
Antichain-based Inclusion Checking on

Finite Nondeterministic

Word and Tree Automata

Tomáš Vojnar
FIT, Brno University of Technology, Czech Republic

Antichain-based Inclusion on NFA and NTA – p.1/23

Plan of the Lecture

❖ Antichain-based Universality Checking on Word Automata

❖ Antichain-based Upward Universality Checking on Tree Automata

❖ Antichain-based Inclusion Checking on Word Automata

❖ Antichains and Simulations in Inclusion Checking on Word Automata

❖ Antichains and Simulations in Upward Inclusion Checking on Tree Automata

❖ Antichains and Simulations in Downward Inclusion Checking on Tree Automata

• A separate presentation.

Antichain-based Inclusion on NFA and NTA – p.2/23

Universality Checking on Word Automata

Antichain-based Inclusion on NFA and NTA – p.3/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�
�
�

�
�
�

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Antichain-based Inclusion on NFA and NTA – p.4/23

Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation,

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

❖ Antichain-based universality checking for word automata:

• [Doyen, Henzinger, and Raskin – CAV’06],

• Keep only the states of the subset automaton needed for proving universality.

Antichain-based Inclusion on NFA and NTA – p.4/23

Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2

Antichain-based Inclusion on NFA and NTA – p.5/23

Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2

Antichain-based Inclusion on NFA and NTA – p.5/23

Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2

Antichain-based Inclusion on NFA and NTA – p.5/23

Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2

❖ Given a set S partially ordered by ≥, an antichain over S is any A ⊆ S such that for any
r, s ∈ A, neither r ≤ s nor r ≥ s.

❖ Antichains for universality: subsets of 2Q ordered by ⊆.

Antichain-based Inclusion on NFA and NTA – p.5/23

Backward Antichain-based Universality

❖ Backward antichain-based universality – a dual construction:

• start with non-final states,

• compute controllable predecessors,
– sets of predecessors that cannot continue outside of the given set,

• try to cover initial states,

• smaller sets can be discarded.

Antichain-based Inclusion on NFA and NTA – p.6/23

Universality Checking on Tree Automata

Antichain-based Inclusion on NFA and NTA – p.7/23

Antichains for Tree Universality

❖ The described forward antichain construction for word automata smoothly carries over
to an upward antichain construction on NTA.

❖ The only difference is in how the subset construction (i.e., the computation of new
states) is done.

q

r

s

t

u

v

Word case

q

r

s

t

u
v

w

x

y

Tree case

s
a

−→ v

r
a

−→ u

q
a

−→ t (q, s, u)
a

−→ x

(r, t, v)
a

−→ y

❖ Downward universality for TA cannot be done as a simple generalization of backward
universality on NFA: dealing with tuples of tuples of ... of states!

Antichain-based Inclusion on NFA and NTA – p.8/23

Inclusion Checking on Word Automata

Antichain-based Inclusion on NFA and NTA – p.9/23

Classical Inclusion Checking on FA
❖ The classical approach to checking L(A) ⊆ L(B):

• check emptiness of A ∩ determinizeusing_subset_construction B,

r

a

a
r’

a

a,b

p
a

p’

a

{p}
a

{p’}
b

{p,p’}

a
b

b

a,b a

(r,{p}) (r’ ,{p’})

(r’ ,{p,p’}) (r,{p,p’})

(r,{p’})

aa

a
a

a

b

b

a

a a

a a

1. determinisation
2. complement

3. product

4. emptiness

A B

a,b

Antichain-based Inclusion on NFA and NTA – p.10/23

Classical Inclusion Checking on FA
❖ The classical approach to checking L(A) ⊆ L(B):

• check emptiness of A ∩ determinizeusing_subset_construction B,

r

a

a
r’

a

a,b

p
a

p’

a

{p}
a

{p’}
b

{p,p’}

a
b

b

a,b a

(r,{p}) (r’ ,{p’})

(r’ ,{p,p’}) (r,{p,p’})

(r,{p’})

aa

a
a

a

b

b

a

a a

a a

1. determinisation
2. complement

3. product

4. emptiness

A B

a,b

• can involve minimisation of determinised automata: not a good solution anyway,

Antichain-based Inclusion on NFA and NTA – p.10/23

Classical Inclusion Checking on FA
❖ The classical approach to checking L(A) ⊆ L(B):

• check emptiness of A ∩ determinizeusing_subset_construction B,

r

a

a
r’

a

a,b

p
a

p’

a

{p}
a

{p’}
b

{p,p’}

a
b

b

a,b a

(r,{p}) (r’ ,{p’})

(r’ ,{p,p’}) (r,{p,p’})

(r,{p’})

aa

a
a

a

b

b

a

a a

a a

1. determinisation
2. complement

3. product

4. emptiness

A B

a,b

• can involve minimisation of determinised automata: not a good solution anyway,

❖ The constructed product automaton is built of macro-states (r, P) such that:
• if some w can reach r in A, P is the set of all states reached by w in B,
• (r, P) is accepting iff r ∈ FA and P ∩ FB = ∅.

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

(r,{p})

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

(r,{p})

(r’,{p’}) (r,{p’})

a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

a a

b
a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.10/23

On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

❖ Can be stopped as soon as a counterexample to inclusion is found.

• No improvement when the inclusion holds, but a basis for further optimisations.

Antichain-based Inclusion on NFA and NTA – p.11/23

On-the-Fly Inclusion with Antichains
[De Wulf, Doyen, Henzinger, Raskin – CAV’06]

❖ For the same left component, keep only those macro-states whose right components
are mutually incomparable wrt. inclusion (and hence antichains).

❖ If (p,R1) and (p,R2) such that R1 ⊆ R2 are generated, discard (p,R2).

• Indeed, if a counterexample to the inclusion query can be found from (p,R2),
a counterexample can be found from (p,R1) too.

Antichain-based Inclusion on NFA and NTA – p.12/23

On-the-Fly Inclusion with Antichains
[De Wulf, Doyen, Henzinger, Raskin – CAV’06]

❖ For the same left component, keep only those macro-states whose right components
are mutually incomparable wrt. inclusion (and hence antichains).

❖ If (p,R1) and (p,R2) such that R1 ⊆ R2 are generated, discard (p,R2).

• Indeed, if a counterexample to the inclusion query can be found from (p,R2),
a counterexample can be found from (p,R1) too.

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.12/23

On-the-Fly Inclusion with Antichains
[De Wulf, Doyen, Henzinger, Raskin – CAV’06]

❖ For the same left component, keep only those macro-states whose right components
are mutually incomparable wrt. inclusion (and hence antichains).

❖ If (p,R1) and (p,R2) such that R1 ⊆ R2 are generated, discard (p,R2).

• Indeed, if a counterexample to the inclusion query can be found from (p,R2),
a counterexample can be found from (p,R1) too.

antichains

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.12/23

Antichains for Universality x Inclusion

❖ Universality:

• Antichains over 2Q with ⊆.

• {q1, . . . , qn} ⊆ 2Q is reachable. ⇐⇒
q1, . . . , qn are all the states in which
the automaton A can end up after
reading some word w.

• Is any S ⊆ Q \ F reachable?

❖ Inclusion: L(A)
?

⊆ L(B)

• Antichains over QA × 2QB with = × ⊆.

• (r, {q1, . . . , qn}) is reachable. ⇐⇒
After reading some word w, A can
end up in a state r and B ends up in
one of q1, . . . , qn.

• Is any S ⊆ FA × 2QB\FB reachable?

Antichain-based Inclusion on NFA and NTA – p.13/23

Experiments with Antichains

❖ Determinisation-based and antichain-based inclusion checking on TA from ARTMC:

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120 140

tim
e

(s
)

number of states

antichain-based
determinisation-based

Antichain-based Inclusion on NFA and NTA – p.14/23

Antichains and Simulations in
Inclusion Checking on Word Automata

Antichain-based Inclusion on NFA and NTA – p.15/23

Simulation and Inclusion Checking

❖ Simulation cannot be directly used for checking inclusion:

• If qA0 F qB0 , then L(A) ⊆ L(B), but the converse does not hold!

Antichain-based Inclusion on NFA and NTA – p.16/23

Simulation and Inclusion Checking

❖ Simulation cannot be directly used for checking inclusion:

• If qA0 F qB0 , then L(A) ⊆ L(B), but the converse does not hold!

• Can be used as an auxiliary incomplete test only.

❖ One can compute antichains on simulation-reduced automata,

• but this requires using simulation equivalence,

• which means taking a symmetric restriction,

• which is not nice for a problem as asymmetric as inclusion checking,

• the obtained reduction is unnecessarily diminished.

Antichain-based Inclusion on NFA and NTA – p.16/23

Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,

Antichain-based Inclusion on NFA and NTA – p.17/23

Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,

2. ∃p′ ∈ P : p F p′,
• intuitively, p cannot even “beat” p′ alone.

Antichain-based Inclusion on NFA and NTA – p.17/23

Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,

2. ∃p′ ∈ P : p F p′,
• intuitively, p cannot even “beat” p′ alone.

antichains

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

Antichain-based Inclusion on NFA and NTA – p.17/23

Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,

2. ∃p′ ∈ P : p F p′,
• intuitively, p cannot even “beat” p′ alone.

antichains

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a

a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

r F r’
p’ F p’simulation (1)

Antichain-based Inclusion on NFA and NTA – p.17/23

Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,

2. ∃p′ ∈ P : p F p′,
• intuitively, p cannot even “beat” p′ alone.

(r,{p})

(r’,{p’}) (r,{p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r,{p,p’}) (r’,{p,p’})

(r,{p}) (r’,{p,p’}) (r,{p,p’}) (r’,{p,p’}) (r,{p,p’})

a a

b
a a

a a

b a a a a

r

a

a
r’

a

a,b

p
a

p’

a

A

B

a,b

r F r’
p’ F p’

antichains

simulation (1)

r F p
simulation (2)

Antichain-based Inclusion on NFA and NTA – p.17/23

Simulation Meets Antichains (2)

❖ Another simulation-based optimisation is to prune the sets in product states:

• (p,Q) can be replaced by (p,Q \ {q1}) whenever ∃q2 ∈ Q \ {q1} : q1 F q2.

• Intuitively, q1 cannot contribute anything compared to q2.

❖ One can also combine backward antichains with backward simulations.

❖ Even combinations of forward antichains and backward simulations (and vice versa)
are possible, but such combinations do not improve the computation [Doyen, Raskin –
TACAS’10].

Antichain-based Inclusion on NFA and NTA – p.18/23

Some Experimental Results

❖ Language inclusion checking on NFAs generated from ARMC:

Antichain-based Inclusion on NFA and NTA – p.19/23

Antichains and Simulations in
Upward Inclusion Checking on Tree Automata

Antichain-based Inclusion on NFA and NTA – p.20/23

Tree Antichains

[Bouajjani, Habermehl, Holík, Touili, V. – CIAA’08]

❖ For tree automata, an upward antichain construction may be used:

• Start with leaf rules.

• To compute successors via n-ary rules, take all n-tuples of generated macro-states
(p1, R1),..., (pn, Rn) and

– on the A part, iterate through all rules (p1, ..., pn)
a

−→ p,

– for each of them, on the B part, consider all rules (r1, ..., rn)
a

−→ r where
ri ∈ Ri for 1 ≤ i ≤ n.

(p1,{q 1,q2}) (p2,{q 3,q4})

(p3,{q 5,q6,q7,...})

...

Antichain-based Inclusion on NFA and NTA – p.21/23

Simulation Meets Antichains in Trees

❖ Tree antichains are built by computing successors of tuples of macro-states, which
amounts to computing successors of tuples of states on the left and right of macro-states:

(p1,{q 1,q2}) (p2,{q 3,q4})

(p3,{q 5,q6,q7,...})

...

❖ A crucial notion is the set (language) of trees accepted from a given tuple of states.

❖ A suitable simulation S to be combined with upward antichains should respect
languages of tuples of trees:

• If pi S ri for some 1 ≤ i ≤ n, then L((p1, ..., pn)) ⊆ L((r1, ..., rn)).

• For this, we may require: If p S r, then whenever (q1, ..., qi = p, ..., qn)
a

−→ q′, then

also (q1, ..., qi = r, ..., qn)
a

−→ r′ where p′ S r′.
– This leads to S = UId !
– Upward simulations induced by larger simulations are not suitable.

Antichain-based Inclusion on NFA and NTA – p.22/23

Some Experimental Results

❖ Language inclusion checking on TA generated from ARTMC:

Size Antichains (sec.) Simulation (sec.)

0 – 200 1.05 0.75
200 – 400 11.7 4.7
400 – 600 65.2 19.9
600 – 800 3019.3 568.7
800 – 1000 4481.9 840.4

1000 – 1200 11761.7 1720.9

Antichain-based Inclusion on NFA and NTA – p.23/23

	Plan of the Lecture
	
	Word Automata Universality
	Antichains in the Subset Construction
	Backward Antichain-based Universality
	
	Antichains for Tree Universality
	
	Classical Inclusion Checking on FA
	Classical Inclusion Checking on FA
	Classical Inclusion Checking on FA
	On-the-Fly Inclusion Checking
	On-the-Fly Inclusion Checking
	On-the-Fly Inclusion with Antichains
	Antichains for Universality x Inclusion
	Experiments with Antichains
	
	Simulation and Inclusion Checking
	Simulation and Inclusion Checking
	Simulation Meets Antichains (1)
	Simulation Meets Antichains (1)
	Simulation Meets Antichains (2)
	Some Experimental Results
	
	Tree Antichains
	Simulation Meets Antichains in Trees
	Some Experimental Results

