Tree automata techniques for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan) florent.jacquemard@inria.fr http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr (chapters 1, 3, 7, 8)

Tree Automata Techniques and Applications

HUBERT COMON MAX DAUCHET RÉMI GILLERON FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LÖDING Sophie Tison Marc Tommasi

Part I

Automata on Finite Ranked Trees

Terms in first order logic

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with an arity greater or equal to 0.

We denote Σ_i the set of symbols of arity i.

Example :

 ${+, : 2, s : 1, 0 : 0}, {\wedge : 2, \vee : 2, \neg : 1, \top, \bot : 0}.$

We also consider a countable set $\mathcal X$ of variable symbols.

Terms

Definition : Term

The set of terms over the signature Σ and $\mathcal X$ is the smallest set $\mathcal{T}(\Sigma,\mathcal{X})$ such that:

- $\Sigma_0 \subseteq \mathcal{T}(\Sigma, \mathcal{X}),$
- $\mathcal{X} \subseteq \mathcal{T}(\Sigma, \mathcal{X}),$
- if $f \in \Sigma_n$ and if $t_1, \ldots, t_n \in \mathcal{T}(\Sigma, \mathcal{X})$, then $f(t_1,\ldots,t_n)\in\mathcal{T}(\Sigma,\mathcal{X}).$

The set of ground terms (terms without variables, i.e. $\mathcal{T}(\Sigma,\emptyset)$) is denoted $\mathcal{T}(\Sigma)$.

Example :

$$
x,\ \neg(x),\ \wedge\big(\vee(x,\neg(y)),\neg(x)\big).
$$

A term where each variable appears at most once is called linear. A term without variable is called ground.

Depth $h(t)$: \blacktriangleright h(a) = h(x) = 0 if $a \in \Sigma_0$, $x \in \mathcal{X}$, \blacktriangleright h $(f(t_1,...,t_n)) = \max\{h(t_1),...,h(t_n)\} + 1.$

Positions

A term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ can also be seen as a function from the set of its positions $Pos(t)$ into $\Sigma \cup \mathcal{X}$.

The empty position (root) is denoted ε .

 $Pos(t)$ is a subset of \mathbb{N}^* satisfying the following properties:

- \triangleright $\mathcal{P}os(t)$ is closed under prefix,
- ► for all $p \in \mathcal{P}os(t)$ such that $t(p) \in \Sigma_n$ $(n \geq 1)$, $\{pj \in Pos(t) | j \in \mathbb{N}\} = \{p1, ..., pn\},\$
- ► every $p \in Pos(t)$ such that $t(p) \in \Sigma_0 \cup \mathcal{X}$ is maximal in $Pos(t)$ for the prefix ordering.

The size of t is defined by $||t|| = |\mathcal{P}os(t)|$.

Subterm $t|_p$ at position $p \in Pos(t)$:

$$
\blacktriangleright \vert t \vert_{\varepsilon} = t,
$$

$$
\blacktriangleright \ \ f(t_1,\ldots,t_n)|_{ip}=t_i|_p.
$$

The replacement in t of $t|_p$ by s is denoted $t[s]_p$.

Positions (example)

Example :

$$
t = \land (\land (x, \lor (x, \neg(y))), \neg(x)),
$$

\n
$$
t|_{11} = x, t|_{12} = \lor (x, \neg(y)), t|_{2} = \neg(x),
$$

\n
$$
t[\neg(y)]_{11} = \land (\land (\neg(y), \lor (x, \neg(y))), \neg(x)).
$$

Contexts

Definition : Contexte

A context is a linear term.

The application of a context $C \in \mathcal{T}(\Sigma, \{x_1, \ldots, x_n\})$ to n terms t_1, \ldots, t_n , denoted $C[t_1, \ldots, t_n]$, is obtained by the replacement of each x_i by t_i , for $1 \leq i \leq n$.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Bottom-up Finite Tree Automata

 $(a + b a^* b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0$.

tree. run on $a(a(b(b(a(\varepsilon)))))$: $q_0 \rightarrow a(q_0) \rightarrow a(a(q_0)) \rightarrow a(a(b(q_1))) \rightarrow a(a(b(b(q_0)))) \rightarrow$ $a(a(b(b(a(q_0)))))) \rightarrow a(a(b(b(a(\varepsilon))))))$

with $q_0 := \varepsilon$, $q_0 := a(q_0)$, $q_1 := a(q_1)$, $q_1 := b(q_0)$, $q_0 := b(q_1)$.

Bottom-up Finite Tree Automata

 $(a + b a^* b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0$.

tree. run on $a(a(b(b(a(\varepsilon)))))$: $a(a(b(b(a(\varepsilon)))))) \rightarrow a(a(b(b(a(q_0)))))) \rightarrow a(a(b(b(q_0)))) \rightarrow$ $a(a(b(q_1))) \rightarrow a(a(q_0)) \rightarrow a(q_0) \rightarrow q_0$ with $\varepsilon \to q_0$, $a(q_0) \to q_0$, $a(q_1) \to q_1$, $b(q_0) \to q_1$, $b(q_1) \to q_0$.

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple \mathcal{A} = $(\Sigma,Q,Q^{\mathsf{f}},\Delta)$ where Q is a finite set of states, $Q^{\mathsf{f}}\subseteq Q$ is the subset of final states and Δ is a set of transition rules of the form: $f(q_1,\ldots,q_n)\to q$ with $f\in\Sigma_n$ $(n\geq 0)$ and $q_1,\ldots,q_n, q\in Q$.

The state q is called the head of the rule. The language of A in state q is recursively defined by

$$
L(\mathcal{A}, q) = \{ a \in \Sigma_0 \mid a \to q \in \Delta \}
$$

\n
$$
\bigcup_{f(q_1, \dots, q_n) \to q \in \Delta} f(L(\mathcal{A}, q_1), \dots, L(\mathcal{A}, q_n))
$$

with $f(L_1, ..., L_n) := \{ f(t_1, ..., t_n) \mid t_1 \in L_1, ..., t_n \in L_n \}.$

We say that $t \in L(\mathcal{A}, q)$ is accepted, or recognized, by $\mathcal A$ in state q .

The language of $\mathcal A$ is $L(\mathcal A):= \;\left\{\;\right\}\; L(\mathcal A,q^{\mathsf f})$ (regular language). $q^\mathsf{f} \!\in\!\! Q^\mathsf{f}$

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to Δ is the smallest binary relation, denoted \longrightarrow , containing Δ and closed under application of contexts.

The reflexive and transitive closure of $\frac{\longrightarrow}{\Delta}$ is denoted $\frac{*}{\Delta}$.

For $\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$, it holds that

$$
L(\mathcal{A}, q) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow{\ast} q \right\}
$$

and hence

$$
L(\mathcal{A}) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow[\Delta]{*} q \in Q^f \right\}
$$

Tree Automata: example 1

Example:
\n
$$
\Sigma = \{ \land : 2, \lor : 2, \neg : 1, \top, \bot : 0 \},
$$
\n
$$
\mathcal{A} = \begin{pmatrix}\n\downarrow & \rightarrow & q_0 & \top & \rightarrow & q_1 \\
\downarrow & \neg(q_0) & \rightarrow & q_1 & \neg(q_1) & \rightarrow & q_0 \\
\downarrow & \lor(q_0, q_0) & \rightarrow & q_0 & \lor(q_0, q_1) & \rightarrow & q_1 \\
\lor(q_1, q_0) & \rightarrow & q_1 & \lor(q_1, q_1) & \rightarrow & q_1 \\
\land(q_0, q_0) & \rightarrow & q_0 & \land(q_0, q_1) & \rightarrow & q_0 \\
\land(q_1, q_0) & \rightarrow & q_0 & \land(q_1, q_1) & \rightarrow & q_0\n\end{pmatrix}
$$

 $\wedge(\wedge(\top,\vee(\top,\neg(\bot))),\neg(\top))\xrightarrow[\mathcal{A}]{}\wedge(\wedge(\top,\vee(\top,\neg(\bot))),\neg(q_1))$ $\rightarrow \land (\land (q_1, \lor (q_1, \neg(q_0))), \neg(q_1)) \rightarrow \land (\land (q_1, \lor (q_1, \neg(q_0))), q_0)$ $\rightarrow \land (\land (q_1, \lor (q_1, q_1)), q_0) \rightarrow \land (\land (q_1, q_1), q_0) \rightarrow \land (q_1, q_0) \rightarrow q_0$

Tree Automata: example 2

Example :

$$
\Sigma = \{ \wedge :2, \vee :2, \neg :1,\top,\bot:0 \},
$$

TA recognizing the ground instances of $\neg(\neg(x))$:

$$
\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{ \begin{array}{ccc} \bot & \to & q & \top & \to & q \\ \neg(q) & \to & q & \neg(q) & \to & q_{\neg} \\ \neg(q_{\neg}) & \to & q_{\mathsf{f}} & \wedge(q, q) & \to & q \end{array} \right\} \right)
$$

Example :

Ground terms embedding the pattern $\neg(\neg(x))\colon \mathcal{A} \cup \{\neg(q_f) \rightarrow$ $q_{\mathsf{f}}, \vee (q_{\mathsf{f}},q_*) \rightarrow q_{\mathsf{f}}, \vee (q_*,q_{\mathsf{f}}) \rightarrow q_{\mathsf{f}}, \ldots \}$ (propagation of q_{f}).

Runs

Definition : Run

A run of a TA $(\Sigma,Q,Q^{\mathsf{f}},\Delta)$ on a term $t\,\in\, {\mathcal{T}}(\Sigma)$ is a function $r: \mathcal{P}os(t) \rightarrow Q$ such that for all $p \in \mathcal{P}os(t)$, if $t(p) = f \in \Sigma_n$, $r(p) = q$ and $r(pi) = q_i$ for all $1 \leq i \leq n$, then $f(q_1, \ldots, q_n) \to q \in \Delta$.

The run r is accepting if $r(\varepsilon) \in Q^f$. $L(\mathcal{A})$ is the set of ground terms of $\mathcal{T}(\Sigma)$ for which there exists an accepting run.

Pumping Lemma

Lemma

For all TA A, there exists $k > 0$ such that for all term $t \in L(A)$ with $h(t) > k$, there exists 2 contexts $C, D \in \mathcal{T}(\Sigma, \{x_1\})$ with $D \neq x_1$ and a term $u \in \mathcal{T}(\Sigma)$ such that $t = C[D[u]]$ and for all $n \geq 0$, $C[Dⁿ[u]] \in L(A).$

usage: to show that a language is not regular.

Lemma

Let $\mathcal{A} = (\Sigma, Q, Q^{\dagger}, \Delta)$. $L(\mathcal{A}) \neq \emptyset$ iff there exists $t \in L(\mathcal{A})$ such that $h(t) \leq |Q|$. We extend the class TA into TA ε with the addition of another type of transition rules of the form $q \stackrel{\varepsilon}{\longrightarrow} q'$ ($\varepsilon\text{-transition}$). with the same expressiveness as TA.

Proposition : Suppression of ε -transitions

For all TA ε $\mathcal{A}_{\varepsilon}$, there exists a TA (without ε -transition) \mathcal{A}' such that $L(\mathcal{A}) = L(\mathcal{A}_{\varepsilon})$. The size of \mathcal{A} is polynomial in the size of $\mathcal{A}_{\varepsilon}$.

pr.: We start with A_{ε} and we add $f(q_1,\ldots,q_n)\to q'$ if there exists $f(q_1,\ldots,q_n)\to q$ and $q \stackrel{\varepsilon}{\longrightarrow} q'$.

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple \mathcal{A} = $(\Sigma,Q,Q^{\mathsf{init}},\Delta)$ where Q is a finite set of states, $Q^{\mathsf{init}} \subseteq Q$ is the subset of initial states and Δ is a set of transition rules of the form: $q \to f(q_1, \ldots, q_n)$ with $f \in \Sigma_n$ $(n \geq 0)$ and $q_1, \ldots, q_n, q \in Q$.

A ground term $t \in \mathcal{T}(\Sigma)$ is accepted by $\mathcal A$ in the state q iff $q \stackrel{*}{\rightharpoonup} t.$

The language of $\mathcal A$ starting from the state q is $L(\mathcal{A}, q) := \left\{ t \in \mathcal{T}(\Sigma) \middle| q \stackrel{*}{\longrightarrow} \right\}$ ∗ $\frac{\ast}{\Delta}$ + t }.

The language of $\mathcal A$ is $L(\mathcal A):=-\bigcup_{\mathcal A}L(Q,q^{\mathcal A}).$ $q^{\mathsf{i}}{\in}Q^{\mathsf{init}}$

Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of regular tree languages.

In the next slides

TA = Bottom-Up Tree Automata

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Determinism

Definition : Determinism

A TA A is deterministic if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of A, there is at most one state q of A such that A contains a transition $f(q_1, \ldots, q_n) \rightarrow q$.

If A is deterministic, then for all $t \in \mathcal{T}(\Sigma)$, there exists at most one state q of A such that $t \in L(A, q)$. It is denoted $A(t)$ or $\Delta(t)$.

Completeness

Definition : Completeness

A TA $\mathcal A$ is complete if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of $\mathcal A$, there is at least one state q of A such that A contains a transition $f(q_1, \ldots, q_n) \to q$.

If A is complete, then for all $t \in \mathcal{T}(\Sigma)$, there exists at least one state q of A such that $t \in L(\mathcal{A}, q)$.

Completion

Proposition : Completion

For all TA A, there exists a complete TA A_c such that $L(A_c)$ = $L(\mathcal{A})$. Moreover, if $\mathcal A$ is deterministic, then $\mathcal A_c$ is deterministic. The size of A_c is polynomial in the size of A , its construction is PTIME.

Completion

Proposition : Completion

For all TA A, there exists a complete TA A_c such that $L(A_c)$ = $L(\mathcal{A})$. Moreover, if $\mathcal A$ is deterministic, then $\mathcal A_c$ is deterministic. The size of A_c is polynomial in the size of A , its construction is PTIME.

pr.: add a trash state q_{\perp} .

Proposition : Determinization

For all TA A, there exists a deterministic TA \mathcal{A}_{det} such that $L(\mathcal{A}_{det}) = L(\mathcal{A})$. Moreover, if A is complete, then \mathcal{A}_{det} is complete. The size of \mathcal{A}_{det} is exponential in the size of \mathcal{A}_{i} , its construction is EXPTIME.

pr.: subset construction. Transitions:

$$
f(S_1, \ldots, S_n) \to \{q \mid \exists q_1 \in S_1 \ldots \exists q_n \in S_n \ f(q_1, \ldots, q_n \to q \in \Delta\}
$$

for all $S_1, \ldots, S_n \subseteq Q$.

Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of $\neg(\neg(x))$:

$$
\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{\begin{array}{ccc} \bot & \to & q & \top & \to & q \\ \neg(q) & \to & q & \neg(q) & \to & q_{\neg} \\ \neg(q_{\neg}) & \to & q_{\mathsf{f}} & \neg(q_{\mathsf{f}}) & \to & q_{\mathsf{f}} \\ \vee(q, q) & \to & q & \wedge(q, q) & \to & q \\ \vee(q_{\mathsf{f}}, q_{\ast}) & \to & q_{\mathsf{f}} & \vee(q_{\ast}, q_{\mathsf{f}}) & \to & q_{\mathsf{f}} \end{array}\right\}\right)
$$

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma,Q,Q^{\mathsf{init}},\Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma,Q,Q^{\mathsf{init}},\Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

pr.: $L = \{f(a, b), f(b, a)\}.$

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

Remark :

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Cleaning

Definition : Clean

A state q of a TA $\mathcal A$ is called *inhabited* if there exists at least one $t \in L(A, q)$. A TA is called *clean* if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA A_{clean} such that $L(A_{clean}) =$ $L(\mathcal{A})$. The size of \mathcal{A}_{clean} is smaller than the size of \mathcal{A} , its construction is PTIME.

pr.: state marking algorithm, running time $O(|Q| \times ||\Delta||)$.

State Marking Algorithm

We construct $M \subseteq Q$ containing all the inhabited states.

- ightharpoonup start with $M = \emptyset$
- \blacktriangleright for all $f \in \Sigma$, of arity $n \geq 0$, and all $q_1, \ldots, q_n \in M$ st there exists $f(q_1, \ldots, q_n) \to q$ in Δ , add q to M (if it was not already).

We iterate the last step until a fixpoint M_* is reached.

Lemma :

 $q \in M_*$ iff $\exists t \in L(\mathcal{A}, q)$.

Membership Problem

Definition : Membership

```
INPUT: a TA A over \Sigma, a term t \in \mathcal{T}(\Sigma).
QUESTION: t \in L(\mathcal{A})?
```
Proposition: Membership

The membership problem is decidable in polynomial time.

Emptiness Problem

Definition : Emptiness

INPUT: a TA $\mathcal A$ over Σ . QUESTION: $L(A) = \emptyset$?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

Emptiness Problem

Definition : Emptiness

INPUT: a TA $\mathcal A$ over Σ . QUESTION: $L(A) = \emptyset$?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:

quadratic: clean, check if the clean automaton contains a final state.

linear: reduction to propositional HORN-SAT.

linear bis: optimization of the data structures for the cleaning $(exo).$

Remark :

The problem of the emptiness is PTIME-complete.

Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA A over Σ , a term $t \in \mathcal{T}(\Sigma, \mathcal{X})$. QUESTION: does there exists $\sigma : vars(t) \rightarrow \mathcal{T}(\Sigma)$ s.t. $t\sigma \in L(\mathcal{A})$?

Proposition : Instance-Membership

- 1. The problem IM is decidable in polynomial time when t is linear.
- 2. The problem IM is NP-complet when A is deterministic.
- 3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A_1, \ldots, A_n over Σ . QUESTION: $L(A_1) \cap ... \cap L(A_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A_1, \ldots, A_n over Σ . QUESTION: $L(A_1) \cap ... \cap L(A_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under \cap and emptiness decision.

 $EXPTIME$ -hardness: $APSPACE = EXPTIME$ reduction of the problem of the existence of a successful run (starting from an initial configuration) of an alternating Turing machine (ATM) $M = (\Gamma, S, s_0, S_f, \delta)$. [Seidl 94], [Veanes 97]

Problem of Universality

Definition : Universality

INPUT: a TA $\mathcal A$ over Σ . QUESTION: $L(\mathcal{A}) = \mathcal{T}(\Sigma)$

Proposition : Universality

The problem of universality is EXPTIME-complete.

Problem of Universality

Definition : Universality

INPUT: a TA $\mathcal A$ over Σ . QUESTION: $L(\mathcal{A}) = \mathcal{T}(\Sigma)$

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

 $EXPTIME$ -hardness: again $APSPACE = EXPTIME$.

Remark :

The problem of universality is decidable in polynomial time for the deterministic (bottom-up) TA.

pr.: completion and cleaning.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(A_1) \subseteq L(A_2)$

Definition : Equivalence

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(A_1) \subseteq L(A_2)$

Definition : Equivalence

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \emptyset$.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A_1 and A_2 over Σ . QUESTION: $L(A_1) \subseteq L(A_2)$

Definition : Equivalence

INPUT: two TA \mathcal{A}_1 and \mathcal{A}_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \emptyset$. EXPTIME-hardness: universality is $\mathcal{T}(\Sigma) = L(\mathcal{A}_2)$?

Remark :

If \mathcal{A}_1 and \mathcal{A}_2 are deterministic, it is $O\bigl(\|\mathcal{A}_1\|\times\|\mathcal{A}_2\|\bigr).$

Problem of Finiteness

Definition : Finiteness

INPUT: a TA $\mathcal A$ QUESTION: is $L(A)$ finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Theorem of Myhill-Nerode

Definition :

A congruence \equiv on $\mathcal{T}(\Sigma)$ is an equivalence relation such that for all $f \in \Sigma_n$, if $s_1 \equiv t_1, \ldots, s_n \equiv t_n$, then $f(s_1, \ldots, s_n) \equiv$ $f(t_1,\ldots,t_n).$

Given $L \subseteq \mathcal{T}(\Sigma)$, the congruence \equiv_L is defined by:

 $s \equiv_L t$ if for all context $C \in \mathcal{T} \big(\Sigma, \{x\} \big)$, $C[s] \in L$ iff $C[t] \in L.$

Theorem : Myhill-Nerode

The three following propositions are equivalent:

- 1. L is regular
- 2. L is a union of equivalence classes for a congruence \equiv of finite index
- 3. \equiv_L is a congruence of finite index

Proof Theorem of Myhill-Nerode

 $1 \Rightarrow 2$. A deterministic, def. $s \equiv_{\mathcal{A}} t$ iff $\mathcal{A}(s) = \mathcal{A}(t)$. $2 \Rightarrow 3$. we show that if $s \equiv t$ then $s \equiv_L t$, hence the index of $\equiv_L \leq$ index of \equiv (since we have $\equiv \subseteq \equiv_L$). If $s \equiv t$ then $C[s] \equiv C[t]$ for all $C[\]$ (induction on C), hence $C[s] \in L$ iff $C[t] \in L$, i.e. $s \equiv_L t$. $3 \Rightarrow 1$. we construct $\mathcal{A}_{\mathsf{min}} = (Q_{\mathsf{min}}, Q_{\mathsf{min}}^{\mathsf{f}}, \Delta_{\mathsf{min}})$, $\triangleright Q_{\text{min}} =$ equivalence classes of \equiv_L , $\blacktriangleright Q_{\min}^{\mathsf{f}} = \{ [s] \mid s \in L \},\$ $\blacktriangleright \Delta_{\min} = \{f([s_1], \ldots, [s_n]) \rightarrow [f(s_1, \ldots, s_n)]\}$ Clearly, \mathcal{A}_{min} is deterministic, and for all $s \in \mathcal{T}(\Sigma)$, $\mathcal{A}_{\text{min}}(s) = [s]_L$, i.e. $s \in L(\mathcal{A}_{\text{min}})$ iff $s \in L$.

Minimization

Corollary :

For all DTA $\mathcal{A} = (\Sigma, Q, Q^f, \Delta)$, there exists a unique DTA \mathcal{A}_{min} whose number of states is the index of $\equiv_{L(\mathcal{A})}$ and such that $L(\mathcal{A}_{\text{min}}) = L(\mathcal{A}).$

Minimization

Let $\mathcal{A} = (\Sigma, Q, Q^f, \Delta)$ be a DTA, we build a deterministic minimal automaton \mathcal{A}_{min} as in the proof of $3 \Rightarrow 1$ of the previous theorem for $L(\mathcal{A})$ (i.e. $Q_{\sf min}$ is the set of equivalence classes for $\equiv_{L(\mathcal{A})}$).

We build first an equivalence \approx on the states of Q :

► $q \approx_0 q'$ iff $q, q' \in Q^f$ ou $q, q' \in Q \setminus Q^f$.

▶
$$
q \approx_{k+1} q'
$$
 iff $q \approx_k q'$ et $\forall f \in \Sigma_n$,
 $\forall q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n \in Q$ (1 ≤ $i \le n$),

$$
\Delta(f(q_1,\ldots,q_{i-1},q,q_{i+1},\ldots,q_n)) \approx_k \Delta(f(q_1,\ldots,q_{i-1},q',q_{i+1},\ldots,q_n))
$$

Let \approx be the fixpoint of this construction, \approx is $\equiv_{L(\mathcal{A})}$, hence $\mathcal{A}_{\mathsf{min}} = (\Sigma, Q_{\mathsf{min}}, Q_{\mathsf{min}}^{\mathsf{f}}, \Delta_{\mathsf{min}})$ with :

$$
\bullet \ Q_{\min} = \{ [q]_{\approx} \mid q \in Q \},
$$

$$
\begin{aligned}\n\blacktriangleright Q_{\min}^{\mathsf{f}} &= \{ [q^{\mathsf{f}}]_{\approx} \mid q^{\mathsf{f}} \in Q^{\mathsf{f}} \}, \\
\blacktriangleright \Delta_{\min} &= \{ f([q_1]_{\approx}, \dots, [q_n]_{\approx}) \to [f(q_1, \dots, q_n)]\n\end{aligned}
$$

recognizes $L(\mathcal{A})$. and it is smaller than \mathcal{A} .

 $\big]_{\approx}\big\}.$