Tree automata techniques for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan)
florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr (chapters 1, 3, 7, 8)

Tree Automata Techniques and Applications

HUBERT COMON MAX DAUCHET RÉMI GILLERON FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LÖDING SOPHIE TISON MARC TOMMASI

Part I

Automata on Finite Ranked Trees

Terms in first order logic

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with an arity greater or equal to 0.

We denote Σ_i the set of symbols of arity *i*.

Example :

 $\{+:2,s:1,0:0\}, \{\wedge:2,\vee:2,\neg:1,\top,\bot:0\}.$

We also consider a countable set \mathcal{X} of variable symbols.

Terms

Definition : Term

The set of terms over the signature Σ and ${\cal X}$ is the smallest set ${\cal T}(\Sigma,{\cal X})$ such that:

- $\Sigma_0 \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,
- $\mathcal{X} \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,
- if $f \in \Sigma_n$ and if $t_1, \ldots, t_n \in \mathcal{T}(\Sigma, \mathcal{X})$, then $f(t_1, \ldots, t_n) \in \mathcal{T}(\Sigma, \mathcal{X})$.

The set of ground terms (terms without variables, i.e. $\mathcal{T}(\Sigma, \emptyset)$) is denoted $\mathcal{T}(\Sigma)$.

Example :

$$x, \neg(x), \land \bigl(\lor (x, \neg(y)), \neg(x) \bigr).$$

A term where each variable appears at most once is called linear. A term without variable is called ground.

Depth h(t): $h(a) = h(x) = 0 \text{ if } a \in \Sigma_0, x \in \mathcal{X},$ $h(f(t_1, \dots, t_n)) = \max\{h(t_1), \dots, h(t_n)\} + 1.$

Positions

A term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ can also be seen as a function from the set of its positions $\mathcal{P}os(t)$ into $\Sigma \cup \mathcal{X}$.

The empty position (root) is denoted ε .

 $\mathcal{P}os(t)$ is a subset of \mathbb{N}^* satisfying the following properties:

- $\mathcal{P}os(t)$ is closed under prefix,
- ▶ for all $p \in \mathcal{P}os(t)$ such that $t(p) \in \Sigma_n$ $(n \ge 1)$, $\{pj \in \mathcal{P}os(t) \mid j \in \mathbb{N}\} = \{p1, ..., pn\}$,
- every $p \in \mathcal{P}os(t)$ such that $t(p) \in \Sigma_0 \cup \mathcal{X}$ is maximal in $\mathcal{P}os(t)$ for the prefix ordering.

The size of t is defined by $||t|| = |\mathcal{P}os(t)|$.

Subterm $t|_p$ at position $p \in \mathcal{P}os(t)$:

•
$$t|_{\varepsilon} = t$$
,

•
$$f(t_1,\ldots,t_n)|_{ip}=t_i|_p$$
.

The replacement in t of $t|_p$ by s is denoted $t[s]_p$.

Positions (example)

Example :

$$\begin{split} t &= \wedge (\wedge (x, \vee (x, \neg (y))), \neg (x)), \\ t|_{11} &= x, \ t|_{12} = \vee (x, \neg (y)), \ t|_2 = \neg (x), \\ t[\neg (y)]_{11} &= \wedge (\wedge (\neg (y), \vee (x, \neg (y))), \neg (x)). \end{split}$$

Contexts

Definition : Contexte

A context is a linear term.

The application of a context $C \in \mathcal{T}(\Sigma, \{x_1, \ldots, x_n\})$ to n terms t_1, \ldots, t_n , denoted $C[t_1, \ldots, t_n]$, is obtained by the replacement of each x_i by t_i , for $1 \le i \le n$.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Bottom-up Finite Tree Automata

 $(a+b\,a^*b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0$.

tree. run on $a(a(b(b(a(\varepsilon))))):$ $q_0 \rightarrow a(q_0) \rightarrow a(a(q_0)) \rightarrow a(a(b(q_1))) \rightarrow a(a(b(b(q_0)))) \rightarrow a(a(b(b(a(q_0))))) \rightarrow a(a(b(b(a(\varepsilon))))))$

with $q_0 := \varepsilon$, $q_0 := a(q_0)$, $q_1 := a(q_1)$, $q_1 := b(q_0)$, $q_0 := b(q_1)$.

Bottom-up Finite Tree Automata

 $(a+b\,a^*b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0$.

tree. run on $a(a(b(b(a(\varepsilon))))):$ $a(a(b(b(a(\varepsilon))))) \rightarrow a(a(b(b(a(q_0))))) \rightarrow a(a(b(b(q_0))))) \rightarrow a(a(b(q_1)))) \rightarrow a(a(q_0)) \rightarrow a(q_0) \rightarrow q_0$ with $\varepsilon \rightarrow q_0$, $a(q_0) \rightarrow q_0$, $a(q_1) \rightarrow q_1$, $b(q_0) \rightarrow q_1$, $b(q_1) \rightarrow q_0$.

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple $\mathcal{A} = (\Sigma, Q, Q^{f}, \Delta)$ where Q is a finite set of states, $Q^{f} \subseteq Q$ is the subset of final states and Δ is a set of transition rules of the form: $f(q_1, \ldots, q_n) \to q$ with $f \in \Sigma_n$ $(n \ge 0)$ and $q_1, \ldots, q_n, q \in Q$.

The state q is called the head of the rule. The language of \mathcal{A} in state q is recursively defined by

$$L(\mathcal{A},q) = \left\{ a \in \Sigma_0 \mid a \to q \in \Delta \right\}$$
$$\cup \qquad \bigcup_{f(q_1,\dots,q_n) \to q \in \Delta} f(L(\mathcal{A},q_1),\dots,L(\mathcal{A},q_n))$$

with $f(L_1, \ldots, L_n) := \{ f(t_1, \ldots, t_n) \mid t_1 \in L_1, \ldots, t_n \in L_n \}.$

We say that $t \in L(\mathcal{A}, q)$ is accepted, or recognized, by \mathcal{A} in state q.

The language of \mathcal{A} is $L(\mathcal{A}) := \bigcup_{q^{\mathsf{f}} \in Q^{\mathsf{f}}} L(\mathcal{A}, q^{\mathsf{f}})$ (regular language).

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to Δ is the smallest binary relation, denoted $\xrightarrow{}$, containing Δ and closed under application of contexts.

The reflexive and transitive closure of $\xrightarrow{\Delta}$ is denoted $\xrightarrow{*}{\Delta}$.

For $\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$, it holds that

$$L(\mathcal{A},q) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow{*}{\Delta} q \right\}$$

and hence

$$L(\mathcal{A}) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow{*} q \in Q^{\mathsf{f}} \right\}$$

Tree Automata: example 1

$$\begin{split} & \mathcal{E}\mathsf{xample}: \\ & \mathcal{\Sigma} = \{ \wedge : 2, \lor : 2, \neg : 1, \top, \bot : 0 \}, \\ & \mathcal{A} = \left(\sum_{i=1}^{n} \{q_{0}, q_{1}\}, \{q_{1}\}, \begin{cases} \bot \to q_{0} & \top \to q_{1} \\ \neg(q_{0}) \to q_{1} & \neg(q_{1}) \to q_{0} \\ \lor(q_{0}, q_{0}) \to q_{0} & \lor(q_{0}, q_{1}) \to q_{1} \\ \lor(q_{1}, q_{0}) \to q_{1} & \lor(q_{1}, q_{1}) \to q_{1} \\ \land(q_{0}, q_{0}) \to q_{0} & \land(q_{0}, q_{1}) \to q_{0} \\ \land(q_{1}, q_{0}) \to q_{0} & \land(q_{1}, q_{1}) \to q_{1} \end{cases} \right\} \end{split}$$

 $\wedge (\wedge (\top, \vee (\top, \neg (\bot))), \neg (\top)) \xrightarrow{\mathcal{A}} \wedge (\wedge (\top, \vee (\top, \neg (\bot))), \neg (q_1))$ $\xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, \vee (q_1, \neg (q_0))), \neg (q_1)) \xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, \vee (q_1, \neg (q_0))), q_0)$ $\xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, \vee (q_1, q_1)), q_0) \xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, q_1), q_0) \xrightarrow{\mathcal{A}} \wedge (q_1, q_0) \xrightarrow{\mathcal{A}} q_0$

Tree Automata: example 2

Example :

$$\Sigma = \{ \wedge : 2, \lor : 2, \neg : 1, \top, \bot : 0 \},$$

TA recognizing the ground instances of $\neg(\neg(x))$:

$$\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{ \begin{array}{cccc} \bot & \rightarrow & q & & \top & \rightarrow & q \\ \neg(q) & \rightarrow & q & & \neg(q) & \rightarrow & q_{\neg} \\ \neg(q_{\neg}) & \rightarrow & q_{\mathsf{f}} & & & \\ \lor(q, q) & \rightarrow & q & & \land(q, q) & \rightarrow & q \end{array} \right) \right)$$

Example :

Ground terms embedding the pattern $\neg(\neg(x))$: $\mathcal{A} \cup \{\neg(q_f) \rightarrow q_f, \lor(q_f, q_*) \rightarrow q_f, \lor(q_*, q_f) \rightarrow q_f, \ldots\}$ (propagation of q_f).

Runs

Definition : Run

A run of a TA $(\Sigma, Q, Q^{f}, \Delta)$ on a term $t \in \mathcal{T}(\Sigma)$ is a function $r: \mathcal{P}os(t) \to Q$ such that for all $p \in \mathcal{P}os(t)$, if $t(p) = f \in \Sigma_n$, r(p) = q and $r(pi) = q_i$ for all $1 \le i \le n$, then $f(q_1, \ldots, q_n) \to q \in \Delta$.

The run r is accepting if $r(\varepsilon) \in Q^{\dagger}$. $L(\mathcal{A})$ is the set of ground terms of $\mathcal{T}(\Sigma)$ for which there exists an accepting run.

Pumping Lemma

Lemma

For all TA \mathcal{A} , there exists k > 0 such that for all term $t \in L(\mathcal{A})$ with h(t) > k, there exists 2 contexts $C, D \in \mathcal{T}(\Sigma, \{x_1\})$ with $D \neq x_1$ and a term $u \in \mathcal{T}(\Sigma)$ such that t = C[D[u]] and for all $n \ge 0$, $C[D^n[u]] \in L(\mathcal{A})$.

usage: to show that a language is not regular.

Lemma

Let $\mathcal{A} = (\Sigma, Q, Q^{f}, \Delta)$. $L(\mathcal{A}) \neq \emptyset$ iff there exists $t \in L(\mathcal{A})$ such that $h(t) \leq |Q|$. We extend the class TA into TA ε with the addition of another type of transition rules of the form $q \xrightarrow{\varepsilon} q'$ (ε -transition). with the same expressiveness as TA.

Proposition : Suppression of ε -transitions

For all TA $\varepsilon \mathcal{A}_{\varepsilon}$, there exists a TA (without ε -transition) \mathcal{A}' such that $L(\mathcal{A}) = L(\mathcal{A}_{\varepsilon})$. The size of \mathcal{A} is polynomial in the size of $\mathcal{A}_{\varepsilon}$.

pr.: We start with $\mathcal{A}_{\varepsilon}$ and we add $f(q_1, \ldots, q_n) \to q'$ if there exists $f(q_1, \ldots, q_n) \to q$ and $q \xrightarrow{\varepsilon} q'$.

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple $\mathcal{A} = (\Sigma, Q, Q^{\text{init}}, \Delta)$ where Q is a finite set of *states*, $Q^{\text{init}} \subseteq Q$ is the subset of initial states and Δ is a set of transition rules of the form: $q \to f(q_1, \ldots, q_n)$ with $f \in \Sigma_n$ $(n \ge 0)$ and $q_1, \ldots, q_n, q \in Q$.

A ground term $t \in \mathcal{T}(\Sigma)$ is accepted by \mathcal{A} in the state q iff $q \xrightarrow{*}{\Delta} t$.

The language of \mathcal{A} starting from the state q is $L(\mathcal{A}, q) := \{ t \in \mathcal{T}(\Sigma) \mid q \xrightarrow{*}{\Delta} t \}.$

The language of $\mathcal A$ is $L(\mathcal A):=\bigcup_{q^{\rm i}\in Q^{\rm init}}L(Q,q^{\rm i}).$

Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of regular tree languages.

In the next slides

TA = Bottom-Up Tree Automata

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Determinism

Definition : Determinism

A TA \mathcal{A} is *deterministic* if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of \mathcal{A} , there is at most one state q of \mathcal{A} such that \mathcal{A} contains a transition $f(q_1, \ldots, q_n) \to q$.

If \mathcal{A} is deterministic, then for all $t \in \mathcal{T}(\Sigma)$, there exists at most one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$. It is denoted $\mathcal{A}(t)$ or $\Delta(t)$.

Completeness

Definition : Completeness

A TA \mathcal{A} is *complete* if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of \mathcal{A} , there is at least one state q of \mathcal{A} such that \mathcal{A} contains a transition $f(q_1, \ldots, q_n) \to q$.

If \mathcal{A} is complete, then for all $t \in \mathcal{T}(\Sigma)$, there exists at least one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$.

Completion

Proposition : Completion

For all TA \mathcal{A} , there exists a complete TA \mathcal{A}_c such that $L(\mathcal{A}_c) = L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_c is deterministic. The size of \mathcal{A}_c is polynomial in the size of \mathcal{A} , its construction is PTIME.

Completion

Proposition : Completion

For all TA \mathcal{A} , there exists a complete TA \mathcal{A}_c such that $L(\mathcal{A}_c) = L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_c is deterministic. The size of \mathcal{A}_c is polynomial in the size of \mathcal{A} , its construction is PTIME.

pr.: add a trash state q_{\perp} .

Proposition : Determinization

For all TA \mathcal{A} , there exists a deterministic TA \mathcal{A}_{det} such that $L(\mathcal{A}_{det}) = L(\mathcal{A})$. Moreover, if \mathcal{A} is complete, then \mathcal{A}_{det} is complete. The size of \mathcal{A}_{det} is exponential in the size of \mathcal{A} , its construction is EXPTIME.

pr.: subset construction. Transitions:

$$f(S_1,\ldots,S_n) \to \{q \mid \exists q_1 \in S_1 \ldots \exists q_n \in S_n \ f(q_1,\ldots,q_n \to q \in \Delta\}$$

for all $S_1, \ldots, S_n \subseteq Q$.

Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of $\neg(\neg(x))$):

$$\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{ \begin{array}{cccc} \bot & \rightarrow & q & \top & \rightarrow & q \\ \neg(q) & \rightarrow & q & \neg(q) & \rightarrow & q_{\neg} \\ \neg(q_{\neg}) & \rightarrow & q_{\mathsf{f}} & \neg(q_{\mathsf{f}}) & \rightarrow & q_{\mathsf{f}} \\ \vee(q, q) & \rightarrow & q & \wedge(q, q) & \rightarrow & q \\ \vee(q_{\mathsf{f}}, q_{*}) & \rightarrow & q_{\mathsf{f}} & \vee(q_{*}, q_{\mathsf{f}}) & \rightarrow & q_{\mathsf{f}} \end{array} \right) \right)$$

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma, Q, Q^{\text{init}}, \Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma, Q, Q^{\text{init}}, \Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

pr.: $L = \{f(a, b), f(b, a)\}.$

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time
		and size of automata
\cup	disjoint \cup	
\cap	Cartesian product	
_	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time
		and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	
_	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time
		and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	quadratic
_	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time
		and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	quadratic
_	determinization, completion,	exponential
	invert final / non-final states	(lower bound)

Remark :

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Cleaning

Definition : Clean

A state q of a TA A is called *inhabited* if there exists at least one $t \in L(A, q)$. A TA is called *clean* if all its states are inhabited.

Proposition : Cleaning

For all TA \mathcal{A} , there exists a clean TA \mathcal{A}_{clean} such that $L(\mathcal{A}_{clean}) = L(\mathcal{A})$. The size of \mathcal{A}_{clean} is smaller than the size of \mathcal{A} , its construction is PTIME.

pr.: state marking algorithm, running time $O(|Q| \times ||\Delta||)$.

State Marking Algorithm

We construct $M \subseteq Q$ containing all the inhabited states.

• start with $M = \emptyset$

• for all
$$f \in \Sigma$$
, of arity $n \ge 0$, and
all $q_1, \ldots, q_n \in M$ st there exists $f(q_1, \ldots, q_n) \to q$ in Δ ,
add q to M (if it was not already).

We iterate the last step until a fixpoint M_* is reached.

Lemma :

 $q \in M_*$ iff $\exists t \in L(\mathcal{A}, q)$.

Membership Problem

Definition : Membership

Proposition : Membership

The membership problem is decidable in polynomial time.

Emptiness Problem

Definition : Emptiness

INPUT: a TA \mathcal{A} over Σ . QUESTION: $L(\mathcal{A}) = \emptyset$?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

Emptiness Problem

Definition : Emptiness

INPUT: a TA \mathcal{A} over Σ . QUESTION: $L(\mathcal{A}) = \emptyset$?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:

quadratic: clean, check if the clean automaton contains a final state.

linear: reduction to propositional HORN-SAT.

linear bis: optimization of the data structures for the cleaning (exo).

Remark :

The problem of the emptiness is PTIME-complete.

Definition : Instance-Membership (IM)

INPUT: a TA \mathcal{A} over Σ , a term $t \in \mathcal{T}(\Sigma, \mathcal{X})$. QUESTION: does there exists $\sigma : vars(t) \to \mathcal{T}(\Sigma)$ s.t. $t\sigma \in L(\mathcal{A})$?

Proposition : Instance-Membership

- 1. The problem IM is decidable in polynomial time when t is linear.
- 2. The problem IM is NP-complet when \mathcal{A} is deterministic.
- 3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: $n \text{ TA } \mathcal{A}_1, \dots, \mathcal{A}_n \text{ over } \Sigma$. QUESTION: $L(\mathcal{A}_1) \cap \dots \cap L(\mathcal{A}_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: $n \text{ TA } \mathcal{A}_1, \dots, \mathcal{A}_n \text{ over } \Sigma$. QUESTION: $L(\mathcal{A}_1) \cap \dots \cap L(\mathcal{A}_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under \cap and emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME reduction of the problem of the existence of a successful run (starting from an initial configuration) of an alternating Turing machine (ATM) $M = (\Gamma, S, s_0, S_f, \delta)$. [Seidl 94], [Veanes 97]

Problem of Universality

Definition : Universality

Proposition : Universality

The problem of universality is EXPTIME-complete.

Problem of Universality

Definition : Universality

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the deterministic (bottom-up) TA.

pr.: completion and cleaning.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$

Definition : Equivalence

INPUT: two TA A_1 and A_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$

Definition : Equivalence

INPUT: two TA A_1 and A_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap \overline{L(\mathcal{A}_2)} = \emptyset$.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$

Definition : Equivalence

INPUT: two TA A_1 and A_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap \overline{L(\mathcal{A}_2)} = \emptyset$. EXPTIME-hardness: universality is $\mathcal{T}(\Sigma) = L(\mathcal{A}_2)$?

Remark :

If \mathcal{A}_1 and \mathcal{A}_2 are deterministic, it is $O(||\mathcal{A}_1|| \times ||\mathcal{A}_2||)$.

Problem of Finiteness

Definition : Finiteness

INPUT: a TA \mathcal{A} QUESTION: is $L(\mathcal{A})$ finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Theorem of Myhill-Nerode

Definition :

A congruence \equiv on $\mathcal{T}(\Sigma)$ is an equivalence relation such that for all $f \in \Sigma_n$, if $s_1 \equiv t_1, \ldots, s_n \equiv t_n$, then $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$.

Given $L \subseteq \mathcal{T}(\Sigma)$, the congruence \equiv_L is defined by:

 $s \equiv_L t$ if for all context $C \in \mathcal{T}(\Sigma, \{x\})$, $C[s] \in L$ iff $C[t] \in L$.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

- 1. L is regular
- 2. L is a union of equivalence classes for a congruence \equiv of finite index
- 3. \equiv_L is a congruence of finite index

Proof Theorem of Myhill-Nerode

 $1 \Rightarrow 2$. \mathcal{A} deterministic, def. $s \equiv_{\mathcal{A}} t$ iff $\mathcal{A}(s) = \mathcal{A}(t)$. $2 \Rightarrow 3$. we show that if $s \equiv t$ then $s \equiv_L t$, hence the index of $\equiv_L \leq$ index of \equiv (since we have $\equiv \subseteq \equiv_L$). If $s \equiv t$ then $C[s] \equiv C[t]$ for all C[] (induction on C), hence $C[s] \in L$ iff $C[t] \in L$, i.e. $s \equiv_L t$. $3 \Rightarrow 1$. we construct $\mathcal{A}_{\min} = (Q_{\min}, Q_{\min}^{f}, \Delta_{\min})$, \triangleright $Q_{\min} =$ equivalence classes of \equiv_L , ▶ $Q_{\min}^{f} = \{ [s] \mid s \in L \},\$ $\blacktriangleright \Delta_{\min} = \{f([s_1], \dots, [s_n]) \rightarrow [f(s_1, \dots, s_n)]\}$ Clearly, \mathcal{A}_{\min} is deterministic, and for all $s \in \mathcal{T}(\Sigma)$, $\mathcal{A}_{\min}(s) = [s]_L$, i.e. $s \in L(\mathcal{A}_{\min})$ iff $s \in L$.

Minimization

Corollary :

For all DTA $\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$, there exists a unique DTA $\mathcal{A}_{\mathsf{min}}$ whose number of states is the index of $\equiv_{L(\mathcal{A})}$ and such that $L(\mathcal{A}_{\mathsf{min}}) = L(\mathcal{A})$.

Minimization

Let $\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$ be a DTA, we build a deterministic minimal automaton $\mathcal{A}_{\mathsf{min}}$ as in the proof of $3 \Rightarrow 1$ of the previous theorem for $L(\mathcal{A})$ (i.e. Q_{min} is the set of equivalence classes for $\equiv_{L(\mathcal{A})}$).

We build first an equivalence \approx on the states of Q:

► $q \approx_0 q'$ iff $q, q' \in Q^f$ ou $q, q' \in Q \setminus Q^f$.

►
$$q \approx_{k+1} q'$$
 iff $q \approx_k q'$ et $\forall f \in \Sigma_n$,
 $\forall q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n \in Q \ (1 \le i \le n)$,

$$\Delta(f(q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n)) \approx_k \Delta(f(q_1, \dots, q_{i-1}, q', q_{i+1}, \dots))$$

Let \approx be the fixpoint of this construction, \approx is $\equiv_{L(\mathcal{A})}$, hence $\mathcal{A}_{\min} = (\Sigma, Q_{\min}, Q_{\min}^{f}, \Delta_{\min})$ with :

$$\blacktriangleright Q_{\min} = \{ [q]_{\approx} \mid q \in Q \},\$$

$$Q_{\min}^{\mathsf{f}} = \{ [q^{\mathsf{f}}]_{\approx} \mid q^{\mathsf{f}} \in Q^{\mathsf{f}} \},$$

• $\Delta_{\min} = \{f([q_1]_{\approx}, \dots, [q_n]_{\approx}) \rightarrow [f(q_1, \dots, q_n)]_{\approx}\}.$ recognizes $L(\mathcal{A})$. and it is smaller than \mathcal{A} .