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Plan of the Lecture

❖ Antichain-based Universality Checking on Word Automata

❖ Antichain-based Upward Universality Checking on Tree Automata

❖ Antichain-based Inclusion Checking on Word Automata

❖ Antichains and Simulations in Inclusion Checking on Word Automata

❖ Antichains and Simulations in Upward Inclusion Checking on Tree Automata

❖ Antichains and Simulations in Downward Inclusion Checking on Tree Automata

• A separate presentation.
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Universality Checking on Word Automata
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Word Automata Universality

❖ Universality and inclusion are PSPACE-complete for NFA, EXPTIME-complete for TA.

❖ “Classic” approach: determinisation (subset construction), complementation, . . . .

❖ “On-the-fly” universality checking during subset construction – can be stopped as soon
as a non-accepting set gets generated:
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❖ Antichain-based universality checking for word automata:

• [Doyen, Henzinger, and Raskin – CAV’06],

• Keep only the states of the subset automaton needed for proving universality.

Antichain-based Inclusion on NFA and NTA – p.4/23



Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2
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Antichains in the Subset Construction

❖ A key observation: We do not need to keep computed subsets of states that are
supersets of other computed subsets.

w1

w2

❖ Given a set S partially ordered by ≥, an antichain over S is any A ⊆ S such that for any
r, s ∈ A, neither r ≤ s nor r ≥ s.

❖ Antichains for universality: subsets of 2Q ordered by ⊆.
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Backward Antichain-based Universality

❖ Backward antichain-based universality – a dual construction:

• start with non-final states,

• compute controllable predecessors,
– sets of predecessors that cannot continue outside of the given set,

• try to cover initial states,

• smaller sets can be discarded.
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Universality Checking on Tree Automata
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Antichains for Tree Universality

❖ The described forward antichain construction for word automata smoothly carries over
to an upward antichain construction on NTA.

❖ The only difference is in how the subset construction (i.e., the computation of new
states) is done.
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❖ Downward universality for TA cannot be done as a simple generalization of backward
universality on NFA: dealing with tuples of tuples of ... of states!
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Inclusion Checking on Word Automata
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Classical Inclusion Checking on FA
❖ The classical approach to checking L(A) ⊆ L(B):

• check emptiness of A ∩ determinizeusing_subset_construction B,
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• can involve minimisation of determinised automata: not a good solution anyway,
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• can involve minimisation of determinised automata: not a good solution anyway,

❖ The constructed product automaton is built of macro-states (r, P ) such that:
• if some w can reach r in A, P is the set of all states reached by w in B,
• (r, P ) is accepting iff r ∈ FA and P ∩ FB = ∅.
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On-the-Fly Inclusion Checking

❖ The first possible optimisation:

• do not determinise, then complement, then compose, then check emptiness,

• instead do all the steps at the same time:

– incrementally generate reachable macro-states (starting from (qA0 , {qB0 }))
– while checking for reachability of an accepting macro-state.
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❖ Can be stopped as soon as a counterexample to inclusion is found.

• No improvement when the inclusion holds, but a basis for further optimisations.
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On-the-Fly Inclusion with Antichains
[De Wulf, Doyen, Henzinger, Raskin – CAV’06]

❖ For the same left component, keep only those macro-states whose right components
are mutually incomparable wrt. inclusion (and hence antichains).

❖ If (p,R1) and (p,R2) such that R1 ⊆ R2 are generated, discard (p,R2).

• Indeed, if a counterexample to the inclusion query can be found from (p,R2),
a counterexample can be found from (p,R1) too.
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Antichains for Universality x Inclusion

❖ Universality:

• Antichains over 2Q with ⊆.

• {q1, . . . , qn} ⊆ 2Q is reachable. ⇐⇒
q1, . . . , qn are all the states in which
the automaton A can end up after
reading some word w.

• Is any S ⊆ Q \ F reachable?

❖ Inclusion: L(A)
?

⊆ L(B)

• Antichains over QA × 2QB with = × ⊆.

• (r, {q1, . . . , qn}) is reachable. ⇐⇒
After reading some word w, A can
end up in a state r and B ends up in
one of q1, . . . , qn.

• Is any S ⊆ FA × 2QB\FB reachable?
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Experiments with Antichains

❖ Determinisation-based and antichain-based inclusion checking on TA from ARTMC:
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Antichains and Simulations in
Inclusion Checking on Word Automata
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Simulation and Inclusion Checking

❖ Simulation cannot be directly used for checking inclusion:

• If qA0 F qB0 , then L(A) ⊆ L(B), but the converse does not hold!
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Simulation and Inclusion Checking

❖ Simulation cannot be directly used for checking inclusion:

• If qA0 F qB0 , then L(A) ⊆ L(B), but the converse does not hold!

• Can be used as an auxiliary incomplete test only.

❖ One can compute antichains on simulation-reduced automata,

• but this requires using simulation equivalence,

• which means taking a symmetric restriction,

• which is not nice for a problem as asymmetric as inclusion checking,

• the obtained reduction is unnecessarily diminished.
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Simulation Meets Antichains (1)

[Abdulla, Chen, Holík, Mayr, V. – TACAS’10], [Doyen, Raskin – TACAS’10]

❖ A macro-state (p, P ) needs not be explored if:

1. there is a macro-state (r, R) such that p F r and ∀r′ ∈ R ∃p′ ∈ P : r′ F p′,
• intuitively, p is less “accepting” than r while P is more “accepting” than R,
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Simulation Meets Antichains (2)

❖ Another simulation-based optimisation is to prune the sets in product states:

• (p,Q) can be replaced by (p,Q \ {q1}) whenever ∃q2 ∈ Q \ {q1} : q1 F q2.

• Intuitively, q1 cannot contribute anything compared to q2.

❖ One can also combine backward antichains with backward simulations.

❖ Even combinations of forward antichains and backward simulations (and vice versa)
are possible, but such combinations do not improve the computation [Doyen, Raskin –
TACAS’10].
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Some Experimental Results

❖ Language inclusion checking on NFAs generated from ARMC:
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Antichains and Simulations in
Upward Inclusion Checking on Tree Automata
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Tree Antichains

[Bouajjani, Habermehl, Holík, Touili, V. – CIAA’08]

❖ For tree automata, an upward antichain construction may be used:

• Start with leaf rules.

• To compute successors via n-ary rules, take all n-tuples of generated macro-states
(p1, R1),..., (pn, Rn) and

– on the A part, iterate through all rules (p1, ..., pn)
a

−→ p,

– for each of them, on the B part, consider all rules (r1, ..., rn)
a

−→ r where
ri ∈ Ri for 1 ≤ i ≤ n.

(p1,{q 1,q2}) (p2,{q 3,q4})

(p3,{q 5,q6,q7,...})

...
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Simulation Meets Antichains in Trees

❖ Tree antichains are built by computing successors of tuples of macro-states, which
amounts to computing successors of tuples of states on the left and right of macro-states:

(p1,{q 1,q2}) (p2,{q 3,q4})

(p3,{q 5,q6,q7,...})

...

❖ A crucial notion is the set (language) of trees accepted from a given tuple of states.

❖ A suitable simulation S to be combined with upward antichains should respect
languages of tuples of trees:

• If pi S ri for some 1 ≤ i ≤ n, then L((p1, ..., pn)) ⊆ L((r1, ..., rn)).

• For this, we may require: If p S r, then whenever (q1, ..., qi = p, ..., qn)
a

−→ q′, then

also (q1, ..., qi = r, ..., qn)
a

−→ r′ where p′ S r′.
– This leads to S = UId !
– Upward simulations induced by larger simulations are not suitable.
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Some Experimental Results

❖ Language inclusion checking on TA generated from ARTMC:

Size Antichains (sec.) Simulation (sec.)

0 – 200 1.05 0.75
200 – 400 11.7 4.7
400 – 600 65.2 19.9
600 – 800 3019.3 568.7
800 – 1000 4481.9 840.4

1000 – 1200 11761.7 1720.9
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