Efficient Inclusion Checking on Explicit and Semi-Symbolic Tree Automata

Lukáš Holík^{1,2} <mark>Ondřej Lengál¹ J</mark>iří Šimáček^{1,3} Tomáš Vojnar¹

¹ Brno University of Technology, Czech Republic ²Uppsala University, Sweden ³VERIMAG, UJF/CNRS/INPG, Gières, France

October 13, 2011

- [Downward Inclusion Checking](#page-52-0)
- [Semi-Symbolic Encoding of Non-Deterministic TA](#page-82-0)

[Conclusion](#page-90-0)

Very popular in computer science:

- \blacksquare data structures,
- computer network topologies,
- \blacksquare distributed protocols, ...

Very popular in computer science:

- \blacksquare data structures.
- **computer network topologies,**
- \blacksquare distributed protocols, ...

In formal verification:

■ encoding of complex data structures

Very popular in computer science:

- \blacksquare data structures.
- computer network topologies,
- \blacksquare distributed protocols, ...

In formal verification:

- **E** encoding of complex data structures
	- e.g., doubly linked lists

Very popular in computer science:

- \blacksquare data structures.
- **computer network topologies,**
- distributed protocols, . . .

In formal verification:

- **E** encoding of complex data structures
	- e.g., doubly linked lists

Very popular in computer science:

- \blacksquare data structures.
- **computer network topologies,**
- \blacksquare distributed protocols, ...

In formal verification:

E encoding of complex data structures

"a" $\begin{array}{|c|c|c|}\n\hline\n-\hline\n\end{array}$ "b" $\begin{array}{|c|c|}\n\hline\n\end{array}$ "c"

prev d $\overline{\mathbf{p}}_{\text{prev}}$ b $\overline{\mathbf{p}}_{\text{prev}}$

next
and next
and next

• e.g., doubly linked lists

dll

• . . .

- \blacksquare extension of finite automaton to trees:
	- *Q* . . . set of states,
	- Σ ... finite alphabet of symbols with arity,
	- Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
	- *F* . . . set of final states.

- **E** extension of finite automaton to trees:
	- *Q* . . . set of states,
	- Σ ... finite alphabet of symbols with arity,
	- Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
	- *F* . . . set of final states.

- **E** extension of finite automaton to trees:
	- *Q* . . . set of states,
	- Σ ... finite alphabet of symbols with arity,
	- Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
	- *F* . . . set of final states.

- **E** extension of finite automaton to trees:
	- *Q* . . . set of states,
	- Σ ... finite alphabet of symbols with arity,
	- Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
	- *F* . . . set of final states.

- **E** extension of finite automaton to trees:
	- *Q* . . . set of states,
	- Σ ... finite alphabet of symbols with arity,
	- Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
	- *F* . . . set of final states.

- \blacksquare can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, . . . ,
- ... formal verification, decision procedures of some logics, ...

E can represent (infinite) sets of trees with regular structure,

used in XML DBs, language processing, \dots ,

■ ... formal verification, decision procedures of some logics, ...

Tree automata in FV:

often large due to determinisation

- **E** can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, \dots ,
- **E** ... formal verification, decision procedures of some logics, ...

- often large due to determinisation
	- often advantageous to use non-deterministic tree automata,

- **E** can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, \dots ,
- **E** ... formal verification, decision procedures of some logics, ...

- often large due to determinisation
	- often advantageous to use non-deterministic tree automata,
	- manipulate them without determinisation,

- **E** can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, \dots ,
- **E** ... formal verification, decision procedures of some logics, ...

- often large due to determinisation
	- often advantageous to use non-deterministic tree automata,
	- manipulate them without determinisation,
	- even for operations such as language inclusion $(ARTMC, \ldots),$

- **E** can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, \dots ,
- **E** ... formal verification, decision procedures of some logics, ...

- often large due to determinisation
	- often advantageous to use non-deterministic tree automata,
	- manipulate them without determinisation,
	- even for operations such as language inclusion $(ARTMC, \ldots),$
- handling large alphabets (MSO, WSkS).

Approximate

Approximate

• downward simulation: $q \preceq_D r \implies$

$$
\forall f \in \Sigma : q \stackrel{f}{\longrightarrow} (q_1, \ldots, q_n) \implies r \stackrel{f}{\longrightarrow} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i
$$

Approximate

• downward simulation: $q \preceq_D r \implies$

$$
\forall f \in \Sigma : q \stackrel{f}{\longrightarrow} (q_1, \ldots, q_n) \implies r \stackrel{f}{\longrightarrow} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i
$$

Approximate

• downward simulation: $q \preceq_D r \implies$

$$
\forall f \in \Sigma : q \stackrel{f}{\longrightarrow} (q_1, \ldots, q_n) \implies r \stackrel{f}{\longrightarrow} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i
$$

(under-approximation: $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$)

Approximate

• downward simulation: $q \preceq_D r \implies$

 $\forall f \in \Sigma : q \stackrel{f}{\longrightarrow} (q_1, \ldots, q_n) \implies r \stackrel{f}{\longrightarrow} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \preceq_D r_i$

(under-approximation: $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$)

• upward simulation

Approximate

• downward simulation: $q \prec_p r \implies$

$$
\forall f \in \Sigma : q \stackrel{f}{\longrightarrow} (q_1, \ldots, q_n) \implies r \stackrel{f}{\longrightarrow} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \preceq_D r_i
$$

(under-approximation: $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$)

- upward simulation
	- \triangleright not compatible with language inclusion,
	- \triangleright but can be used to speed up exact checking

Exact: **EXPTIME-complete** . . .

1 2

3

Exact: **EXPTIME-complete** . . .

 \blacksquare ... but there are some highly efficient heuristics:

1 2 3

Holík, Lengál, Šimáček, Vojnar (BUT) **inclusion Checking on Tree Automata** Cotober 13, 2011 7/24

Exact: **EXPTIME-complete** . . .

\blacksquare ... but there are some highly efficient heuristics:

• antichains¹

^{1&}lt;br>M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV'06. 2

³

Exact: **EXPTIME-complete** . . .

■ ... but there are some highly efficient heuristics:

- antichains¹
- antichains combined with simulation^{2,3}

Holík, Lengál, Šimáček, Vojnar (BUT) **i**nclusion Checking on Tree Automata **on Tree Automata** October 13, 2011 7/24

^{1&}lt;br>M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV'06.

² L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS'10.

³ P. Abdulla, Y.-F. Chen, L. Holík, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS'10.

- 1 Bottom-up determinise $\mathcal{A}_B \to \mathcal{A}_B^D$.
	- Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

- 1 Bottom-up determinise $\mathcal{A}_B \to \mathcal{A}_B^D$.
	- Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- 2 Complement $\mathcal{A}_{B}^{D} \rightarrow \mathcal{A}_{B}^{D}$.

- 1 Bottom-up determinise $\mathcal{A}_B \to \mathcal{A}_B^D$.
	- Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- 2 Complement $\mathcal{A}_{B}^{D} \rightarrow \mathcal{A}_{B}^{D}$.
- 3 Check $A_S \cap A_B^D = \emptyset$.

- 1 Bottom-up determinise $A_B \rightarrow A_B^D$. (exponential explosion!)
	- Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- 2 Complement $\mathcal{A}_{B}^{D} \rightarrow \mathcal{A}_{B}^{D}$.
- 3 Check $A_S \cap A_B^D = \emptyset$.

Upward Inclusion Checking

On-the-fly approach:

On-the-fly approach:

1 Traverse A_S and A_B in parallel, bottom-up.

On-the-fly approach:

- **1** Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset *W* of pairs (q, P) , where $q \in Q_S$, $P \subseteq Q_B$.
- **1** Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset *W* of pairs (q, P) , where $q \in Q_S$, $P \subseteq Q_B$.
- 3 Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
	- where $(q_1, P_1), \ldots, (q_n, P_n) \in W$.

- **1** Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset *W* of pairs (q, P) , where $q \in Q_S, P \subseteq Q_B$.
- 3 Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
	- where $(q_1, P_1), \ldots, (q_n, P_n) \in W$.

 4 ∀ f ∈ ∑, generate (s, T) , s.t. $(q_1, \ldots, q_n) \stackrel{f}{\longrightarrow} s$, $(P_1, \ldots, P_n) \stackrel{f}{\longrightarrow} T$.

- **1** Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset *W* of pairs (q, P) , where $q \in Q_S, P \subseteq Q_B$.
- 3 Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
	- where $(q_1, P_1), \ldots, (q_n, P_n) \in W$.
- 4 ∀ f ∈ ∑, generate (s, T) , s.t. $(q_1, \ldots, q_n) \stackrel{f}{\longrightarrow} s$, $(P_1, \ldots, P_n) \stackrel{f}{\longrightarrow} T$.
- 5 If you encounter (f, R) , where $f \in F_S$, $R \cap F_B = \emptyset$, return false.

- **1** Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset *W* of pairs (q, P) , where $q \in Q_S, P \subseteq Q_B$.
- 3 Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
	- where $(q_1, P_1), \ldots, (q_n, P_n) \in W$.
- 4 ∀ f ∈ ∑, generate (s, T) , s.t. $(q_1, \ldots, q_n) \stackrel{f}{\longrightarrow} s$, $(P_1, \ldots, P_n) \stackrel{f}{\longrightarrow} T$.
- 5 If you encounter (f, R) , where $f \in F_S$, $R \cap F_B = \emptyset$, return false.
- 6 If no new pairs are found, return true.

Optimisations:

Optimisations:

1 use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):

Optimisations:

- **1** use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
	- if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W ,
	- remove (q, S') from workset W .

Optimisations:

- **1** use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
	- if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W ,
	- remove (q, S') from workset W .

Optimisations:

- **1** use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
	- if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W ,
	- remove (q, S') from workset W .

2 use simulation to furter prune the searched space.

Advantages:

Straightforward extension of the antichain algorithm for FA. \odot

Straightforward extension of the antichain algorithm for FA. \odot

Straightforward extension of the antichain algorithm for FA. \odot

Disadvantages:

Generating tuples is expensive. \odot

Straightforward extension of the antichain algorithm for FA. \odot

- Generating tuples is expensive. \odot
- **The counterexample may be at root ... takes long to get there.** \circledcirc

Straightforward extension of the antichain algorithm for FA. \odot

- Generating tuples is expensive. \odot
- **The counterexample may be at root ... takes long to get there.** \circledcirc
- Upward simulation \rightarrow hard to compute and too strong. ©

Straightforward extension of the antichain algorithm for FA. \odot

- Generating tuples is expensive. \odot
- **The counterexample may be at root ... takes long to get there.** \circledcirc
- Upward simulation \rightarrow hard to compute and too strong. ©
- Not compatible with downward simulation (easy & rich). \odot

Downward Inclusion Checking

inspired by XML Schema containment checking⁴,

⁴ H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

- inspired by XML Schema containment checking⁴,
- does not follow the classic schema of inclusion algorithms,

⁴ H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

- inspired by XML Schema containment checking⁴,
- **does not follow the classic schema of inclusion algorithms,**
- uses antichains and downward simulation.

⁴ H. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

A*^S*

 \mathcal{A}_B $\underline{\mu} \stackrel{f}{\longrightarrow}$ (ν,ν) *u f* −→ (*w*, *w*) $v \xrightarrow{a}$ $w \stackrel{b}{\longrightarrow}$ *u v a v a f u w b w b f*

Holík, Lengál, Šimáček, Vojnar (BUT) **inclusion Checking on Tree Automata** October 13, 2011 13 / 24

 $\mathcal{L}(q) \subseteq \mathcal{L}(u)$ if and only if

 $\mathcal{L}(r) \times \mathcal{L}(s) \subseteq (\mathcal{L}(v) \times \mathcal{L}(v)) \cup (\mathcal{L}(w) \times \mathcal{L}(w))$

(language inclusion of tuples!)

Note that in general

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2))$ ≠ ($\mathcal{L}(v_1) \cup \mathcal{L}(w_1) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$)

Note that in general

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2))$ ≠ ($\mathcal{L}(v_1) \cup \mathcal{L}(w_1) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$)

However, for universe U and $G, H \subseteq U$:

 $G \times H = (G \times U) \cap (U \times H)$

Note that in general

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2))$ ≠ ($\mathcal{L}(v_1) \cup \mathcal{L}(w_1) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$)

However, for universe U and $G, H \subseteq U$:

 $G \times H = (G \times U) \cap (U \times H)$

(let $U = T_5$... all trees over Σ)

Note that in general

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2))$ ≠ ($\mathcal{L}(v_1) \cup \mathcal{L}(w_1) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$)

However, for universe U and $G, H \subseteq U$:

 $G \times H = (G \times U) \cap (U \times H)$

(let $U = T_5$... all trees over Σ)

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times \mathcal{L}(w_2)) =$ $((\mathcal{L}(v_1)\times \mathcal{T}_\Sigma) \cap (\mathcal{T}_\Sigma\times \mathcal{L}(v_2))) \cup ((\mathcal{L}(w_1)\times \mathcal{T}_\Sigma) \cap (\mathcal{T}_\Sigma\times \mathcal{L}(w_2))) =$

Note that in general

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2))$ ≠ ($\mathcal{L}(v_1) \cup \mathcal{L}(w_1) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$)

However, for universe U and $G, H \subseteq U$:

 $G \times H = (G \times U) \cap (U \times H)$

(let $U = T_5$... all trees over Σ)

 $(\mathcal{L}(v_1) \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times \mathcal{L}(w_2)) =$ $((\mathcal{L}(v_1)\times \mathcal{T}_\Sigma) \cap (\mathcal{T}_\Sigma\times \mathcal{L}(v_2))) \cup ((\mathcal{L}(w_1)\times \mathcal{T}_\Sigma) \cap (\mathcal{T}_\Sigma\times \mathcal{L}(w_2))) =$

Using distributive laws, this becomes

 $((\mathcal{L}(v_1) \times T_{\Sigma})$ ∪ $(\mathcal{L}(w_1) \times T_{\Sigma})$ ∩ $((\mathcal{L}(v_1) \times T_{\Sigma})$ ∪ $(T_{\Sigma} \times \mathcal{L}(w_2))$) ∩ $((T_{\Sigma}\times\mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1)\times T_{\Sigma})$ ∩ $((T_{\Sigma}\times\mathcal{L}(v_2))$ ∪ $(T_{\Sigma}\times\mathcal{L}(w_2)))$

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times \mathcal{T}_\Sigma) \cup (\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)) \wedge \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times \mathcal{T}_\Sigma) \cup (\mathcal{T}_\Sigma \times \mathcal{L}(w_2))) \wedge \dots\n\end{array}
$$

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots\n\end{array}
$$

Each clause can be checked separately ...

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots\n\end{array}
$$

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots\n\end{array}
$$

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now each tuple has a non- T_{Σ} language on a single position.

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) \quad \cup \quad (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots\n\end{array}
$$

Each clause can be checked separately ...

- ... which is again checking inclusion of union of tuples, but now ...
- ... each tuple has a non- T_{Σ} language on a single position.
- ⇒ **Checking language inclusion can be done component-wise.** ⇒

 $L(r) \times L(s)$ ⊂

 $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{L}(w_1) \times \mathcal{T}_\Sigma)$ ∩ $((\mathcal{L}(v_1) \times \mathcal{T}_\Sigma)$ ∪ $(\mathcal{T}_\Sigma \times \mathcal{L}(w_2)))$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(\mathcal{L}(w_1) \times T_\Sigma)$ ∩ $((T_\Sigma \times \mathcal{L}(v_2))$ ∪ $(T_\Sigma \times \mathcal{L}(w_2)))$

. . . is equal to checking

$$
\begin{array}{rcl}\n((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times \mathcal{T}_\Sigma) \quad \cup \quad (\mathcal{L}(w_1) \times \mathcal{T}_\Sigma) \land \\
((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times \mathcal{T}_\Sigma) \quad \cup \quad (\mathcal{T}_\Sigma \times \mathcal{L}(w_2)) \land \dots\n\end{array}
$$

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...

... each tuple has a non- T_{Σ} language on a single position.

⇒ **Checking language inclusion can be done component-wise.** ⇒

$$
\iff ((\mathcal{L}(r) \subseteq \mathcal{L}(\{v_1, w_1\})) \lor (\mathcal{L}(s) \subseteq \mathcal{T}_{\Sigma})) \land ((\mathcal{L}(r) \subseteq \mathcal{L}(v_1)) \lor (\mathcal{L}(s) \subseteq \mathcal{L}(w_2)) \land ...
$$

Basic Downward Inclusion Checking Algorithm

\blacksquare DFS, maintain a workset *W* of product states (q_S, P_B) .

- DFS, maintain a workset *W* of product states (*qS*, *PB*). $\mathcal{O}(\mathcal{A})$
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- DFS, maintain a workset *W* of product states (*qS*, *PB*).
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
- DFS, maintain a workset *W* of product states (*qS*, *PB*).
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
	- \bullet for all clauses .
- DFS, maintain a workset *W* of product states (*qS*, *PB*).
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
	- \bullet for all clauses \bullet
	- exists a position such that inclusion holds.
- DFS, maintain a workset *W* of product states (*qS*, *PB*).
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
	- \bullet for all clauses \bullet
	- exists a position such that inclusion holds.
- Sooner or later, the DFS either
	- reaches a leaf, or
	- reaches a pair (*qS*, *PB*) which is already in *W*.

Optimisations:

1 It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_s) \not\subset \mathcal{L}(P_B)$ has been shown and prune the search.

Optimisations:

- 1 It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subset \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, *NN* can be maintained as an antichain w.r.t. ⊃
	- when $S \subseteq S'$, why store both (q, S) and (q, S') ?
	- when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.

Optimisations:

- 1 It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_s) \not\subset \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, *NN* can be maintained as an antichain w.r.t. ⊃
	- when $S \subseteq S'$, why store both (q, S) and (q, S') ?
	- when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.

3 Moreover, *NN* can be maintained w.r.t. downward simulation \leq_{Ω} .

• $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$

Optimisations:

- 1 It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subset \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, *NN* can be maintained as an antichain w.r.t. ⊃
	- when $S \subseteq S'$, why store both (q, S) and (q, S') ?
	- when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.
- **3** Moreover, *NN* can be maintained w.r.t. downward simulation \leq_{D} .
	- $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$
- 4 Furthermore, workset can be also maintained w.r.t. \prec_{Ω} .

Optimisations:

- 1 It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subset \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, *NN* can be maintained as an antichain w.r.t. ⊃
	- when $S \subseteq S'$, why store both (q, S) and (q, S') ?
	- when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.
- **3** Moreover, *NN* can be maintained w.r.t. downward simulation \leq_{D} .
	- $q \preceq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$
- 4 Furthermore, workset can be also maintained w.r.t. \prec_{Ω} .
- **5** Even further, if $\exists s \in S : q \leq_D s$, then surely $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.

a) Comparison of methods (w/ simulation computation time).

b) Comparison of methods (w/o simulation computation time).

Several FV approaches yield automata with large alphabets:

- \blacksquare FV of programs with complex dynamic data structures,
- decision procedures of some logics: WSkS, MSO.

Several FV approaches yield automata with large alphabets:

- \blacksquare FV of programs with complex dynamic data structures,
- decision procedures of some logics: WSkS, MSO.

Current approach:

- use the MONA tree automata package (MTBDD-based)
- But only deterministic automata supported \rightarrow
	- often runs out of reasonable memory or time.

Dual representation

Multi-terminal binary decision diagrams (MTBDDs)

Dual representation

Multi-terminal binary decision diagrams (MTBDDs) Bottom-up: Top-down:

Bottom-up : inspired by MONA, but has sets of states in leaves. Top-down : sets of state tuples in leaves.

Algorithms for

- \blacksquare union.
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
	- based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Algorithms for

- \blacksquare union.
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
	- based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

Algorithms for

- \blacksquare union.
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
	- based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

■ Use of CUDD to implement MTBDDs.

Algorithms for

- \blacksquare union.
- \blacksquare intersection.
- language inclusion checking (both upward and downward),
- **downward simulation computation.**
	- based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

- Use of CUDD to implement MTBDDs.
- $\blacksquare \sim$ 8500 times faster downward inclusion checking than explicit representation for tested automata with large alphabets.

Conclusion

An alternative downward approach to checking language inclusion of non-deterministic tree automata proposed, . . .

- An alternative downward approach to checking language inclusion of non-deterministic tree automata proposed, . . .
- \blacksquare . that makes use of antichains and downward simulation.
- **An alternative downward approach to checking language inclusion** of non-deterministic tree automata proposed, . . .
- . . . that makes use of antichains and downward simulation.
- A new symbolic encoding of non-deterministic tree automata proposed.

 \blacksquare Optimise the downward inclusion to also cache pairs (q, S) , such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.

- \blacksquare Optimise the downward inclusion to also cache pairs (q, S) , such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- Replace CUDD with a more efficient MTBDD package.
- \blacksquare Optimise the downward inclusion to also cache pairs (q, S) , such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- **Replace CUDD with a more efficient MTBDD package.**
- **Improve the symbolic downward simulation algorithm.**
- \blacksquare Optimise the downward inclusion to also cache pairs (q, S) , such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- Replace CUDD with a more efficient MTBDD package.
- Improve the symbolic downward simulation algorithm.
- Create a tree automata package replacing MONA.

Thank you for your attention.

Questions?

Holík, Lengál, Šimáček, Vojnar (BUT) **inclusion Checking on Tree Automata** October 13, 2011 24 / 24