Regular Model Checking

Tomáš Vojnar

Faculty of Information Technology Brno University of Technology

Plan of the Lecture

- From finite-state to infinite-state model checking.
- The basic idea of regular model checking.
- Computing closures of transition relations in regular model checking.
- Regular tree model checking.
- Nondeterministic automata in regular (tree) model checking.

From Finite-state to Infinite-state Model Checking

[Clarke, Emerson 81], [Quielle, Sifakis 81]

An algorithmic approach of checking whether a model M of a system satisfies a certain correctness specification φ when started from some initial state s:

 $M,s\models\varphi$

✤ Typically based on a systematic exploration of the state space of M.

Models of systems

- can be built in various specialised modelling languages (process algebras, Petri nets, Promela, SMV, ...), or
- source descriptions of analysed systems (in C, Java, Verilog, VHDL, ...) can directly be used.
- Correctness specifications:
 - formulae in temporal logics (LTL, CTL, CTL*, μ-calculus, ...),
 - assertions in the source code (assert()), progress labels, ...

Model Checking

Advantages:

- highly automatable,
- can provide counterexamples (diagnostic/debugging information).
- The biggest problem is the state explosion problem.
 - Efficient storage of state spaces (hierarchical storage of states, BDDs, ...).
 - State space reductions (symmetries, partial-order reduction, ...).
 - Abstraction, counterexample-guided abstraction refinement (CEGAR).
 - Compositional methods, assume-guarantee reasoning.

Supported by many tools, including industrial-strength tools (Spin, SMV, RuleBase, Blast, JPF, Slam, ...).

Traditional model checking concentrated on systems with large, but finite state spaces, but many systems are infinite-state.

Sources of Infinity

Unbounded communication queues (channels), unbounded waiting queues.

- Unbounded push-down stacks: recursion.
- Unbounded counters, unbounded capacity of places in Petri nets.
- Continuous variables: time, temperature, ...

Unbounded dynamic creation of threads, dynamic allocation of memory structures (lists, trees, ...).

Parameterisation: parametric bounds of queues, counters, ..., parametric numbers of components or processes.

Model Checking Infinite-State Systems

Cut-offs: safe, finite bounds on the sources of infinity such that when a system is verified up to these bounds, the results may be generalised.

Abstraction:

- predicate abstraction: $x \in \{5, 6, 7, ...\} \rightsquigarrow x \ge 5$,
- abstractions for parameterised networks of processes: 0-1- ∞ abstraction, ...
- Symbolic methods: finite representation of infinite sets of states using
 - logics,
 - grammars,
 - automata, ...
- ♦ Automated induction, ...

Decidability Issues

Formal verification of infinite state systems is usually undecidable (sometimes not even semi-decidable).

There may be identified (sub)classes of systems for which various problems are decidable:

- push-down systems—model checking LTL is even polynomial for a fixed formula,
- lossy channel systems—reachability, safety, inevitability, and (fair) termination are decidable (though non-primitive recursive),
- various parameterised systems for which finite cut-offs exist,
- ...

Otherwise, semi-algorithmic solutions are used:

- termination is not guaranteed,
- an indefinite answer may be returned, or
- an intervention of the user is needed.

Regular Model Checking: The Basic Idea

Regular Model Checking

[Pnueli et al. 97], [Wolper, Boigelot 98], [Bouajjani, Nilsson, Jonsson, Touili 00]

A generic framework for verification of infinite-state systems:

- a configuration \rightsquigarrow a word w over a suitable alphabet Σ ,
- a set of configurations \sim a regular language:
 - usually described by a finite-state automaton A,
 - two distinguished sets of configurations:
 - initial configurations *Init* and
 - bad configurations *Bad*,
- an action (transition) \sim a regular relation τ
 - usually described by a finite-state transducer T,
 - sometimes, more general, regularity-preserving relations are used.
 - Implemented, e.g., as specialised operations on automata.
- ♦ Safety verification \rightsquigarrow check that $\tau^*(Init) \cap Bad = \emptyset$,
 - implies a need to compute $\tau^*(Init)$.

Regular Model Checking: Applicability

- Communication protocols.
 - FIFO channels systems / cyclic rewrite systems.
- Sequential programs with recursive procedure calls.
 - Pushdown systems / prefix rewrite systems.
- Counter systems, Petri nets.
 - Various unbounded/parameterised systems may be (automatically) translated to counter systems.
- Programs with (unbounded) dynamic linked data structures: lists, cyclic lists, shared lists.
 [Bouajjani, Habermehl, Vojnar, Moro 05]
- Parameterized networks of identical processes: mutual exclusion protocols, cache coherence protocols, ..., pipelined microprocessors. [Charvát, Smrčka, Vojnar 14].

$$q_1q_2\cdots q_{i-1}q_iq_{i+1}\cdots q_j\cdots q_n\mapsto q_1q_2\cdots q_{i-1}q_i'q_{i+1}\cdots q_j'\cdots q_n$$

Regular Model Checking: Applicability

- Communication protocols.
 - FIFO channels systems / cyclic rewrite systems.
- Sequential programs with recursive procedure calls.
 - Pushdown systems / prefix rewrite systems.
- Counter systems, Petri nets.
 - Various unbounded/parameterised systems may be (automatically) translated to counter systems.
- Programs with (unbounded) dynamic linked data structures: lists, cyclic lists, shared lists.
 [Bouajjani, Habermehl, Vojnar, Moro 05]
- Parameterized networks of identical processes: mutual exclusion protocols, cache coherence protocols, ..., pipelined microprocessors. [Charvát, Smrčka, Vojnar 14].

$$q_1q_2\cdots q_{i-1}q_iq_{i+1}\cdots q_j\cdots q_n\mapsto q_1q_2\cdots q_{i-1}q_i'q_{i+1}\cdots q_j'\cdots q_n$$

Example: the Szymanski's Protocol

A typical example of a parameterized protocol: the mutual exclusion protocol for N processes due to Szymanski—the pseudocode for process i (a bit idealised):

1: await $\forall j: j \neq i \Rightarrow \neg s_j$; 2: $w_i, s_i := true, true$; 3: if $\exists j: j \neq i \Rightarrow (pc_j \neq 1 \land \neg w_j)$ then $s_i := false$; goto 4; else $w_i := false$; goto 5; 4: await $\exists j: j \neq i \Rightarrow (s_j \land \neg w_j)$ then $w_i, s_i := false, true$; 5: await $\forall j: j \neq i \Rightarrow \neg w_j$; 6: await $\forall j: j < i \Rightarrow \neg s_j$; 7: $s_i := false$; goto 1;

Too complex to be used as a running example...

- A simple protocol in a linear process network:
 - a parametric number of processes,
 - a process does or does not have a token,
 - a process that has a token can pass it to the right.

Initially, a token is in the left-most process.

- A simple protocol in a linear process network:
 - a parametric number of processes,
 - a process does or does not have a token,
 - a process that has a token can pass it to the right.

Initially, a token is in the left-most process.

- A simple protocol in a linear process network:
 - a parametric number of processes,
 - a process does or does not have a token,
 - a process that has a token can pass it to the right.

Initially, a token is in the left-most process.

- A simple protocol in a linear process network:
 - a parametric number of processes,
 - a process does or does not have a token,
 - a process that has a token can pass it to the right.

Initially, a token is in the left-most process.

- A simple protocol in a linear process network:
 - a parametric number of processes,
 - a process does or does not have a token,
 - a process that has a token can pass it to the right.

Initially, a token is in the left-most process.

An encoding of the simple token passing protocol for the needs of regular model checking:

- the alphabet: $\Sigma = \{T, N\},\$
- all configurations: words from Σ^* ,
- initial configurations: $T N^*$ (a regular language),
- bad configurations: $N^* + (T + N)^* T N^*T (T + N)^*$ (a regular language),
- transitions—in the form of a finite-state transducer:

♦ An application of the transducer on a sample configuration: $T \ N \ N \ \xrightarrow{\tau} N \ T \ N \ \xrightarrow{\tau} N \ N \ T \ N \ \xrightarrow{\tau} N \ N \ T \ N$

♦ An application of the transducer on a sample configuration: $T \ N \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T$

An application of the transducer on all initial configurations:

 $\boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ \boldsymbol{N} \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ N \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} \dots$

A simple iterative computation of all reachable configurations will **never converge** to the desired set $N^* T N^*$.

♦ An application of the transducer on a sample configuration: $T \ N \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T \ N \ T$

An application of the transducer on all initial configurations:

 $\boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ \boldsymbol{N} \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} N \ N \ \boldsymbol{T} \ N^* \ \stackrel{\tau}{\to} \dots$

* A simple iterative computation of all reachable configurations will **never converge** to the desired set $N^* T N^*$.

• We need special (accelerated) ways for computing $\tau^*(Init)$.

Regular Model Checking: Computing Closures

RMC: Computing Closures

The task: compute $\tau^*(Init)$.

- Problems to face:
 - Non regularity / Non constructibility of $\tau^*(Init)$.
 - Termination of the constructions.
 - State explosion of the automata / transducers.

RMC: Computing Closures

The task: compute $\tau^*(Init)$.

- Problems to face:
 - Non regularity / Non constructibility of $\tau^*(Init)$.
 - Termination of the constructions.
 - State explosion of the automata / transducers.
- Solutions:
 - Special purpose constructions: LCS, PDS, classes of arithmetical relations, ...
 - General purpose constructions:
 - extrapolation (widening) [Bouajjani, Touili], [Wolper, Boigelot, Legay],
 - merging states wrt. the history of their creation, [Abdulla, Nilsson, Jonsson, d'Orso]
 - abstract regular model checking,
 - learning of automata, [Habermehl, Vojnar], [Vardhan, Sen, Viswanathan, Agha]

[Bouajjani, Habermehl, Vojnar]

Abstract Regular Model Checking

• Given a relation τ , and two automata I (initial states) and B (bad states), check:

 $\tau^*(I) \cap B = \emptyset$

- 1. Define a finite-range abstraction function α on automata.
- 2. Compute iteratively $(\alpha \circ \tau)^*(I)$.
- 3. If $(\alpha \circ \tau)^*(I) \cap B = \emptyset$, then answer YES.

Abstract Regular Model Checking

• Given a relation τ , and two automata I (initial states) and B (bad states), check:

 $\tau^*(I) \cap B = \emptyset$

- 1. Define a finite-range abstraction function α on automata.
- 2. Compute iteratively $(\alpha \circ \tau)^*(I)$.
- 3. If $(\alpha \circ \tau)^*(I) \cap B = \emptyset$, then answer YES.
- 4. Otherwise, let θ be the computed symbolic path from *I* to *B*.
- 5. Check if θ includes a concrete counterexample.
 - If yes, then answer NO.
 - Otherwise, define a refinement of α which excludes θ and goto (2).

Abstract Regular Model Checking

• Given a relation τ , and two automata I (initial states) and B (bad states), check:

 $\tau^*(I) \cap B = \emptyset$

⇒ Counter-Example Guided Abstraction Refinement (CEGAR) loop

- 1. Define a finite-range abstraction function α on automata.
- 2. Compute iteratively $(\alpha \circ \tau)^*(I)$.
- 3. If $(\alpha \circ \tau)^*(I) \cap B = \emptyset$, then answer YES.
- 4. Otherwise, let θ be the computed symbolic path from *I* to *B*.
- 5. Check if θ includes a concrete counterexample.
 - If yes, then answer NO.
 - Otherwise, define a refinement of α which excludes θ and goto (2).

Abstractions Based on State Collapsing

♦ We abstract automata by collapsing their states that are equal wrt. some criterion. ⇒ $L(A) \subseteq L(\alpha(A))$

Abstractions Based on State Collapsing

- ♦ We abstract automata by collapsing their states that are equal wrt. some criterion.
 ⇒ $L(A) \subseteq L(\alpha(A))$
- * We consider several different equivalence relations on automata states, including:
 - equivalence wrt. languages of words of a bounded length k:

$$q_1 \simeq_k q_2$$
 iff $L(A, q_1)^{\leq k} = L(A, q_2)^{\leq k}$

where $L(A,q)^{\leq k}$ is the set of words of length at most k accepted in A when starting from q.

• equivalence wrt. a set of predicate languages $\mathcal{P} = \{P_1, ..., P_n\}$:

 $q_1 \simeq_{\mathcal{P}} q_2 \quad \text{iff} \quad \forall 1 \le i \le n : L(A, q_1) \cap P_i \ne \emptyset \Leftrightarrow L(A, q_2) \cap P_i \ne \emptyset$

Abstractions Based on State Collapsing

- ♦ We abstract automata by collapsing their states that are equal wrt. some criterion.
 ⇒ $L(A) \subseteq L(\alpha(A))$
- We consider several different equivalence relations on automata states, including:
 - equivalence wrt. languages of words of a bounded length k:

 $q_1 \simeq_k q_2$ iff $L(A, q_1)^{\leq k} = L(A, q_2)^{\leq k}$

where $L(A,q)^{\leq k}$ is the set of words of length at most k accepted in A when starting from q.

• equivalence wrt. a set of predicate languages $\mathcal{P} = \{P_1, ..., P_n\}$:

 $q_1 \simeq_{\mathcal{P}} q_2 \quad \text{iff} \quad \forall 1 \le i \le n : L(A, q_1) \cap P_i \ne \emptyset \Leftrightarrow L(A, q_2) \cap P_i \ne \emptyset$

- These equivalence relations are finite-index.
 - Indeed, there are finitely many words of length up to some k as well as finitely many subsets of \mathcal{P} of predicates that may hold at a certain state.
 - \Rightarrow The implied abstraction α has a finite image (defines a finite abstract domain).
 - \Rightarrow Abstract fixpoint computations always terminate.

Counterexample-Guided Refinement

- For abstraction based on bounded length languages, increment the bound.
- ♦ For predicate automata abstraction, take $\mathcal{P}' = \mathcal{P} \cup \{L(X_k, q) \mid q \text{ is a state in } X_k\}.$

Counterexample-Guided Refinement

- For abstraction based on bounded length languages, increment the bound.
- ♦ For predicate automata abstraction, take $\mathcal{P}' = \mathcal{P} \cup \{L(X_k, q) \mid q \text{ is a state in } X_k\}.$

Theorem:

Let *A* and *X* be two finite automata, and let \mathcal{P} be a finite set of predicate languages such that $\forall q \in Q_X$. $L(X,q) \in \mathcal{P}$. Then, if $L(A) \cap L(X) = \emptyset$, we have $L(\alpha_{\mathcal{P}}(A)) \cap L(X) = \emptyset$ too.

Predicate Automata Abstraction: Refinement

Theorem:

Let *A* and *X* be two finite automata, and let \mathcal{P} be a finite set of predicate languages such that $\forall q \in Q_X$. $L(X,q) \in \mathcal{P}$. Then, if $L(A) \cap L(X) = \emptyset$, we have $L(\alpha_{\mathcal{P}}(A)) \cap L(X) = \emptyset$ too.

♦ Proof sketch: Assume $w \notin L(A) \land w \in L(\alpha_{\mathcal{P}}(A)) \cap L(X)$ with a minimum number of *jumps* needed to accept it in *A* – the last jump being $q_1 \rightsquigarrow q_2$ from where w_2 is accepted.

For w_1w_2' , an even smaller number of jumps is needed which is a contradiction.

[Bouajjani, Habermehl, Moro, Vojnar 05]

- Heap configurations encoded as words:
 - Uninterrupted list segments of length n: sequences of n symbols \rightarrow , divided by |.
 - A null successor: ⊥.
 - Variables: put a variable into the word on the place it points to.
 - Two special sections of the word for null and undefined variables.
 - Marker pairs (m_{from}, m_{to}) encode non-linear configurations: sharing and cicles.

[Bouajjani, Habermehl, Moro, Vojnar 05]

- Heap configurations encoded as words:
 - Uninterrupted list segments of length n: sequences of n symbols \rightarrow , divided by |.
 - A null successor: ⊥.
 - Variables: put a variable into the word on the place it points to.
 - Two special sections of the word for null and undefined variables.
 - Marker pairs (m_{from}, m_{to}) encode non-linear configurations: sharing and cicles.
- Program statements translated automatically to transducers.

[Bouajjani, Habermehl, Moro, Vojnar 05]

- Heap configurations encoded as words:
 - Uninterrupted list segments of length n: sequences of n symbols \rightarrow , divided by |.
 - A null successor: ⊥.
 - Variables: put a variable into the word on the place it points to.
 - Two special sections of the word for null and undefined variables.
 - Marker pairs (m_{from}, m_{to}) encode non-linear configurations: sharing and cicles.
- Program statements translated automatically to transducers.
- To stay with a finite number of markers:
 - When they are not-needed, they are re-claimed by shifting the appropriate parts of the words such that they merge.
 - A transducer can encode a single step of the shifting, ARMC used to compute the effect of iterating this step.
 - Merging cannot be implemented as a regular relation (and hence a transducer)!

1: x = null;2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$ 3: $y = l \rightarrow next;$ 4: $l \rightarrow next = x;$ 5: x = l;6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$ 7: l = x;

$$1 \quad | \quad xy \quad | \quad | \quad l \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \perp \quad |$$

1: x = null;2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$ 3: $y = l \rightarrow next;$ 4: $l \rightarrow next = x;$ 5: x = l;6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$ 7: l = x;

1:
$$x = null;$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null;$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null;$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null;$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

$$3 \quad | \qquad | \quad x \to \to \bot \mid ly \to \to \bot \quad |$$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$
3 $| | | x \rightarrow \rightarrow \rightarrow \perp | ly \rightarrow \rightarrow \perp | l = x;$
4 $| | | x \rightarrow \rightarrow \rightarrow \perp | l \rightarrow y \rightarrow \perp | l = x;$

* Marker pairs (m_{from}, m_{to}) allow us to encode:

- non-linear configurations: in particular, sharing and circles,
- when they are not-needed, they are re-claimed by shifting the appropriate parts of the words (non-regular!).

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

1:
$$x = null$$

2: while $(l != null) \{ // \text{ i.e. if } (l != null) \text{ goto } 3; \text{ else goto } 7;$
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y; \} // \text{ i.e. } l = y; \text{ goto } 2;$
7: $l = x;$

♦ Initial configurations: $Init = (1 | xy | | l \rightarrow \rightarrow^* \bot |).$

♦ Initial configurations: $Init = (1 | xy | | l \rightarrow \rightarrow^* \bot |).$

♦ ARMC can be used to overapproximate reachable configurations at any line: including the postcondition $\tau^*(Init) = (8 | | y | xl \rightarrow \uparrow^* \bot |)$ and loop invariants.

♦ Initial configurations: $Init = (1 | xy | | l \rightarrow \rightarrow^* \bot |).$

♦ ARMC can be used to overapproximate reachable configurations at any line: including the postcondition $\tau^*(Init) = (8 | | y | xl \rightarrow \uparrow^* \bot |)$ and loop invariants.

Basic memory safety checked directly by the transducers of the program statements:

- no garbage is created,
- no null pointer dereferences,
- no undefined pointer dereferences.

♦ Initial configurations: $Init = (1 | xy | | l \rightarrow \rightarrow^* \bot |).$

♦ ARMC can be used to overapproximate reachable configurations at any line: including the postcondition $\tau^*(Init) = (8 | | y | xl \rightarrow \uparrow^* \bot |)$ and loop invariants.

Basic memory safety checked directly by the transducers of the program statements:

- no garbage is created,
- no null pointer dereferences,
- no undefined pointer dereferences.

More complex properties that can be checked:

- The result is a single, unshared, acyclic list.
- The list is really reversed, no elements are lost/added.
- For that, one may use special markers injected into the initial configuration, e.g.: $bgn \ l \rightarrow^* fst \rightarrow snd \rightarrow^* end \rightarrow \bot$ leads to $end \ l \rightarrow^* snd \rightarrow fst \rightarrow^* bgn \rightarrow \bot$
- Note that injection at random positions can be used, and the verification then checks correctness for all possible positions of the markers.
- One can also add a test harness: additional code which generates the input data structures and/or checks the output.

Regular Tree Model Checking

Regular Tree Model Checking

[Pnueli, Shahar 00], [Bouajjani, Touili 02], [Abdulla, d'Orso et al 02, 05] [Bouajjani, Habermehl, Rogalewicz, Vojnar 05]

✤ A generalisation of RMC to systems with a tree-like topology of configurations:

- a configuration \rightarrow a tree (term) t over a suitable ranked alphabet Σ ,
- a set of configurations ~> a regular tree language
 - usually described by a finite-state tree automaton A.
- an action (transition) \rightsquigarrow a regular (regularity-preserving) tree relation τ
 - usually described by a finite-state *tree* transducer T.

Regular Tree Model Checking

- ♦ Safety verification \rightsquigarrow check that $\tau^*(Init) \cap Bad = \emptyset$,
 - implies a need to compute $\tau^*(Init)$.
- Computing closures in RTMC—generalisations of:
 - extrapolation (widening), [Bouajjani, Touili]
 - merging of states wrt. the history of their creation, [Abdulla, d'Orso, Legay, Rezine]
 - abstract regular tree model checking:
 - finite-height abstraction,
 - predicate tree automata abstraction.

[Bouajjani, Habermehl, Rogalewicz, Vojnar]

RTMC: Applicability

- Verification of parameterised networks with a tree-like topology:
 - mutual exclusion, leader election, ...
- Verification of programs with complex dynamic linked data structures:
 - programs with doubly-linked lists, lists of lists, trees, skip-lists, trees with linked leaves ..., i.e., not only trees!,
 - configurations encoded into trees:
 - tree backbones and routing expressions, [Bouajjani, Habermehl, Rogalewicz, Vojnar '06]
 - tuples of (nested) tree automata linked via references from leaves to roots –
 (boxed) forest automata: [Habermehl, Holík, Šimáček, Rogalewicz, Vojnar '11]
 - less general finite number of "far" pointers (e.g., not handles trees of linked leaves),
 - more scalable,
 - implemented in the Forester tool.

Nondeterministic Automata in Regular (Tree) Model Checking

AR(T)MC and Nondeterministic Automata?

- AR(T)MC based on deterministic (tree) automata:
 - easy minimisation leading to a unique canonical form,
 - easy language inclusion testing,
 - BUT determinisation costs time and makes automata grow.

What about nondeterministic automata in AR(T)MC?

- Almost everything works like in the deterministic case (abstraction, transduction).
- No determinisation in the computation loop.
- But, there are tasks to solve:
 - How to check language inclusion?
 - antichains, simulations, congruences (the latter not tried yet),
 - How to reduce the size of nondeterministic tree automata?
 - (bi-)simulation (mediated) quotienting.