
Deciding WS1S
Using an Automata-based Approach

Tomáš Fiedor1,2 Lukáš Holı́k2

1Red Hat, Czech Republic

Ondřej Lengál2 Tomáš Vojnar2

2Brno University of Technology, Czech Republic

Vienna UT, 2015

WS1S

Weak monadic second-order logic of one successor:
• second-order⇒ quantification over relations;
• monadic⇒ the relations are unary – i.e. sets;
• weak⇒ the sets are finite;
• of one successor⇒ reasoning about linear structures.

Extensions of WS1S:
• WSkS – with k successors;
• SkS – allows quantification over infinite sets;
• M2L(str) – allows quantification over infinite (but bounded) sets.

Corresponds to finite automata [Büchi’60].

Decidable, but NONELEMENTARY:
• tower of exponentials of height given by quantifier alternations.

I Deciding WS1S via DFAs: determinization, complementation, ...

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 2 / 25

WS1S

Weak monadic second-order logic of one successor:
• second-order⇒ quantification over relations;
• monadic⇒ the relations are unary – i.e. sets;
• weak⇒ the sets are finite;
• of one successor⇒ reasoning about linear structures.

Extensions of WS1S:
• WSkS – with k successors;
• SkS – allows quantification over infinite sets;
• M2L(str) – allows quantification over infinite (but bounded) sets.

Corresponds to finite automata [Büchi’60].

Decidable, but NONELEMENTARY:
• tower of exponentials of height given by quantifier alternations.

I Deciding WS1S via DFAs: determinization, complementation, ...

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 2 / 25

WS1S

Weak monadic second-order logic of one successor:
• second-order⇒ quantification over relations;
• monadic⇒ the relations are unary – i.e. sets;
• weak⇒ the sets are finite;
• of one successor⇒ reasoning about linear structures.

Extensions of WS1S:
• WSkS – with k successors;
• SkS – allows quantification over infinite sets;
• M2L(str) – allows quantification over infinite (but bounded) sets.

Corresponds to finite automata [Büchi’60].

Decidable, but NONELEMENTARY:
• tower of exponentials of height given by quantifier alternations.

I Deciding WS1S via DFAs: determinization, complementation, ...

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 2 / 25

WS1S

Weak monadic second-order logic of one successor:
• second-order⇒ quantification over relations;
• monadic⇒ the relations are unary – i.e. sets;
• weak⇒ the sets are finite;
• of one successor⇒ reasoning about linear structures.

Extensions of WS1S:
• WSkS – with k successors;
• SkS – allows quantification over infinite sets;
• M2L(str) – allows quantification over infinite (but bounded) sets.

Corresponds to finite automata [Büchi’60].

Decidable, but NONELEMENTARY:
• tower of exponentials of height given by quantifier alternations.

I Deciding WS1S via DFAs: determinization, complementation, ...

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 2 / 25

The MONA Tool

MONA – an automata-based WS1S/WSkS decision procedure:
• semi-symbolic DFAs/DTAs: MTBDDs used to encode transitions,
• efficient on many formulae obtained in various applications.

Used in tools for checking complex shape invariants:
• Pointer Assertion Logic Engine (PALE),
• STRucture ANd Data (STRAND).

Various other applications:
• other kinds of program and protocol verification, parsing, synthesis,

linguistics, multimedia, . . .

However, sometimes the complexity strikes back:
• unavoidable in general,
• one can try to push the usability border further:

I using the recent advancements in non-deterministic automata.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 3 / 25

The MONA Tool

MONA – an automata-based WS1S/WSkS decision procedure:
• semi-symbolic DFAs/DTAs: MTBDDs used to encode transitions,
• efficient on many formulae obtained in various applications.

Used in tools for checking complex shape invariants:
• Pointer Assertion Logic Engine (PALE),
• STRucture ANd Data (STRAND).

Various other applications:
• other kinds of program and protocol verification, parsing, synthesis,

linguistics, multimedia, . . .

However, sometimes the complexity strikes back:
• unavoidable in general,
• one can try to push the usability border further:

I using the recent advancements in non-deterministic automata.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 3 / 25

Syntax and Semantics of WS1S

Minimal syntax:
• Let X ,Y , ... be 2nd-order variables.
• Terms: ψ ::= X ⊆ Y | Sing(X) | X = {0} | X = σ(Y)
• Formulae: ϕ ::= ψ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

A note on semantics:
• Variables interpreted as finite subsets of N.
• Singleton – Sing(X): X = {n} for some n ∈ N.
• Successor – X = σ(Y): Y = {n} and X = {n + 1} for some n ∈ N.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 4 / 25

Syntax and Semantics of WS1S

Minimal syntax:
• Let X ,Y , ... be 2nd-order variables.
• Terms: ψ ::= X ⊆ Y | Sing(X) | X = {0} | X = σ(Y)
• Formulae: ϕ ::= ψ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

A note on semantics:
• Variables interpreted as finite subsets of N.
• Singleton – Sing(X): X = {n} for some n ∈ N.
• Successor – X = σ(Y): Y = {n} and X = {n + 1} for some n ∈ N.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 4 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

WS1S Syntactical Sugar

ϕ⇒ ψ
def⇔ ¬ϕ ∨ ψ

∀X .ϕ def⇔ ¬∃X .¬ϕ

∃x .ϕ def⇔ ∃X .Sing(X) ∧ ϕ

∀x .ϕ def⇔ ∀X .Sing(X)⇒ ϕ

X = Y def⇔ X ⊆ Y ∧ Y ⊆ X

X = ∅ def⇔ ∀Z .X ⊆ Z

x ∈ Y def⇔ Sing(X) ∧ X ⊆ Y

x ≤ y def⇔ ∀X . (y ∈ X ∧ (∀z.σ(z) ∈ X ⇒ z ∈ X))⇒ x ∈ X

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 5 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Models of WS1S Formulae as Words

Models of WS1S formulae:
• maps of the variables to finite subsets of N.

Such sets can be encoded as binary strings:

• {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

• Note that any number of zeros can always be added to the right!

For each variable, we have one track in the alphabet:
• e.g.,

[
0
0

]
is a symbol.

• A natural encoding for sets of transitions over such symbols:
I multi-terminal BDDs.

Example: {X1 7→ ∅,X2 7→ {4,2}} X1:
X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 6 / 25

Atomic Automata for WS1S

X ⊆ Y (X is a subset of Y)

0

X:
Y:

[
0
0

]
,
[

0
1

]
,
[

1
1

]

X 7→ {
Y 7→ {1,

2,
2,3,

4
4
}
} |= X ⊆ Y

X:
Y:

[
0
0

][
0
1

][
1
1

][
0
1

][
1
1

][
0
0

]∗
⊆ L(AX⊆Y)

Sing(X) (X is singleton)

0 1

X: [0]

X: [1]

X: [0]

X 7→ {2} |= Sing(X) X : [0][0][1][0]∗ ⊆ L(ASing(X))

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 7 / 25

Atomic Automata for WS1S

X ⊆ Y (X is a subset of Y)

0

X:
Y:

[
0
0

]
,
[

0
1

]
,
[

1
1

]

X 7→ {
Y 7→ {1,

2,
2,3,

4
4
}
} |= X ⊆ Y

X:
Y:

[
0
0

][
0
1

][
1
1

][
0
1

][
1
1

][
0
0

]∗
⊆ L(AX⊆Y)

Sing(X) (X is singleton)

0 1

X: [0]

X: [1]

X: [0]

X 7→ {2} |= Sing(X) X : [0][0][1][0]∗ ⊆ L(ASing(X))

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 7 / 25

Atomic Automata for WS1S

X = {0} (X is the set {0})

0 1
X: [1]

X: [0]

X 7→ {0} |= X = {0} X : [1][0]∗ ⊆ L(AX={0})

X = σ(Y) (X is the successor of Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

X 7→ {
Y 7→ {

2
1
}
} |= X = σ(Y)

X:
Y:

[
0
0

][
0
1

][
1
0

][
0
0

]∗
⊆ L(AX=σ(Y))

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 8 / 25

Atomic Automata for WS1S

X = {0} (X is the set {0})

0 1
X: [1]

X: [0]

X 7→ {0} |= X = {0} X : [1][0]∗ ⊆ L(AX={0})

X = σ(Y) (X is the successor of Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

X 7→ {
Y 7→ {

2
1
}
} |= X = σ(Y)

X:
Y:

[
0
0

][
0
1

][
1
0

][
0
0

]∗
⊆ L(AX=σ(Y))

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 8 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Construction of More Complex Automata

Logical connectives mapped to automata operations.
• More complex formulae handled by composition of automata.

Example:

¬(X ⊆ Y) ∧∃Z .(Sing(Z) ∨ ∃W .W = σ(Z))

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 9 / 25

Handling Quantification

Quantification handled by projection of a certain track.
• Introduces non-determinism to automata.
• Alternations require negation, hence determinization high cost.

An additional issue with projection of variables in an automaton:
• after removing some tracks, some models need not be accepted:

I some zero suffixes need not be present.
• One needs to adjust the final states.

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 10 / 25

Handling Quantification

Quantification handled by projection of a certain track.
• Introduces non-determinism to automata.
• Alternations require negation, hence determinization high cost.

An additional issue with projection of variables in an automaton:
• after removing some tracks, some models need not be accepted:

I some zero suffixes need not be present.
• One needs to adjust the final states.

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 10 / 25

Handling Quantification

Quantification handled by projection of a certain track.
• Introduces non-determinism to automata.
• Alternations require negation, hence determinization high cost.

An additional issue with projection of variables in an automaton:
• after removing some tracks, some models need not be accepted:

I some zero suffixes need not be present.
• One needs to adjust the final states.

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 10 / 25

Handling Quantification

Quantification handled by projection of a certain track.
• Introduces non-determinism to automata.
• Alternations require negation, hence determinization high cost.

An additional issue with projection of variables in an automaton:
• after removing some tracks, some models need not be accepted:

I some zero suffixes need not be present.
• One needs to adjust the final states.

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 10 / 25

Handling Quantification

Quantification handled by projection of a certain track.
• Introduces non-determinism to automata.
• Alternations require negation, hence determinization high cost.

An additional issue with projection of variables in an automaton:
• after removing some tracks, some models need not be accepted:

I some zero suffixes need not be present.
• One needs to adjust the final states.

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 10 / 25

Deciding WS1S Using Non-deterministic Automata

We consider only formulae in Prenex Normal Form (∃PNF).
We focus on dealing with the prefix of alternating quantifiers.

For a formula ϕ with m quantifier alternations over sets of
variables Xi ⊆ X,

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

→ construct a hierarchical family of automata defined as follows:
• Aϕ0 : a composition of atomic automata described before,

• Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm): described next.

I Intuition: on-the-fly projection and subset construction for all m levels
(instead of doing it one-by-one), with antichain pruning.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 11 / 25

Deciding WS1S Using Non-deterministic Automata

We consider only formulae in Prenex Normal Form (∃PNF).
We focus on dealing with the prefix of alternating quantifiers.

For a formula ϕ with m quantifier alternations over sets of
variables Xi ⊆ X,

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

→ construct a hierarchical family of automata defined as follows:
• Aϕ0 : a composition of atomic automata described before,

• Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm): described next.

I Intuition: on-the-fly projection and subset construction for all m levels
(instead of doing it one-by-one), with antichain pruning.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 11 / 25

Deciding WS1S Using Non-deterministic Automata

We consider only formulae in Prenex Normal Form (∃PNF).
We focus on dealing with the prefix of alternating quantifiers.

For a formula ϕ with m quantifier alternations over sets of
variables Xi ⊆ X,

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

→ construct a hierarchical family of automata defined as follows:
• Aϕ0 : a composition of atomic automata described before,

• Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm): described next.

I Intuition: on-the-fly projection and subset construction for all m levels
(instead of doing it one-by-one), with antichain pruning.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 11 / 25

Deciding WS1S Using Non-deterministic Automata

We consider only formulae in Prenex Normal Form (∃PNF).
We focus on dealing with the prefix of alternating quantifiers.

For a formula ϕ with m quantifier alternations over sets of
variables Xi ⊆ X,

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

→ construct a hierarchical family of automata defined as follows:
• Aϕ0 : a composition of atomic automata described before,

• Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm): described next.

I Intuition: on-the-fly projection and subset construction for all m levels
(instead of doing it one-by-one), with antichain pruning.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 11 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.

A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.

A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.

A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.

A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

More Intuition behind the Procedure

Correspondence between formulae and automata:

A formula ϕ is valid iff L(Aϕ) = Σ∗.
A formula ϕ is satisfiable iff L(Aϕ) 6= ∅.
A formula ϕ is unsatisfiable iff L(Aϕ) = ∅.

A key observation for ground formulae:

The symbols degenerate to the empty one: Σ = {[]}.
A ground formula ϕ is valid iff it is satisfiable iff L(Aϕ) = []∗.
A ground formula ϕ is satisfiable iff L(Aϕ) = []∗ iff Im ∩ Fm 6= ∅.

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 12 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:
• I1 = {I0}
• I2 = {I1} = {{I0}}...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:

• I1 = {I0}
• I2 = {I1} = {{I0}}...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:
• I1 = {I0}

• I2 = {I1} = {{I0}}...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:
• I1 = {I0}
• I2 = {I1} = {{I0}}

...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:
• I1 = {I0}
• I2 = {I1} = {{I0}}...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Construction the set of Initial States Im

Constructing the whole automaton for ϕm is not necessary!
• We construct the sets of initial/final states only,
• and test whether they intersect.

Construction of initial states is straightforward; starting from I0:
• I1 = {I0}
• I2 = {I1} = {{I0}}...
• Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

I No space for the subset construction to construct anything else!

Final states are more tricky:
• a need to saturate after projection as described previously,
• a lot of space for constructing different sets of sets of ... of states,
• a need of switching the acceptance mode.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 13 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.
• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },

I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,

• after subset construction, any set of states of level i
containing a state from F∃i is final,

• after negation, such sets become non-final.
I We stay with non-final states.

• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },
I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,

• after negation, such sets become non-final.
I We stay with non-final states.

• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },
I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.
• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },

I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.

• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },
I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.
• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },

I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.
• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },

I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (1/3)

Given a formula ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X) in ∃PNF,
• start by constructing the base automaton for ϕ0.

Given final states Fi of level i ,
• compute the set F∃i of their predecessors over 0 (pre0)

after projecting Xi+1,
• after subset construction, any set of states of level i

containing a state from F∃i is final,
• after negation, such sets become non-final.

I We stay with non-final states.
• Hence, non-final states Ni+1 = ↑ {{q} | q ∈ F∃i },

I the upward closed set with the set of generators (minimal elements)
{{q} | q ∈ F∃i }.

• i.e., Ni+1 = ↑
∐
{F∃i } – choice (unordered Cartesian product).

I Let Q = {Q1, ...,Qn},
∐
Q = {{q1, ..., qn} | (q1, ..., qn) ∈

∏n
i=1 Qi}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 14 / 25

Introduction to the Computation of Final States (2/3)

Example: projection of X and negation on the FA:

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
• F∃0 = {2,3}.

After negation:
• N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}},

• N1 = ↑ {{2}, {3}} = ↑
∐
{{2,3}}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 15 / 25

Introduction to the Computation of Final States (2/3)

Example: projection of X and negation on the FA:

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
• F∃0 = {2,3}.

After negation:
• N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}},

• N1 = ↑ {{2}, {3}} = ↑
∐
{{2,3}}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 15 / 25

Introduction to the Computation of Final States (2/3)

Example: projection of X and negation on the FA:

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
• F∃0 = {2,3}.

After negation:
• N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}},

• N1 = ↑ {{2}, {3}} = ↑
∐
{{2,3}}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 15 / 25

Introduction to the Computation of Final States (2/3)

Example: projection of X and negation on the FA:

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
• F∃0 = {2,3}.

After negation:
• N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}},
• N1 = ↑ {{2}, {3}} = ↑

∐
{{2,3}}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 15 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.
• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.
• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.

• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.
• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.
• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Introduction to the Computation of Final States (3/3)

Given non-final states Ni of level i ,
• compute the set N∃i of their controllable predecessors over 0 (cpre0)

after projecting Xi+1,
I only states that cannot get to a final state stay non-final,

• after subset construction, any set of states of level i
consisting of non-final states of N∃i is non-final,

• after negation, any such set becomes final.
• Hence, final states Fi+1 = ↓ {N∃i } (downward closure).

Continue with iterating the computation of non-final states from
final, final from non-final, ...

Do not enumerate the sets Fi/Ni :
• use symbolic encoding via expressions with the ↑

∐
/ ↓ operators.

• A form of antichain reduction: keeping minimal/maximal elements.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 16 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.
2 Negate the final states: N1 = ↑

∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.
4 Negate the non-final states: F2 = ↓ {N∃1}.
...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.

2 Negate the final states: N1 = ↑
∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.
4 Negate the non-final states: F2 = ↓ {N∃1}.
...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.
2 Negate the final states: N1 = ↑

∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.
4 Negate the non-final states: F2 = ↓ {N∃1}.
...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.
2 Negate the final states: N1 = ↑

∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.

4 Negate the non-final states: F2 = ↓ {N∃1}.
...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.
2 Negate the final states: N1 = ↑

∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.
4 Negate the non-final states: F2 = ↓ {N∃1}.

...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Final States Fm of Formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X).

1 Add final states after ∃: F∃0 = {µZ .F ∪ pre0(Z)}.
2 Negate the final states: N1 = ↑

∐
{F∃0 }.

3 Prune non-final states after ∃: N∃1 = {νZ .N1 ∩ cpre0(Z)}.
4 Negate the non-final states: F2 = ↓ {N∃1}.
...

5 Keep alternating between computing final and non-final states
until Fm as follows:
• Fi+1 = ↓ {νZ .Ni ∩ cpre0(Z)},
• Ni+1 = ↑

∐
{µZ .Fi ∪ pre0(Z)}.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 17 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

E.g., note that cpre0(↑ {Q}) =↑
∐
{pre0(q) | q ∈ Q}:

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

Q
p
q?

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

pre (p)

Q
p

q

0

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

pre (q)0 Q
p

q

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

Q
p

q

{pre (q) | q є Q}0

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

{pre (q) | q є Q}0

∏

Q
p

q

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

CPRE

Q
p

q
{pre (q) | q є Q}0

∏

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

U

P Q

CPRE

Q

U

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

U
U U

CPRE

P Q

Q

U

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

U
U U

CPRE

P Q

Q

U

Likewise for the predecessors of a downward closed set.

Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

Computing Predecessors of Symbolic States

(Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
E.g., note that cpre0(↑ {Q}) =↑

∐
{pre0(q) | q ∈ Q}:

U
U U

CPRE

P Q

Q

U

Likewise for the predecessors of a downward closed set.
Can be adapted for symbolic states with the needed structure.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 18 / 25

A Summary of the Inner Structure of Fm

F0

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

A Summary of the Inner Structure of Fm

F0...
E

UU

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

A Summary of the Inner Structure of Fm

F0

N1

E

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

A Summary of the Inner Structure of Fm

F0

N1...

E

EUU

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

A Summary of the Inner Structure of Fm

F0

N1

F2

E

E

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

A Summary of the Inner Structure of Fm

F0

N1

F2
... E

E

E

UU

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 19 / 25

State Space Pruning

Sets of states on the various levels of the subset construction
encoded as up(down)ward closed sets given by their generators.
• First source of reduction.
• Can be viewed as having an antichain flavour: generators and the

bigger/smaller states are comparable.

Further, we prune the generators subsumed by other generators:
• the subsumption relation is computed on nested structure of

symbolic representation of lower levels as follows.

↓X ⊆ ↓Y ⇐⇒ ∀X ∈ X . ∃Y ∈ Y . X ⊆ Y

↑
∐
X ⊆ ↑

∐
Y ⇐⇒ ∀Y ∈ Y . ∃X ∈ X . X ⊆ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 20 / 25

State Space Pruning

Sets of states on the various levels of the subset construction
encoded as up(down)ward closed sets given by their generators.
• First source of reduction.
• Can be viewed as having an antichain flavour: generators and the

bigger/smaller states are comparable.

Further, we prune the generators subsumed by other generators:
• the subsumption relation is computed on nested structure of

symbolic representation of lower levels as follows.

↓X ⊆ ↓Y ⇐⇒ ∀X ∈ X . ∃Y ∈ Y . X ⊆ Y

↑
∐
X ⊆ ↑

∐
Y ⇐⇒ ∀Y ∈ Y . ∃X ∈ X . X ⊆ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 20 / 25

Intersection of Initial and Final States

Can also be done on the symbolic representation.

Depending on whether the number of alternations is even or odd,
test:

• whether initial states intersect the final ones,
I Im ∩ Fm 6= ∅ ⇔ Im−1 ∈ Fm, or

• or that initial states are not among the non-final ones,
I reduces to an “and/or” search:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y

{x} ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 21 / 25

Intersection of Initial and Final States

Can also be done on the symbolic representation.

Depending on whether the number of alternations is even or odd,
test:

• whether initial states intersect the final ones,
I Im ∩ Fm 6= ∅ ⇔ Im−1 ∈ Fm, or

• or that initial states are not among the non-final ones,
I reduces to an “and/or” search:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y

{x} ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 21 / 25

Intersection of Initial and Final States

Can also be done on the symbolic representation.

Depending on whether the number of alternations is even or odd,
test:

• whether initial states intersect the final ones,
I Im ∩ Fm 6= ∅ ⇔ Im−1 ∈ Fm, or

• or that initial states are not among the non-final ones,
I reduces to an “and/or” search:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y

{x} ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 21 / 25

Intersection of Initial and Final States

Can also be done on the symbolic representation.

Depending on whether the number of alternations is even or odd,
test:

• whether initial states intersect the final ones,
I Im ∩ Fm 6= ∅ ⇔ Im−1 ∈ Fm, or

• or that initial states are not among the non-final ones,
I reduces to an “and/or” search:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y

{x} ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 21 / 25

Implementations

dWiNA (deciding WS1S using Non-deterministic Automata):
• our prototype implementation,
• antichain-based approach, with non-deterministic automata,
• uses library VATA for manipulation with the automata:

I uses degenerated tree automata.

MONA:
• (old but) state-of-the-art tool,
• classic approach, with deterministic automata,
• implemented range of optimizations like:

I automata minimization,
I automata caching,
I using a DAG representation for formulae,
I and many others.

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 22 / 25

Experiments on Formulae from Verification

Compared with MONA:
• on formulae from verification benchmarks,

I taken from the STRAND tool (STRucture ANd Data),
I encoding loop invariants of heap-manipulating programs,

• in the general and ∃PNF form.

MONA dWiNA
Time [s] Space [states] Time [s] Space [states]

benchmark general ∃PNF general ∃PNF Prefix Prefix
list-insert-after-loop 0.01 0.01 167 686 0.01 28
list-insert-before-head 0.01 0.01 43 152 0.01 38
list-insert-before-loop 0.01 0.01 103 1021 0.01 38
list-insert-in-loop 0.01 0.01 463 5015 0.01 59
list-reverse-after-loop 0.01 0.01 179 1 326 0.01 100
list-reverse-in-loop 0.02 0.47 1 311 70 278 0.02 260
bubblesort-else 0.01 0.45 1 285 12 071 0.01 14
bubblesort-if-else 0.02 2.17 4 260 116 760 0.23 234
bubblesort-if-if 0.12 5.29 8 390 233 372 1.14 28

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 23 / 25

Experiments with Generated Formulae

Compared with MONA:
• on generated formulae,

I parametric, various lengths of prefix, number of alternations,
I base formulae encode various set problems (transitivity, etc.),

• in the ∃PNF form.
An example of a generated formula:

∃Y : ¬∃X1¬ . . .¬∃Xk , . . . ,Xn :
∧

1≤i<n

(
Xi ⊆ Y∧Xi ⊂ Xi+1

)
⇒ Xi+1 ⊆ Y .

MONA dWiNA
Time [s] Space [states] Time [s] Space [states]

benchmark general ∃PNF general ∃PNF Prefix Prefix
1 alternation - 0.11 - 10 718 0.01 39
2 alternations - 0.20 - 25 517 0.01 44
3 alternations - 0.57 - 60 924 0.01 50
4 alternations - 1.79 - 145 765 0.02 58
5 alternations - 4.98 - 349 314 0.02 70
6 alternations - TO - TO 0.47 90

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 24 / 25

Future Work

Extension to WS2S.

Generalization of the symbolic tree representation:
• to process logical connectives,
• to handle general (non-∃PNF) formulae.

Syntactical optimizations:
• using Direct Acyclic Graph (DAG) for representation of formulae,
• anti-prenexing,
• smarter conversion to ∃PNF, ...

T. Fiedor, L. Holı́k, O. Lengál, T. Vojnar WS1S through NFA Vienna UT, 2015 25 / 25

