
Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata

Lukáš Holı́k1,2 Ondřej Lengál1 Jiřı́ Šimáček1,3 Tomáš Vojnar1

1Brno University of Technology, Czech Republic
2Uppsala University, Sweden

3VERIMAG, UJF/CNRS/INPG, Gières, France

October 13, 2011

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 1 / 24



Outline

1 Tree Automata

2 Downward Inclusion Checking

3 Semi-Symbolic Encoding of Non-Deterministic TA

4 Conclusion

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 2 / 24



Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g., doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3 / 24



Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures

• e.g., doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3 / 24



Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g., doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3 / 24



Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g., doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3 / 24



Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g., doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3 / 24



Tree Automata

Finite Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . set of states,
• Σ . . . finite alphabet of symbols with arity,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4 / 24



Tree Automata

Finite Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . set of states,
• Σ . . . finite alphabet of symbols with arity,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a a

a g

a a

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4 / 24



Tree Automata

Finite Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . set of states,
• Σ . . . finite alphabet of symbols with arity,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

a
q

g

a

q

a

q

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4 / 24



Tree Automata

Finite Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . set of states,
• Σ . . . finite alphabet of symbols with arity,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

r

a
q

g

a

q

a

q

r

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4 / 24



Tree Automata

Finite Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . set of states,
• Σ . . . finite alphabet of symbols with arity,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

r

a
q

g

a

q

a

q

r

s

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation

• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,

• manipulate them without determinisation,
• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,

• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in FV:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion (ARTMC, . . . ),

handling large alphabets (MSO, WSkS).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5 / 24



Approaches to Checking Tree Automata Inclusion

Approximate

• downward simulation: q �D r =⇒
I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Approximate
• downward simulation: q �D r =⇒

I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Approximate
• downward simulation: q �D r =⇒

I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Approximate
• downward simulation: q �D r =⇒

I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Approximate
• downward simulation: q �D r =⇒

I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Approximate
• downward simulation: q �D r =⇒

I∀f ∈ Σ : q f−→ (q1, . . . , qn) =⇒ r f−→ (r1, . . . , rn), ∀1 ≤ i ≤ n : qi �D ri

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

(under-approximation: q �D r =⇒ L(q) ⊆ L(r))

• upward simulation

I not compatible with language inclusion,
I but can be used to speed up exact checking

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6 / 24



Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . . .

. . . but there are some highly efficient heuristics:
• antichains1

• antichains combined with simulation2,3

1

M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.

2

L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS’10.

3

P. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7 / 24



Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . . .
. . . but there are some highly efficient heuristics:

• antichains1

• antichains combined with simulation2,3

1

M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.

2

L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS’10.

3

P. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7 / 24



Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . . .
. . . but there are some highly efficient heuristics:
• antichains1

• antichains combined with simulation2,3

1
M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.

2

L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS’10.

3

P. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7 / 24



Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . . .
. . . but there are some highly efficient heuristics:
• antichains1

• antichains combined with simulation2,3

1
M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.

2
L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS’10.

3
P. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7 / 24



Inclusion Checking

Textbook algorithm for checking L(AS) ⊆ L(AB) on TA:

1 Bottom-up determinise AB → AD
B .

(exponential explosion!)

• Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

2 Complement AD
B → AD

B .

3 Check AS ∩ AD
B = ∅.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8 / 24



Inclusion Checking

Textbook algorithm for checking L(AS) ⊆ L(AB) on TA:
1 Bottom-up determinise AB → AD

B .

(exponential explosion!)

• Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

2 Complement AD
B → AD

B .

3 Check AS ∩ AD
B = ∅.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8 / 24



Inclusion Checking

Textbook algorithm for checking L(AS) ⊆ L(AB) on TA:
1 Bottom-up determinise AB → AD

B .

(exponential explosion!)

• Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

2 Complement AD
B → AD

B .

3 Check AS ∩ AD
B = ∅.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8 / 24



Inclusion Checking

Textbook algorithm for checking L(AS) ⊆ L(AB) on TA:
1 Bottom-up determinise AB → AD

B .

(exponential explosion!)

• Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

2 Complement AD
B → AD

B .

3 Check AS ∩ AD
B = ∅.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8 / 24



Inclusion Checking

Textbook algorithm for checking L(AS) ⊆ L(AB) on TA:
1 Bottom-up determinise AB → AD

B . (exponential explosion!)
• Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

2 Complement AD
B → AD

B .

3 Check AS ∩ AD
B = ∅.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8 / 24



Upward Inclusion Checking

On-the-fly approach:

1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.

2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.

3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),
• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .

5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.

6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

On-the-fly approach:
1 Traverse AS and AB in parallel, bottom-up.
2 Maintain a workset W of pairs (q,P), where q ∈ QS,P ⊆ QB.
3 Generate tuples (q1, . . . ,qn) and (P1, . . . ,Pn),

• where (q1,P1), . . . , (qn,Pn) ∈W .

4 ∀f ∈ Σ, generate (s,T ), s.t. (q1, . . . ,qn)
f−→ s, (P1, . . . ,Pn)

f−→ T .
5 If you encounter (f ,R), where f ∈ FS,R ∩ FB = ∅, return false.
6 If no new pairs are found, return true.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9 / 24



Upward Inclusion Checking

Optimisations:

1 use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):
• if S ⊆ S′ and both (q,S) and (q,S′) are in workset W ,
• remove (q,S′) from workset W .

q r
w

S′

S

T ′

T

w

2 use simulation to furter prune the searched space.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10 / 24



Upward Inclusion Checking

Optimisations:
1 use antichains: maintain only such pairs which are sufficient to

encounter a counterexample (if it exists):

• if S ⊆ S′ and both (q,S) and (q,S′) are in workset W ,
• remove (q,S′) from workset W .

q r
w

S′

S

T ′

T

w

2 use simulation to furter prune the searched space.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10 / 24



Upward Inclusion Checking

Optimisations:
1 use antichains: maintain only such pairs which are sufficient to

encounter a counterexample (if it exists):
• if S ⊆ S′ and both (q,S) and (q,S′) are in workset W ,
• remove (q,S′) from workset W .

q r
w

S′

S

T ′

T

w

2 use simulation to furter prune the searched space.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10 / 24



Upward Inclusion Checking

Optimisations:
1 use antichains: maintain only such pairs which are sufficient to

encounter a counterexample (if it exists):
• if S ⊆ S′ and both (q,S) and (q,S′) are in workset W ,
• remove (q,S′) from workset W .

q r
w

S′

S

T ′

T

w

2 use simulation to furter prune the searched space.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10 / 24



Upward Inclusion Checking

Optimisations:
1 use antichains: maintain only such pairs which are sufficient to

encounter a counterexample (if it exists):
• if S ⊆ S′ and both (q,S) and (q,S′) are in workset W ,
• remove (q,S′) from workset W .

q r
w

S′

S

T ′

T

w

2 use simulation to furter prune the searched space.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10 / 24



Upward Inclusion Checking

Advantages:

Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:

Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Upward Inclusion Checking

Advantages:
Straightforward extension of the antichain algorithm for FA. ,

Disadvantages:
Generating tuples is expensive. /

The counterexample may be at root . . . takes long to get there. /

Upward simulation→ hard to compute and too strong. /

Not compatible with downward simulation (easy & rich). /

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11 / 24



Downward Inclusion Checking

Downward Inclusion Checking

inspired by XML Schema containment checking4,
does not follow the classic schema of inclusion algorithms,
uses antichains and downward simulation.

4

H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12 / 24



Downward Inclusion Checking

Downward Inclusion Checking
inspired by XML Schema containment checking4,

does not follow the classic schema of inclusion algorithms,
uses antichains and downward simulation.

4
H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12 / 24



Downward Inclusion Checking

Downward Inclusion Checking
inspired by XML Schema containment checking4,
does not follow the classic schema of inclusion algorithms,

uses antichains and downward simulation.

4
H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12 / 24



Downward Inclusion Checking

Downward Inclusion Checking
inspired by XML Schema containment checking4,
does not follow the classic schema of inclusion algorithms,
uses antichains and downward simulation.

4
H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12 / 24



Downward Inclusion Checking

AS

q f−→ (r , s)

r a−→
s b−→

q

r
a

s
b

f

AB

u f−→ (v , v)

u f−→ (w ,w)

v a−→
w b−→

u

v
a

v
a

f
u

w

b

w

b

f

L(q) ⊆ L(u) if and only if

L(r)× L(s) ⊆ (L(v)× L(v)) ∪ (L(w)× L(w))

(language inclusion of tuples!)

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 13 / 24



Downward Inclusion Checking

AS

q f−→ (r , s)

r a−→
s b−→

q

r
a

s
b

f

AB

u f−→ (v , v)

u f−→ (w ,w)

v a−→
w b−→

u

v
a

v
a

f
u

w

b

w

b

f

L(q) ⊆ L(u) if and only if

L(r)× L(s) ⊆ (L(v)× L(v)) ∪ (L(w)× L(w))

(language inclusion of tuples!)

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 13 / 24



Checking language inclusion of tuples

Note that in general

(L(v1)×L(v2))∪(L(w1)×L(w2)) 6= (L(v1)∪L(w1))×(L(v2)∪L(w2))

However, for universe U and G,H ⊆ U :

G × H = (G × U) ∩ (U × H)

(let U = TΣ . . . all trees over Σ)

U U

G
H×

(L(v1) × L(v2)) ∪ (L(w1) × L(w2)) =
((L(v1)×TΣ) ∩ (TΣ×L(v2))) ∪ ((L(w1)×TΣ) ∩ (TΣ×L(w2))) =

Using distributive laws, this becomes

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14 / 24



Checking language inclusion of tuples

Note that in general

(L(v1)×L(v2))∪(L(w1)×L(w2)) 6= (L(v1)∪L(w1))×(L(v2)∪L(w2))

However, for universe U and G,H ⊆ U :

G × H = (G × U) ∩ (U × H)

(let U = TΣ . . . all trees over Σ)

U U

G
H×

(L(v1) × L(v2)) ∪ (L(w1) × L(w2)) =
((L(v1)×TΣ) ∩ (TΣ×L(v2))) ∪ ((L(w1)×TΣ) ∩ (TΣ×L(w2))) =

Using distributive laws, this becomes

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14 / 24



Checking language inclusion of tuples

Note that in general

(L(v1)×L(v2))∪(L(w1)×L(w2)) 6= (L(v1)∪L(w1))×(L(v2)∪L(w2))

However, for universe U and G,H ⊆ U :

G × H = (G × U) ∩ (U × H)

(let U = TΣ . . . all trees over Σ)

U U

G
H×

(L(v1) × L(v2)) ∪ (L(w1) × L(w2)) =
((L(v1)×TΣ) ∩ (TΣ×L(v2))) ∪ ((L(w1)×TΣ) ∩ (TΣ×L(w2))) =

Using distributive laws, this becomes

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14 / 24



Checking language inclusion of tuples

Note that in general

(L(v1)×L(v2))∪(L(w1)×L(w2)) 6= (L(v1)∪L(w1))×(L(v2)∪L(w2))

However, for universe U and G,H ⊆ U :

G × H = (G × U) ∩ (U × H)

(let U = TΣ . . . all trees over Σ)

U U

G
H×

(L(v1) × L(v2)) ∪ (L(w1) × L(w2)) =
((L(v1)×TΣ) ∩ (TΣ×L(v2))) ∪ ((L(w1)×TΣ) ∩ (TΣ×L(w2))) =

Using distributive laws, this becomes

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14 / 24



Checking language inclusion of tuples

Note that in general

(L(v1)×L(v2))∪(L(w1)×L(w2)) 6= (L(v1)∪L(w1))×(L(v2)∪L(w2))

However, for universe U and G,H ⊆ U :

G × H = (G × U) ∩ (U × H)

(let U = TΣ . . . all trees over Σ)

U U

G
H×

(L(v1) × L(v2)) ∪ (L(w1) × L(w2)) =
((L(v1)×TΣ) ∩ (TΣ×L(v2))) ∪ ((L(w1)×TΣ) ∩ (TΣ×L(w2))) =

Using distributive laws, this becomes

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .
. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .
. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .

. . . which is again checking inclusion of union of tuples, but now . . .

. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .

. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .
. . . each tuple has a non-TΣ language on a single position.

⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .
. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Checking language inclusion of tuples
L(r)× L(s) ⊆

((L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∩ ((L(v1)×TΣ) ∪ (TΣ×L(w2))) ∩
((TΣ×L(v2)) ∪ (L(w1)×TΣ)) ∩ ((TΣ×L(v2)) ∪ (TΣ×L(w2)))

. . . is equal to checking

((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (L(w1)×TΣ)) ∧
((L(r)× L(s)) ⊆ (L(v1)×TΣ) ∪ (TΣ×L(w2))) ∧ . . .

Each clause can be checked separately . . .
. . . which is again checking inclusion of union of tuples, but now . . .
. . . each tuple has a non-TΣ language on a single position.
⇒ Checking language inclusion can be done component-wise. ⇒

⇐⇒ ((L(r) ⊆ L({v1,w1})) ∨ (L(s) ⊆ TΣ)) ∧
((L(r) ⊆ L(v1)) ∨ (L(s) ⊆ L(w2)) ∧ . . .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).

Start the algorithm from (f ,FB) for each f ∈ FS.
Alternating structure:
• for all clauses . . .
• exists a position such that inclusion holds.

Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).
Start the algorithm from (f ,FB) for each f ∈ FS.

Alternating structure:
• for all clauses . . .
• exists a position such that inclusion holds.

Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).
Start the algorithm from (f ,FB) for each f ∈ FS.
Alternating structure:

• for all clauses . . .
• exists a position such that inclusion holds.

Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).
Start the algorithm from (f ,FB) for each f ∈ FS.
Alternating structure:
• for all clauses . . .

• exists a position such that inclusion holds.
Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).
Start the algorithm from (f ,FB) for each f ∈ FS.
Alternating structure:
• for all clauses . . .
• exists a position such that inclusion holds.

Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Basic Downward Inclusion Checking Algorithm

DFS, maintain a workset W of product states (qS,PB).
Start the algorithm from (f ,FB) for each f ∈ FS.
Alternating structure:
• for all clauses . . .
• exists a position such that inclusion holds.

Sooner or later, the DFS either
• reaches a leaf, or
• reaches a pair (qS,PB) which is already in W .

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16 / 24



Optimised Downward Inclusion Checking Algorithm

Optimisations:
1 It is possible to maintain a cache NN of pairs (qS,PB) for which
L(qS) 6⊆ L(PB) has been shown and prune the search.

2 Further, NN can be maintained as an antichain w.r.t. ⊇
• when S ⊆ S′, why store both (q,S) and (q,S′)?
• when L(q) 6⊆ L(S′), then surely L(q) 6⊆ L(S).

q r
w

S′

S

T ′

T

w

3 Moreover, NN can be maintained w.r.t. downward simulation �D.
• q �D r =⇒ L(q) ⊆ L(r)

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r4 Furthermore, workset can be also maintained w.r.t. �D.
5 Even further, if ∃s ∈ S : q �D s, then surely L(q) ⊆ L(S).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17 / 24



Optimised Downward Inclusion Checking Algorithm

Optimisations:
1 It is possible to maintain a cache NN of pairs (qS,PB) for which
L(qS) 6⊆ L(PB) has been shown and prune the search.

2 Further, NN can be maintained as an antichain w.r.t. ⊇
• when S ⊆ S′, why store both (q,S) and (q,S′)?
• when L(q) 6⊆ L(S′), then surely L(q) 6⊆ L(S).

q r
w

S′

S

T ′

T

w

3 Moreover, NN can be maintained w.r.t. downward simulation �D.
• q �D r =⇒ L(q) ⊆ L(r)

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r4 Furthermore, workset can be also maintained w.r.t. �D.
5 Even further, if ∃s ∈ S : q �D s, then surely L(q) ⊆ L(S).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17 / 24



Optimised Downward Inclusion Checking Algorithm

Optimisations:
1 It is possible to maintain a cache NN of pairs (qS,PB) for which
L(qS) 6⊆ L(PB) has been shown and prune the search.

2 Further, NN can be maintained as an antichain w.r.t. ⊇
• when S ⊆ S′, why store both (q,S) and (q,S′)?
• when L(q) 6⊆ L(S′), then surely L(q) 6⊆ L(S).

q r
w

S′

S

T ′

T

w

3 Moreover, NN can be maintained w.r.t. downward simulation �D.
• q �D r =⇒ L(q) ⊆ L(r)

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

4 Furthermore, workset can be also maintained w.r.t. �D.
5 Even further, if ∃s ∈ S : q �D s, then surely L(q) ⊆ L(S).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17 / 24



Optimised Downward Inclusion Checking Algorithm

Optimisations:
1 It is possible to maintain a cache NN of pairs (qS,PB) for which
L(qS) 6⊆ L(PB) has been shown and prune the search.

2 Further, NN can be maintained as an antichain w.r.t. ⊇
• when S ⊆ S′, why store both (q,S) and (q,S′)?
• when L(q) 6⊆ L(S′), then surely L(q) 6⊆ L(S).

q r
w

S′

S

T ′

T

w

3 Moreover, NN can be maintained w.r.t. downward simulation �D.
• q �D r =⇒ L(q) ⊆ L(r)

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

4 Furthermore, workset can be also maintained w.r.t. �D.

5 Even further, if ∃s ∈ S : q �D s, then surely L(q) ⊆ L(S).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17 / 24



Optimised Downward Inclusion Checking Algorithm

Optimisations:
1 It is possible to maintain a cache NN of pairs (qS,PB) for which
L(qS) 6⊆ L(PB) has been shown and prune the search.

2 Further, NN can be maintained as an antichain w.r.t. ⊇
• when S ⊆ S′, why store both (q,S) and (q,S′)?
• when L(q) 6⊆ L(S′), then surely L(q) 6⊆ L(S).

q r
w

S′

S

T ′

T

w

3 Moreover, NN can be maintained w.r.t. downward simulation �D.
• q �D r =⇒ L(q) ⊆ L(r)

L(r1) L(ri) L(rn)

q

q1

L(q1)

qi

L(qi)

qn

L(qn)

· · · · · ·

r

r1

L(q1)

ri

L(qi)

rn

L(qn)

· · · · · ·

q �D r

4 Furthermore, workset can be also maintained w.r.t. �D.
5 Even further, if ∃s ∈ S : q �D s, then surely L(q) ⊆ L(S).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17 / 24



Experiments

Size 50–250 400–600
Pairs 323 64
Timeout 20 s 60 s
Up 31.21 % 9.38 %
Up+s 0.00 % 0.00 %
Down 53.50 % 39.06 %
Down+s 15.29 % 51.56 %
Avg up 1.71 0.34
Avg down 3.55 46.56

a)

Size 50–250 400–600
Pairs 323 64
Timeout 20 s 60 s
Up+s 81.82 % 20.31 %
Down+s 18.18 % 79.69 %
Avg up 1.33 9.92
Avg down 3.60 2116.29

b)

a) Comparison of methods (w/ simulation computation time).
b) Comparison of methods (w/o simulation computation time).

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 18 / 24



Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
FV of programs with complex dynamic data structures,
decision procedures of some logics: WSkS, MSO.

Current approach:
use the MONA tree automata package (MTBDD-based)
But only deterministic automata supported→
• often runs out of reasonable memory or time.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 19 / 24



Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
FV of programs with complex dynamic data structures,
decision procedures of some logics: WSkS, MSO.

Current approach:
use the MONA tree automata package (MTBDD-based)
But only deterministic automata supported→
• often runs out of reasonable memory or time.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 19 / 24



Dual representation

Multi-terminal binary decision diagrams (MTBDDs)

Bottom-up:

(q1, . . . ,qn)

{r , s} {s, t ,u} ∅ {u}

Top-down:
q

{(r , s), (r , t)}
{(s), (t), (u)}

∅ {(u,u,u)}

Bottom-up : inspired by MONA, but has sets of states in leaves.
Top-down : sets of state tuples in leaves.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 20 / 24



Dual representation

Multi-terminal binary decision diagrams (MTBDDs)
Bottom-up:

(q1, . . . ,qn)

{r , s} {s, t ,u} ∅ {u}

Top-down:
q

{(r , s), (r , t)}
{(s), (t), (u)}

∅ {(u,u,u)}

Bottom-up : inspired by MONA, but has sets of states in leaves.
Top-down : sets of state tuples in leaves.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 20 / 24



Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
union,
intersection,
language inclusion checking (both upward and downward),
downward simulation computation.
• based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
Use of CUDD to implement MTBDDs.
∼ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21 / 24



Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
union,
intersection,
language inclusion checking (both upward and downward),
downward simulation computation.
• based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:

Use of CUDD to implement MTBDDs.
∼ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21 / 24



Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
union,
intersection,
language inclusion checking (both upward and downward),
downward simulation computation.
• based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
Use of CUDD to implement MTBDDs.

∼ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21 / 24



Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
union,
intersection,
language inclusion checking (both upward and downward),
downward simulation computation.
• based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
Use of CUDD to implement MTBDDs.
∼ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21 / 24



Conclusion

An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, . . .
. . . that makes use of antichains and downward simulation.
A new symbolic encoding of non-deterministic tree automata
proposed.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22 / 24



Conclusion

An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, . . .

. . . that makes use of antichains and downward simulation.
A new symbolic encoding of non-deterministic tree automata
proposed.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22 / 24



Conclusion

An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, . . .
. . . that makes use of antichains and downward simulation.

A new symbolic encoding of non-deterministic tree automata
proposed.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22 / 24



Conclusion

An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, . . .
. . . that makes use of antichains and downward simulation.
A new symbolic encoding of non-deterministic tree automata
proposed.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22 / 24



Future work

Optimise the downward inclusion to also cache pairs (q,S), such
that L(q) ⊆ L(S).

Replace CUDD with a more efficient MTBDD package.
Improve the symbolic downward simulation algorithm.
Create a tree automata package replacing MONA.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23 / 24



Future work

Optimise the downward inclusion to also cache pairs (q,S), such
that L(q) ⊆ L(S).
Replace CUDD with a more efficient MTBDD package.

Improve the symbolic downward simulation algorithm.
Create a tree automata package replacing MONA.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23 / 24



Future work

Optimise the downward inclusion to also cache pairs (q,S), such
that L(q) ⊆ L(S).
Replace CUDD with a more efficient MTBDD package.
Improve the symbolic downward simulation algorithm.

Create a tree automata package replacing MONA.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23 / 24



Future work

Optimise the downward inclusion to also cache pairs (q,S), such
that L(q) ⊆ L(S).
Replace CUDD with a more efficient MTBDD package.
Improve the symbolic downward simulation algorithm.
Create a tree automata package replacing MONA.

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23 / 24



Thank you for your attention.

Questions?

Holı́k, Lengál, Šimáček, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 24 / 24


	Tree Automata
	Downward Inclusion Checking
	Semi-Symbolic Encoding of Non-Deterministic TA
	Conclusion

