, i.c., (p,Y X) € 6(q,a,0,X) (p,q € Q, a,b €
SU{AL X,V eT):;
e or the stack does not change: (p, X) € 6(q,a,b, X) (p,qg € Q, a,be TU{\}, X €T).

3. A2hpdaisin strong normal form if it is in both
head normal form and stack normal form.



* Now, to underline the efficiency of 2hpda’s
some interesting examples are presented.

e But, first, we recall the concept of
Mildly context-sensitive language classes



Mildly context-sensitive languages

* From motivation of formal linguistics

* Mildly context-sensitive classes of languages
— Containing all CF languages
— Containing only semi-linear languages
— Polynomial word problem

— They contain the 3 linguistically important non
context-free languages:



Mildly CS examples

det
Example 4.1 Let M = ({s,p,q},{a.b,c},{Z.X}.,0,8,2,{q}) beeaeﬂ?)ga uhere 4 is defined
as follows:

(s, XZ)eds,a,c,Z) (s,XX)ed(s,a,¢,X) (p,A)€d(s,b A\ X)

(0N €0(p.bAX)  (0.M) €3(p. AN 2).

* aaabbbccc S /

* aabbbcc S XZ

* abbbc S XXZ

. 0bb S XXXZ

. o]¢ P XXZ

. b o XZ

. - D 7

. - q - ACCEPT



Mildly CS examples

Example 4.1 Let M = ({s,p,q},{a,b,c},{Z, X},0,8,Z,{q}) be a 2hpda, where § is defined
as follows:

(s, XZ)eds,a,c,Z) (s,XX)ed(s,a,¢,X) (p,A)€d(s,b A\ X)
(0. 0) €5(p.BAX) (0.0 € 5(p. AN 2).

* The language of triple (multiple) agreement

Lape = {a™0"c” | n > 0}

is accepted.



Mildly CS examples

Example 4.2 Let M = ({s,p,q,r},{a,b,c}, {Z, X}, 0,8, Z,{r}) | )%%t%rﬁ?)l(?agt\lxchered is defined

as follows:

(s, XZ)ed(s,a,\,Z) (s,XX)ed(s,a,\,X) (p,X)e€s,bd X)
(p, X) €d(p,b,d, X) (g, \) € 0(p, e, A\, X) (g, A\) € 0(q,c, A\, X)
(r,A) € 0(q, A\, N\, Z).

 The language of crossed dependencies

Lapea = {a™0™c*d™ | n,m > 0}

IS recognized.



Mildly CS examples

Example 4.3 Let M = ({s,p,q},{a,0},{Z, A, B},d,s,7Z,{q}) be a 2hpda, where § is defined
as follows:

s, AZ) € d(s,a. N\, Z) s, BZ) e d(s,b,\, Z) (s, AA) € i(s,a, A, A)

€ €2
(s,BA) € 0(s,0,\,A) (s,AB) €d(s,a.\,B) (s,BB) € d(s,0,\, B)
[(p A) € o(s, A\ A A) (p, B) € (s, \, A, B)] (p, A) €9(p, A\ a, A)

(p, A) € 0(p, A\, b, B) (g, \) € 0(p, M\, Z).

 The accepted language is the copy language,
that is

L ww T {’ZU w | w e {a? b} -|-} .

e Observe: non-deterministic.




Mildly CS examples

Example 4.4 Let M = ({s,p,q},{a,b,c},{Z, A, B},0,s, Z,{q}) | ()jeegeﬁm)ﬁsaltlghered is defined
as follows:

(s,AZ) € 0(s,a,\. Z) (s,BZ)e€d(s,b.\,7Z) (s,AA) €d(s,a,\ A)
(s,BA) € 6(s.0.\,A) (s,AB) €d(s.a,\,B) (s,BB) €d(s,0,\.B)
(p, A) € 0(s, ¢, A\, A) (p,B) € 0(s, ¢, \, B) (p, A) € d(p, A\, a, A)
(p, \) € 0(p, A\, b, B) (g, \) € 0(p. A\ AN, Z).

Marked copy is accepted:

L wew { wecw

w e {a,b}"}.



Properties of 2HPDA Languages

 Each 2hpda language is semi-linear.

The Parikh image of a string w over an ordered alphabet {ai,...,ar} is the vector W(w) =
(my,...,my) of non-negative integers such that m; is the number of occurrences of a; in w.
The Parikh image of a language L is the set of vectors W(L) = {¥(w) | w € L}. Two languages
are letter equivalent if their Parikh images coincide.

A set of the form {ap+n10+- - -+ npmay, | n; >0 for j =1,2,...,m}, where ag, oy, ..., a, are
vectors of non-negative integers, is said to be a linear set. A semi-linear set is a finite union
of linear sets. A language is semi-linear if its Parikh image is semi-linear. It is well-known
[17] that the Parikh images of regular languages and Parikh images of context-free languages
coincide with semi-linear sets; but there are non semi-linear context-sensitive languages.



Properties of 2HPDA Languages

 Each 2hpda language is semi-linear.

The Parikh image of a string w over an ordered alphabet {ai,...,ar} is the vector W(w) =
(my,...,my) of non-negative integers such that m; is the number of occurrences of a; in w.
The Parikh image of a language L is the set of vectors W(L) = {¥(w) | w € L}. Two languages
are letter equivalent if their Parikh images coincide.

A set of the form {ap+n10+- - -+ npmay, | n; >0 for j =1,2,...,m}, where ag, oy, ..., a, are
vectors of non-negative integers, is said to be a linear set. A semi-linear set is a finite union
of linear sets. A language is semi-linear if its Parikh image is semi-linear. It is well-known
[17] that the Parikh images of regular languages and Parikh images of context-free languages
coincide with semi-linear sets; but there are non semi-linear context-sensitive languages.

* HINT: 2hpda - letter equivalent PDA



The place in the hierarchy

The class is Loppda Strictly between the context-free and context-sensitive classes.



Closure properties

The language class accepted by the class of

2-head pushdown automata is closed under
operations

* union,
* reversal and
* homomorphismes.



NON-Closure properties

We need some tools...



Pumping of 2hpda languages

* Let L be a 2hpda language. If L is infinite, then
there is a value n € N such that each word
w € L with |w| > n can be written in the form
W = uyV,U,V,U,VaUsv,u, such that |vov,vay, | >0
and for each r € N ugU] U1 V5 U205U3V U4 € L.



CF-composability

* Let L be a 2hpda language. Then,

there exist two context-free languages Ly and Lo with the
following properties
o cvery w € L can be factorized to w = uv, such that uw € Ly, v € Lo;
o for every word u € Ly there 1s a word v € Ly such that uv € L; and

e for every word v € Ly there is a word uw € Ly such that uv € L.



NON-Closure properties

The language class accepted by the class of
2-head pushdown automata is NOT closed
under operations

* |Intersection,

* complement (union-yes,intersection-no—=>NO)
* concatenation

* and square, Kleene-star, Kleene-plus.



Some relations

New type of automata:
Finite Automata —— Pushdown Automata

| |

2-head finite automata ——2hpda



Some relations

New type of automata:
Finite Automata Pushdown Automata
Regular CF
2-head finite automata 2hpda
Linear NEW CLASS of LANG.



NEW CLASS of LANG.

Semi-linear, all CF lang. are included
Important mildly CS languages
Pumping and closure properties

Parsing (in P, actually, n>)

Special subclasses of 5’-3" WK-PDA:
deterministic, stateless,



e to introduce the determinsistic variants,
acceptance with final states will be more
Important

 We have seen some examples already: marked
copy, multiple agreement, cross
dependencies.



2hPDA and control PDA

Definition 3.1 Let M = (Q.X.I',qo. L, F,0) be a 2hPDA in head normal form. Let ¥ :=
{(TlaeX}y U{d |aeX}. andlet M' = (Q.X'.T.q. L. F.0') be a (1h)PDA, where we define

0" as follows:

o et (¢'.s") € 0'(q. @, s), if and only if, (¢',s") € 6(q.a.\. s), where q.q' € Q, s, s €™

and a € X:

o et (¢'.s") € 0'(q. g s), if and only if. (¢',s") € 6(q. \,a.s), where q.¢ € Q, s, s €™
and a € X:

o lct (¢'.5") € d'(q. N\, s). if and only if. (¢'.s") € d(q.\. \.s), where q.¢' € ), s € T' and
she ™.

We call M' the control PDA of M.

Theorem 3.2 Let M = (Q. X, 1", qy, L, F.0) be a 2hPDA in head normal form, and let M’ =
(Q, %" T, qo, L, F.0") be its control PDA. Then M is deterministic, if and only if, both (i) and
(i1) hold.

(i) M’ is deterministic, and

(11) for every q € QQ and r € I', at most one of the following can be true:
(ii/a) Ja e X : 0 (q.a,r) #£0,
(ii/b) a e X : 0'(q. d.r) £,
fiife) &g A7) 0



Properties of det2HPDA

* A deterministic PDA may run into loops during
input processing, if A-movements are allowed.
The PDA may stuck in an infinite loop of A -
movements either leaving unprocessed letters on
the input tape, or it may successfully read the
input word, and then get into an infinite loop.
These loops can be eliminated.

* We have proven similar result for det2hPDA:

* Each det2hpda is equivalent with a loop-free
det2hpda.



Properties of det2HPDA Languages

The deterministic 2hPDA language family contains
the deterministic context-free language family and
also det.LIN and 2detLIN families.

Based on loop elimination, the deterministic 2hPDA
language family is closed under complement.

This class is incomparable with LIN and CF.

Anti-closure properties: it is not closed under union,
intersection, concatenation, Kleene-star.

Closure: it is closed under reversal (detCF is NOT!);
closed under intersection with regular languages



Stateless / simple variants

* Every language of the class of 5’ — 3" WK pda
languages can be accepted by a stateless (N)
5" —3" WK pda.

* Every language of the class of 5’ — 3" WK pda
languages can be accepted by a 5" — 3" WK pda
with the property that at most one of the
heads read some symbol(s) in each transition.
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