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e —
WS1S

m Weak monadic second-order logic of one successor:

second-order = quantification over relations;
monadic = the relations are unary —i.e. sets;

weak = the sets are finite;

of one successor = reasoning about linear structures.
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WS1S

m Weak monadic second-order logic of one successor:

e second-order = quantification over relations;

e monadic = the relations are unary —i.e. sets;

e weak = the sets are finite;

e of one successor = reasoning about linear structures.

m Extensions of WS1S:

e WSKS — with k successors;
e SkS — allows quantification over infinite sets;
e M2L(str) — allows quantification over infinite (but bounded) sets.

m Corresponds to finite automata [Blichi’60].

m Decidable, but NONELEMENTARY:
o tower of exponentials of height given by quantifier alternations.
» Deciding WS1S via DFAs: determinization, complementation, ...
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e —
The MONA Tool

m MONA — an automata-based WS1S/WSKS decision procedure:

e semi-symbolic DFAs/DTAs: MTBDDs used to encode transitions,
o efficient on many formulae obtained in various applications.

m Used in tools for checking complex shape invariants:

e Pointer Assertion Logic Engine (PALE),
e STRucture ANd Data (STRAND).

m Various other applications:

e other kinds of program and protocol verification, parsing, synthesis,
linguistics, multimedia, ...
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m MONA — an automata-based WS1S/WSKS decision procedure:

e semi-symbolic DFAs/DTAs: MTBDDs used to encode transitions,
o efficient on many formulae obtained in various applications.

m Used in tools for checking complex shape invariants:

e Pointer Assertion Logic Engine (PALE),
e STRucture ANd Data (STRAND).

m Various other applications:

e other kinds of program and protocol verification, parsing, synthesis,
linguistics, multimedia, ...

m However, sometimes the complexity strikes back:

e unavoidable in general,
e one can try to push the usability border further:

» using the recent advancements in non-deterministic automata.
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IS
Syntax and Semantics of WS1S

m Minimal syntax:
e Let X, Y, ... be 2nd-order variables.
e Terms: ¢ = X C Y |Sing(X) | X = {0} | X =o(Y)
e Formulae: o i=v | A | Ve |—p|IX.p
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——
Syntax and Semantics of WS1S

m Minimal syntax:
e Let X, Y, ... be 2nd-order variables.
e Terms: ¢ = X C Y |Sing(X) | X = {0} | X =o(Y)
e Formulae: o i=v | A | Ve |—p|IX.p

m A note on semantics:
o Variables interpreted as finite subsets of N.
e Singleton —Sing(X): X = {n} for some n € N.
e Successor—X =o0(Y): Y={n}and X ={n+ 1} forsome n e N.
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IR
WS1S Syntactical Sugar

def
p=>9% < “pVy
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WS1S Syntactical Sugar

p=9 S —pVy
VX.o & —-3IX—p
dx.p & 3XSing(X) A
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WS1S Syntactical Sugar

p=>9% < “pVy

vX.p =3X. e

Ix.p 3X.Sing(X) A ¢
VX.Sing(X) = ¢
X=Y & XCYAYCX

VX.p
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WS1S Syntactical Sugar

p=>v & —pvy

vX.p % —-3IX.—p

Ixe & 3XSing(X) Ay

VX.p % VX.Sing(X) = ¢

X=Y ¥ xcvyavycx
def

X=0 & VZXCZ
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WS1S Syntactical Sugar

=1
vX.p
dx.p
VX.p
X=Y
X=10
xeY

oy

I8 98 08 I8 08 ¢

e VY

—3X.—p
3X.Sing(X) A ¢
VX.Sing(X) = ¢
XCYANYCX
VZXCZ
Sing(X)AXCY
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WS1S Syntactical Sugar

=1
vX.p
dx.p
VX.p
X=Y
X=10
xeY

x<y

e VY

—3X.—p

3X.Sing(X) A ¢

VX.Sing(X) = ¢

XCYANYCX

VZXCZ

Sing(X)AXCY
VX.(yeXAN(Vzo(z)eX=>zeX)=>xe X
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BN
Models of WS1S Formulae as Words

m Models of WS1S formulae:
e maps of the variables to finite subsets of N.
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m Models of WS1S formulae:
e maps of the variables to finite subsets of N.

m Such sets can be encoded as binary strings:

Index: 012345 0123456 01234567
o {1,4,5} — Membership:  xvxxvv , XXX vX OF XuXXv VXX
Encoding: 010011 0100110 01001100
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Models of WS1S Formulae as Words

m Models of WS1S formulae:

e maps of the variables to finite subsets of N.

m Such sets can be encoded as binary strings:

Index: 012345 0123456 01234567
e {1,4 5} — Membership:  xvxxvv , XXX vX OF XXXy VXX
Encoding: 010011

0100110 01001100
e Note that any number of zeros can always be added to the right!

m For each variable, we have one track in the alphabet:
e 4., m is a symbol.

¢ A natural encoding for sets of transitions over such symbols:
» multi-terminal BDDs.

m Example: {X; — 0, Xo — {4,2}} ~ ;;{8] m m m m
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BN
Atomic Automata for WS1S

XCY (X is a subset of Y)

bl ere - SBHEIRE s
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BN
Atomic Automata for WS1S

XCY (X is a subset of Y)

= Y2tdsa rxey - SLRIGI RG] < s
Sing(X) (X is singleton)

X: [0] X: [0]

B X {2} | Sing(X) ~  X:[0][0][1][0]" € L(Asing(x))
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BN
Atomic Automata for WS1S

X = {0} (X is the set {0})
X:[0]

NOE

B X {0 EX={0} ~ X:[10]* C L(Ax(0)
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BN
Atomic Automata for WS1S

X = {0} (X is the set {0})
X:[0]

NOE

B X {0 EX={0} ~ X:[10]* C L(Ax(0)

X=0o(Y) (X is the successor of Y)
i o
- & Y: M ® Y: M é)

3 ermom - BB o
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:

(X CY) A3Z.(Sing(Z) v IW.W = 5(2))

\ \ \
A3 .Az A1
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:

~(X C Y) AIZ.(Sing(Z) v IW.W = o(2))
\ \ : \
AS .Az | A1
U4
project W — A,
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar

(X C Y) A3Z(Sing(Z) VIW.W = 5(2))

\ \
AS .Az

| I ‘

Co A

! U4

' project W —» Ay

v

Ao U Ay
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:

—~(X € Y) AJZ.(Sing(2) vIW.W = o(2))
| i \ Lo |

As ! A A

! : 4 /

\

‘ project W — A,
\ . v
N Ao U Ay
A -

project Z — A
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:
~(X € Y) AFZ.(Sing(Z2) vIW.W = o(2))
o o |
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v \ 1 a4 /
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Construction of More Complex Automata

m Logical connectives mapped to automata operations.
o More complex formulae handled by composition of automata.

m Example:

(X C ) A 3Z.(Sing(2) v IW.W = o(2))

! | o | ! |

|
L A Lo A A
\ I \ 1 ‘a4 /
A ‘ v ' project W —» A4
Ag « complement ! \ u.
I \‘\ Ao U Ay
| A -
| project Z —» A
v
Ag N A7
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Handling Quantification
m Quantification handled by projection of a certain track.

e Introduces non-determinism to automata.
o Alternations require negation, hence determinization ~ high cost.
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Handling Quantification

m Quantification handled by projection of a certain track.
e Introduces non-determinism to automata.
¢ Alternations require negation, hence determinization ~~ high cost.

m An additional issue with projection of variables in an automaton:
e after removing some tracks, some models need not be accepted:
» some zero suffixes need not be present.
e One needs to adjust the final states.

o ot N
By B

Ax=o(v) — Projection
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Handling Quantification

m Quantification handled by projection of a certain track.
e Introduces non-determinism to automata.
¢ Alternations require negation, hence determinization ~~ high cost.

m An additional issue with projection of variables in an automaton:
e after removing some tracks, some models need not be accepted:
» some zero suffixes need not be present.
e One needs to adjust the final states.

:[o x- X:[0
vl Wbl v v
& @_é % : é (%Ymcvmé
Ax=o(y) — Projection — Adjust states
to accept models:
1,01, 001, ...
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Handling Quantification

m Quantification handled by projection of a certain track.
e Introduces non-determinism to automata.
¢ Alternations require negation, hence determinization ~~ high cost.

m An additional issue with projection of variables in an automaton:
e after removing some tracks, some models need not be accepted:
» some zero suffixes need not be present.
e One needs to adjust the final states.

X: [0] X: {0] X [G}
: Y: |0 Y: |0
v:10 X:[0 X:[1 X [0
% Y: |1 : .
Ax=s(¥) — Projection — Adjust states
to accept models:
1,01, 001, ...
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——
Deciding WS1S Using Non-deterministic Automata

m We consider only formulae in Prenex Normal Form (3PNF).
m We focus on dealing with the prefix of alternating quantifiers.
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m We consider only formulae in Prenex Normal Form (3PNF).
m We focus on dealing with the prefix of alternating quantifiers.

m For a formula ¢ with m quantifier alternations over sets of
variables X; C X,
Y = ﬂﬂXmﬂ...ﬂEngﬁEl)ﬁ . (po(X)
N e
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Deciding WS1S Using Non-deterministic Automata

m We consider only formulae in Prenex Normal Form (3PNF).
m We focus on dealing with the prefix of alternating quantifiers.

m For a formula ¢ with m quantifier alternations over sets of
variables X; C X,
Y = ﬂﬂXmﬂ...ﬂEngﬁEl)ﬁ . (po(X)
N e

1

®m

— construct a hierarchical family of automata defined as follows:
e A,,: acomposition of atomic automata described before,
2%

o A, =(2% ,Am,Im, Fr): described next.

m
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——
Deciding WS1S Using Non-deterministic Automata

m We consider only formulae in Prenex Normal Form (3PNF).
m We focus on dealing with the prefix of alternating quantifiers.

m For a formula ¢ with m quantifier alternations over sets of
variables &; C X,
Y = ﬂﬂXmﬂ...ﬂEngﬁEl)ﬁ . (po(X)
N e

1

¥Ym

— construct a hierarchical family of automata defined as follows:
e A,,:acomposition of atomic automata described before,
2%

o A,, =(22  Am,In, Fr): described next.

m
» Intuition: on-the-fly projection and subset construction for all m levels
(instead of doing it one-by-one), with antichain pruning.
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More Intuition behind the Procedure

Correspondence between formulae and automata:
m Aformula ¢ is valid iff L(Ay) = X*.
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Correspondence between formulae and automata:
m Aformula ¢ is valid iff L(A,) = X*.
m A formula ¢ is satisfiable iff L(.A,) # 0.
m A formula ¢ is unsatisfiable iff L(A,) = 0.

A key observation for ground formulae:
m The symbols degenerate to the empty one: > = {[|}.
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More Intuition behind the Procedure

Correspondence between formulae and automata:
m Aformula ¢ is valid iff L(Ay) =
m A formula ¢ is satisfiable iff L(A,) # 0.
m A formula ¢ is unsatisfiable iff L(A,) = 0.

A key observation for ground formulae:
m The symbols degenerate to the empty one: > = {[]}.
m A ground formula ¢ is valid iff it is satisfiable iff L(A.) = [|".
m A ground formula ¢ is satisfiable iff L(A,) = []* iff /,, 1 Fpy # 0.

Y: [0] Y: [0] Y{o1 Y:fo} il I}

%YH]@Y[O]é H :

Aax X=o — Projection A3y x X=0o(Y)
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More Intuition behind the Procedure

Correspondence between formulae and automata:
m Aformula ¢ is valid iff L(Ay) =
m A formula ¢ is satisfiable iff L(A,) # 0.
m A formula ¢ is unsatisfiable iff L(A,) = 0.

A key observation for ground formulae:
m The symbols degenerate to the empty one: > = {[]}.
m A ground formula ¢ is valid iff it is satisfiable iff L(A.) = [|".
m A ground formula ¢ is satisfiable iff L(A,) = []* iff /,, 1 Fpy # 0.

Hreed He e

— Projection Asy X X=o(Y)

Y:[0] Y:[0]
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Construction the set of Initial States /,

m Constructing the whole automaton for ¢, is not necessary!

o We construct the sets of initial/final states only,
¢ and test whether they intersect.
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o We construct the sets of initial/final states only,
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m Construction of initial states is straightforward; starting from /y:
e = {b}
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Construction the set of Initial States /,

m Constructing the whole automaton for ¢, is not necessary!

o We construct the sets of initial/final states only,
e and test whether they intersect.

m Construction of initial states is straightforward; starting from /y:
o h={b}
o b={h}={{b}}
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Construction the set of Initial States /,

m Constructing the whole automaton for ¢, is not necessary!

e We construct the sets of initial/final states only,
e and test whether they intersect.

m Construction of initial states is straightforward; starting from /y:
o h={b}
o b={h}={{b}}

o Im={lmn—1}={{.. . {b} ... }}
N—_——
m
» No space for the subset construction to construct anything else!
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Construction the set of Initial States /,

m Constructing the whole automaton for ¢, is not necessary!

e We construct the sets of initial/final states only,
e and test whether they intersect.

m Construction of initial states is straightforward; starting from /y:
o h={b}
o b={h}={{b}}

o Im={lmn—1}={{.. . {b} ... }}
N—_——
m
» No space for the subset construction to construct anything else!

m Final states are more tricky:
e aneed to saturate after projection as described previously,
¢ alot of space for constructing different sets of sets of ... of states,
¢ a need of switching the acceptance mode.
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Introduction to the Computation of Final States (1/3)

m Given aformula ¢ = = 3X ... 23X 2 3A&y 1 o(X) in IPNF,
o start by constructing the base automaton for .
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Introduction to the Computation of Final States (1/3)

m Given aformula ¢ = = 3X ... 23X 2 3A&y 1 o(X) in IPNF,
o start by constructing the base automaton for .

m Given final states F; of level i,

o compute the set F; of their predecessors over 0 (preg)
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e start by constructing the base automaton for .

m Given final states F; of level /,
o compute the set F; of their predecessors over 0 (preg)
after projecting A} 1,
o after subset construction, any set of states of level
containing a state from l-',.3 is final,
o after negation, such sets become non-final.

» We stay with non-final states.
e Hence, non-final states ;.1 = 1 {{q}|qe F},

» the upward closed set with the set of generators (minimal elements)
{{a} lge F7}.
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o compute the set F; of their predecessors over 0 (preg)
after projecting A} 1,
o after subset construction, any set of states of level
containing a state from l-',.3 is final,
o after negation, such sets become non-final.
» We stay with non-final states.
o Hence, non-final states N, .1 — 1 {{q} |gec F '},
» the upward closed set with the set of generators (minimal elements)
{{a} lge F7}.
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m Given aformula ¢ = = 3X ... 23X 2 3A&y 1 o(X) in IPNF,
e start by constructing the base automaton for .

m Given final states F; of level /,
o compute the set F; of their predecessors over 0 (preg)
after projecting A} 1,
e after subset construction, any set of states of level i
containing a state from l-',.3 is final,
e after negation, such sets become non-final.
» We stay with non-final states.
o Hence, non-final states N+ = 1{{q} | gecF},
» the upward closed set with the set of generators (minimal elements)
{{a} lge F7}.
i.e., Nioiv = 1 ][{F'} —choice (unordered Cartesian product).

> Let Q={Qi, ... Q}, [1Q = {{q1, ..} [ (a1, qn) € TT]; Qi}-
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IR PP

HW
m After projection:
o F3={2,3}.
m After negation:

o Ny ={{2},{3},{2,0},{8,0},...{2,3,0},{2,3,1},...{0,1,2,3}},
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Introduction to the Computation of Final States (2/3)

m Example: projection of X and negation on the FA:

m After projection:
o F3={2,3}.
m After negation:

o Ny ={{2},{3}.{2,0}.{3,0},...{2,3,0},{2.3,1},...{0,1,2,3}},
o Ni= 1{{2){3}) = T1I{{2,3}}
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Introduction to the Computation of Final States (3/3)

m Given non-final states N; of level /,

 compute the set N7 of their controllable predecessors over 0 (cprep)
after projecting X}, 1,
» only states that cannot get to a final state stay non-final,
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Introduction to the Computation of Final States (3/3)

m Given non-final states N; of level /,

o compute the set N7 of their controllable predecessors over 0 (cpreg)
after projecting X, 1,
» only states that cannot get to a final state stay non-final,
e after subset construction, any set of states of level i
consisting of non-final states of N7 is non-final,
e after negation, any such set becomes final.
e Hence, final states /1 = | {N} (downward closure).

m Continue with iterating the computation of non-final states from
final, final from non-final, ...

m Do not enumerate the sets F;/N;:

e use symbolic encoding via expressions with the 1 [ / | operators.
e A form of antichain reduction: keeping minimal/maximal elements.
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Computing Final States F,, of Formula ¢,

m Given p=="3dXp-... 2 dAX ~dAy : gOo(X).
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m Given Y= Xy ... X A (po(X).

Add final states after 3: Fj = {uZ.F Upreg(Z)}.
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Computing Final States F,, of Formula ¢,

m Given p="3dXn-... 2 dAX -~ Iy QDO(X)

Add final states after 3: F§ = {uZ.F Upreg(Z)}.

Negate the final states: Ny =1 [[{F}.

Prune non-final states after 3: Nj = {vZ.Ny N cpreg(Z)}.
B Negate the non-final states: F> = | {N7}.

Keep alternating between computing final and non-final states
until Fp, as follows:
o Fiiy = {vZ.Nincpreyg(2)},
o Nt = 11{nZ.FUprey(2)}.

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 17/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

A

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

{eo(q) lgeQ

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =1 [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

A

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 18/25



Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.
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Computing Predecessors of Symbolic States

m (Controllable) predecessors of symbolic states can be computed
without enumerating their elements.

m E.g., note that cpreg(1 {Q}) =T [[{preo(q) | g € Q}:

m Likewise for the predecessors of a downward closed set.
m Can be adapted for symbolic states with the needed structure.
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State Space Pruning

m Sets of states on the various levels of the subset construction
encoded as up(down)ward closed sets given by their generators.
o First source of reduction.
e Can be viewed as having an antichain flavour: generators and the
bigger/smaller states are comparable.
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State Space Pruning

m Sets of states on the various levels of the subset construction
encoded as up(down)ward closed sets given by their generators.

o First source of reduction.
e Can be viewed as having an antichain flavour: generators and the
bigger/smaller states are comparable.

m Further, we prune the generators subsumed by other generators:

e the subsumption relation is computed on nested structure of
symbolic representation of lower levels as follows.

IXClY — VXeX.dYeVY.XCY
THX C ALY «— VYeVY.3aXeX.XCY
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m Can also be done on the symbolic representation.
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Intersection of Initial and Final States

m Can also be done on the symbolic representation.

m Depending on whether the number of alternations is even or odd,
test:

e whether initial states intersect the final ones,
> InNFn#0 < In_q1 € Fp, o1
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Intersection of Initial and Final States

m Can also be done on the symbolic representation.

m Depending on whether the number of alternations is even or odd,
test:

e whether initial states intersect the final ones,
> InNFn#0 < In_q1 € Fp, o1

o or that initial states are not among the non-final ones,
» reduces to an “and/or” search:

{x} elY <— 3IYeY:xeY
{x}et]llY <« VY¥eY:xeY
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Implementations

m dWINA (deciding WS1S using Non-deterministic Automata):

e our prototype implementation,
e antichain-based approach, with non-deterministic automata,
e uses library vATA for manipulation with the automata:

> uses degenerated tree automata.

= MONA:

e (old but) state-of-the-art tool,
e classic approach, with deterministic automata,
e implemented range of optimizations like:

» automata minimization,

» automata caching,

» using a DAG representation for formulae,

» and many others.
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Experiments on Formulae from Verification

m Compared with MONA:
e on formulae from verification benchmarks,
» taken from the STRAND tool (STRucture ANd Data),
» encoding loop invariants of heap-manipulating programs,
e in the general and ZPNF form.

MONA dWINA

Time [s] | Space [states] Time [s] | Space [states]
benchmark general IPNF  general 3PNF Prefix Prefix
list-insert-after-loop 0.01 0.01 167 686 0.01 28
list-insert-before-head 0.01 0.01 43 152 0.01 38
list-insert-before-loop 0.01 0.01 103 1021 0.01 38
list-insert-in-loop 0.01 0.01 463 5015 0.01 59
list-reverse-after-loop 0.01 0.01 179 1326 0.01 100
list-reverse-in-loop 0.02 0.47 1311 70278 0.02 260
bubblesort-else 0.01 0.45 1285 12071 0.01 14
bubblesort-if-else 0.02 217 4260 116760 0.23 234
bubblesort-if-if 0.12 5.29 8390 233372 1.14 28

T. Fiedor, L. Holik, O. Lengal, T. Vojnar WS1S through NFA Vienna UT, 2015 23/25



Experiments with Generated Formulae

m Compared with MONA:
e on generated formulae,
» parametric, various lengths of prefix, number of alternations,
» base formulae encode various set problems (transitivity, etc.),
e in the 4PNF form.

m An example of a generated formula:

E|Y:—|E|X1—|...—E|Xk,...,xn:/\()(,'gY/\)(jC)(i+1):>)(i+1QY.
1<i<n
MONA dWiNA

Time [s] | Space [states] Time [s] | Space [states]
benchmark general 3PNF  general 3PNF Prefix Prefix
1 alternation - 0.1 - 10718 0.01 39
2 alternations - 0.20 - 25517 0.01 44
3 alternations - 0.57 - 60924 0.01 50
4 alternations - 1.79 - 145765 0.02 58
5 alternations - 4.98 - 349314 0.02 70
6 alternations - TO - TO 0.47 90

T. Fiedor, L. Holik, O. Lengal, T. Vojnar

WS1S through NFA

Vienna UT, 2015
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Future Work

m Extension to WS2S.

m Generalization of the symbolic tree representation:

o to process logical connectives,
e to handle general (non-dPNF) formulae.

m Syntactical optimizations:
o using Direct Acyclic Graph (DAG) for representation of formulae,
e anti-prenexing,
e smarter conversion to IPNF, ...
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