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ABSTRACT

This work continues in development of the recently proposed
Bottle-Neck features for ASR. A five-layers MLP used in bottle-
neck feature extraction allows to obtain arbitrary featuresize without
dimensionality reduction by transforms, independently onthe MLP
training targets. The MLP topology – number and sizes of layers,
suitable training targets, the impact of output feature transforms, the
need of delta features, and the dimensionality of the final feature vec-
tor are studied with respect to the best ASR result. Optimized fea-
tures are employed in three LVCSR tasks: Arabic broadcast news,
English conversational telephone speech and English meetings. Im-
provements over standard cepstral features and probabilistic MLP
features are shown for different tasks and different neuralnet in-
put representations. A significant improvement is observedwhen
phoneme MLP training targets are replaced by phoneme statesand
when delta features are added.

Index Terms— Bottle-neck, MLP structure, features, LVCSR

1. INTRODUCTION

Features for ASR obtained from neural networks have recently be-
come a component of state-of-the-art recognition systems [1]. They
are typically obtained by projecting a larger time span of a critical-
band spectrogram onto posterior probabilities of phoneme classes
using multi-layer perceptron (MLP). That is why they are sometimes
referred to asprobabilistic features. In order to better fit the sub-
sequent Gaussian mixture model, the MLP estimates of posteriors
are logarithmized and decorrelated by Principal Components Analy-
sis (PCA) or Heteroscedastic Linear Discriminant Analysis(HLDA),
which also allows to reduce their dimensionality.

The performance of probabilistic features is often below that of
standard cepstral features. However, due to their different nature,
they exhibit a large amount of complementary information. The role
of the probabilistic features in ASR is thus to augment the cepstral
features. This is especially the case of TRAP-based probabilistic
features [2], where the input to the MLP is formed by temporaltra-
jectories of energies in independent critical bands. Sincetheir intro-
duction, several modifications targeting the input spectrogram [3, 4],
the MLP structure [5] and MLP training targets [6] were proposed.
Despite all the effort, probabilistic features have not consistently out-

This work was partly supported by European IST projects AMIDA (FP6-033812)
and Caretaker (FP6-027231), by Grant Agency of Czech Republic under project No.
102/08/0707, by Czech Ministry of Education under project No. MSM0021630528,
and by the DARPA GALE program, Contract No. HR0011-06-C-0022. The hardware
used in this work was partially provided by CESNET under projects No. 162/2005 and
No. 201/2006.

����
��

��

����
��

��

����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

PCA /

R
aw

 fe
at

ur
es

Segmentation
step: 10ms
length: 25ms

5 layer MLP

HLDA

spectrogram

BN

features

speaker based

variance 
normalization

Log−critical band

| FFT | ^2

Log

Critical bands (+VTLN) Speech

DCT
Hamming

Hamming
DCT

mean and

Fig. 1. Block diagram of the Bottle-Neck feature extraction with
TRAP-DCT raw features at the MLP input.

performed cepstral features and are being used only as theircomple-
ment.

This misfortune seems to have ended last year with the introduc-
tion of theBottle-Neck(BN) features [7]. BN features use five-layers
MLP with a narrow layer in the middle (bottle-neck). The fundamen-
tal difference between probabilistic and BN features is that the latter
are not derived from the class posteriors. Instead, they areobtained
as linear outputs of the neurons in thebottle-necklayer. This struc-
ture makes the size of the features independent of the numberof the
MLP training targets. Hence it is easy to replace the phonemetargets
by finer and more numerous sub-phoneme classes, while retaining a
small feature vector without a need of a dimensionality reduction.
The bottle-neck MLP training process is the same as for probabilis-
tic features and employs all five layers. During feature extraction
only the first three layers are involved. It is illustrated inFig. 1.

This work continues in the development of the BN features by
experimenting with the topology of the MLP (number of layersand
their sizes) as described in section 3.1. Section 3.2 evaluates the
contribution of switching from phoneme to sub-phoneme training
targets. Section 3.3 questions the necessity of decorrelating the fea-
tures prior to GMM-HMM modeling by PCA or HLDA transforms.
Finally, section 3.4 experiments with augmenting BN features by
their temporal derivatives in the same way it is commonly done to
cepstral features.

2. EXPERIMENTAL SETUP

Experiments were carried out on three LVCSR tasks using two in-
dependent MLP implementations, three independent HMM imple-
mentations and three different MLP raw input features in order to
provide a better objectivity in conclusions.

2.1. Raw Features for MLP

The purpose of the neural network in the BN system is to transform
a certain representation of speech into output features. The speech



representation –raw features– is usually high-dimensional and it is
derived from speech segments several hundred millisecondslong. In
this work, three different raw features were used:

TRAP-DCT – A short-term mel-scaled log-energy spectrogram
is normalized by VTLN and speaker-based mean and variance nor-
malization. Next, 300 ms (31 frames) long energy trajectories
(TRAPs) in 23 frequency sub-bands of the spectrogram are projected
on Discrete Cosine Transform bases and the first 16 coefficients in-
cluding DC component are retained. TRAP-DCT raw features have
23 × 16 = 368 elements.

9-PLP – 9 successive frames of 12 PLP features plus the frame
energies with their derivatives∆ and∆

2 are concatenated, centered
at the current frame. In Arabic task, PLPs are mean and variance nor-
malized per speaker (automatic segmentation). 9-PLP raw features
have9 × 39 = 351 elements and cover about 150 ms context.

wLP-TRAP – Hilbert envelopes of 500 ms speech frames are
calculated in 1-Bark wide frequency sub-bands. The temporal axis
of the envelopes are pre-warped and the envelopes are modeled by
linear prediction [8]. As raw features, the LP cepstral coefficients
are used. With 19 bands and 25 LPC coefficients per band there are
19 × 15 = 475 elements.

2.2. Task 1 – Meetings (Meetings Speech Recognition)

The Meetings recognition system is based on AMI-LVCSR system
used in NIST RT’05 evaluation [9] and is the same as in [7].

Data: The training set consists of the complete NIST, ISL, AMI
and ICSI meeting data – about 114 hours. The test set was defined
in NIST RT’05 evaluation. The independent headset microphone
(IHM) test set with reference segmentation was used.

Recognition systemis based on HTK, using 7700 tied states
with 16 mixtures per state. It works in two passes: first, widelat-
ices are generated with PLP-based models and a bi-gram language
model (LM). Second, the lattices are rescored with a four-gram LM
and models trained using the evaluated features. The language scale
factor and the word insertion penalty are tuned for the best WER.

MLP: MLP uses TRAP-DCT raw features, it has 5 layers and
135 phoneme states targets. HLDA is used to decorrelate the output
features. MLP is trained on one third of data from each site – about
38 hours. The total number of MLP trained parameters is about
1 million and the topology is 368–1745–35–1745–135 neurons.

The baseline performance of VTLN-PLP features appended with
derivatives∆, ∆2 and∆

3, transformed by HLDA to 39 dimensional
vector and speaker-based mean and variance normalized is 27.8%
WER.

2.3. Task 2 - CTS (Conversational Telephone Speech)

Fast-turnaround English CTS task allows for quick evaluation of
novel approaches without the need of training a full system,while
retaining the scalability of results to LVCSR [10].

Data: Training data contains 16 hours of telephone speech from
Fisher and Switchboard corpora per gender. Evaluation dataare
1 hour subsets from RT-03 eval data per gender with a vocabulary
limited to 1000 words. Only male part of this task was used.

Recognition systemis based on HTK, uses about 2000 tied-
states with 32 mixtures per state and a bi-gram LM. It is a simple
single-pass system.

MLP: MLP uses wLP-TRAP raw features, it has 4 layers and 46
phoneme targets. PCA decorrelates the output features. TheMLP is
trained on all the training material. The number of trained parame-
ters is about 250 000 and the topology is 375–630–39–46 neurons.

The baseline performance of VTLN-PLP features augmented
with ∆ and∆

2 (39 features) is 45.1% WER.

2.4. Task 3 - Arabic Broadcast News Transcription

The recognition system is a development version of the Arabic
speech-to-text used in the AGILE participation in the GALE’07 eval-
uation [11, 12].

Data: Training data contains about 400 hours of manually tran-
scribed Arabic broadcast news data mainly distributed by LDC. Eval-
uation data contains about 3 hours of speech referred in the GALE
community as the bnat06 development set.

Recognition systemis a LIMSI CD-HMM based system, us-
ing about 10000 tied-states with 32 mixtures per state. Lattices are
generated with HMMs trained on the considered features and with a
bi-gram LM. They are then rescored by a tri- and four-gram LM.

MLP: MLP uses 9-PLP or wLP-TRAP raw features, it has
4 layers and 210 phoneme state targets. PCA decorrelates theoutput
features. The MLP is trained on 17 hours (9-PLP) or 63 hours (wLP-
TRAP) subset of the training data1. The number of trained param-
eters is about 1.4 million for 9-PLP or 1.8 million for wLP-TRAP
raw features. The respective topologies are 351–3500–39–210 and
475–3500-39-210 neurons.

The baseline performance of PLP features with∆ and∆
2 (39

features) with the speaker-based mean and variance normalization is
25.1% WER.

Tab. 1 illustrates the performance gain of switching from proba-
bilistic features to the above described initial bottle-neck features on
the three tasks. Bottle-neck features outperform probabilistic fea-
tures in all cases. The last column gives the performance of the
baseline PLP features.

MLP output features baseline
Task

parametr. size probab. BN PLP
Meetings TRAP-DCT 35 27.9 26.6 27.8

CTS wLP-TRAP 39 50.5 47.8 45.1
Arabic 9-PLP 39 25.7 24.7 25.1

Table 1. WER [%] of probabilistic and initial Bottle-Neck (BN) fea-
tures for various input parameterizations and tasks. The last column
shows PLP baseline.

3. EXPERIMENTALLY OPTIMIZING BOTTLE-NECK
FEATURES

The following sections describe the experimenting with allparts of
the BN system and evaluate the improvement on the LVCSR tasks.
In each experiment, except for the system part being examined, all
other parts are unchanged from the settings given in sections 2.2–2.4.

3.1. MLP Topology

Five layers MLP was used in the original BN implementation [7].
The goal was to meet two requirements which should have ensured
that the features provided maximum of the relevant information to
the GMM-HMM system. First, to provide the ability to compress
the input raw features in an arbitrary-sized output and second, to
ensure a good class separability of the output features.

Besides the first and the last layers needed for I/O interface, there
were three hidden layers in the MLP. The first of them was large
to provide the necessary modeling power. The middle one was the
MLP’s smallest layer – the bottle-neck, with its size equal to the
required size of the feature vector. The third hidden layer was again
large to further improve the classification potential.

1It allows faster experimenting for the price of 7% relative WER increase.



Sizes of hidden layers in 5-layer MLP
The sizes of the first and the third large hidden layers in the five-

layer MLP were originally equal. Tab. 2 shows the performances
with different ratios of their sizes on Meetings and CTS tasks. The
overall number of MLP’s trainable parameters was constant.The
best results were obtained when the first hidden had about twice
more neurons than the third hidden layer.

hid1:hid3 3:1 2:1 1:1 1:2 1:3
Meetings 26.9 26.6 26.6 26.8 27.1

CTS 47.9 47.5 48.8 48.7 48.8

Table 2. The influence of different ratios of the first and the third
large hidden layer sizes of the MLP on the performance (WER[%]).

Four or five layers?

The third large hidden layer of the bottle-neck MLP can, in prin-
ciple, be omitted. The impact of such change on the performance
was tested using Meetings task, see Tab. 3. The number of trainable
parameters was the same as for 5-layers MLP (one million). For
small feature sizes, the 5-layers MLP performs better than 4-layers
MLP. However, better results are in general obtained with larger vec-
tors (see Sec. 3.4) for which the difference between 4- and 5-layers
MLPs diminishes. The 5-layers MLP might appear more convenient
when considered that in the recognition phase, it requires less calcu-
lation than its 4-layer competitor having the same number oftrained
parameters.

feature size 13 24 35
4-layers MLP 29.3 27.4 26.8
5-layers MLP 28.6 26.9 26.6

Table 3. WER[%] (Meetings) of BN features obtained from 4- and
5-layers MLPs having the same number of trainable parameters.

3.2. MLP Training Targets

The discrimination of MLP features can be improved by replacing
phonemes by sub-phoneme classes. Phoneme states have been suc-
cessfully used for this purpose in [5]. In probabilistic features, the
gain from such a large number of classes is often not worth thetrou-
bles with reducing the feature dimensionality. On contrary, the BN
system can nicely accommodate the phoneme states since the num-
ber of classes does not directly affect the output feature size. The
state targets were introduced for BN features in [7], however no com-
parison with phonemes was given. Tab. 4 compares the performance
of BN features using phonemes vs. phoneme states as MLP targets.
The feature size was constant. The systems with phoneme states are
about 3% relative better than with phonemes. The reason is that the
phonemes are no more roughly treated as homogeneous units. In ad-
dition, the phoneme states better match the GMM-HMM structure,
thus the MLP and GMM-HMM become overall more coherent. BN
allows for even finer targets such as the tied states of HMMs. Never-
theless, finer targets may not necessarily mean better features since
more targets require more training data and more complex classifiers
to be able to properly capture the distributions.

MLP targets phonemes phoneme states BN size
Meetings 27.8(45) 26.6 (135) 35

Arabic 9-PLP 25.3(72) 24.7 (210) 39

Table 4. Influence of MLP training targets on performance (WER
[%]) of BN features. Number of targets is given in brackets.

3.3. Output Transform

In [7], HLDA transform was used to decorrelate the output of bottle-
neck MLP prior to GMM-HMM modeling. The HLDA was pre-
ferred over PCA because its goal is to maximize the between-class
separability and in contrast to LDA it does not assume the class co-
variances to be the same. This section experimentally compares sev-
eral output transforms.

The performance of the BN MLP outputs as features (i.e. with-
out transformation) was compared to the same outputs transformed
either by PCA or by S-HLDA considering each HMM tied state
as class or by G-HLDA where all Gaussian components in every
tied state were considered as classes. The results are summarized
in Tab. 5. Its left part shows (on the Meetings task) that the influ-
ence of the output transform is rather small. Only the most complex
G-HLDA transform seems to improve. The two last columns show
the results for CTS and Arabic tasks where only PCA transformwas
available. There the PCA brought a relative gain of 4%.

Meetings CTS Arabic
transform feature size 9-PLP

13 24 35 45 46 39

none 29.3 27.0 26.5 26.5 49.3 25.7
PCA 28.4 26.8 26.5 26.5 47.4 24.7

S-HLDA 28.7 26.9 26.6 26.2 – –
G-HLDA 28.3 26.4 26.3 26.1 – –

Table 5. Influence of various output transformations on top of BN
features on the system performance (WER[%]).

Note that when Gaussian mixture model is used in the HMM
system, it is desirable that the features have normal distributions.
The distributions of the BN MLP outputs were found to be very close
to Gaussian. Selected histograms can be seen at
www.fit.vutbr.cz/ g̃rezl/Histograms/

3.4. Feature Vector Size, Delta Features

Probabilistic features have been typically used jointly with cepstral
features because they provide complementary information.Since
they are extracted from a long temporal context, their derivatives
were believed to be redundant and, to our knowledge, the probabilis-
tic features have never been appended with deltas. This paper sees
the BN features rather as an alternative to cepstral features, therefore
their deltas are considered as a possible means of improvement.

The question of optimal feature size can be seen from two per-
spectives. One can experimentally optimize the BN feature size and
subsequently study the effect of adding deltas on top of them. Al-
ternatively, the feature size can be fixed or limited a prioriand one
rather needs to know whether to use less features with deltasor more
features without deltas.

BN features of various feature sizes were augmented with their
first and second derivatives and the performance was evaluated.
Tab. 6 gives results for four different setups. By comparingthe first
and the second lines of the tables, the deltas can be seen to sub-
stantially improve the BN system performance in all conditions, by
4–16% relative. Adding double deltas on top of deltas (the third
line) does not help. This can be explained as follows. MLP features
contain the contextual information which in case of cepstral features
comes from deltas2. But then why the deltas on top of MLP features
still help? MLP features contain the context implicitly. However,

2This can be illustrated using the Arabic task by comparing two features,



feature Meetings CTS (9-PLP)
kind 13 24 35 13 20 39 46
BN 28.6 26.9 26.6 55.7 51.4 47.8 47.4

BN+∆ 27.5 25.8 25.5 47.0 45.4 – –
BN+∆+∆

2 27.5 25.9 25.9 46.9 – – –

feature Arabic (9-PLP) Arabic (wLP-TRAP)
kind 13 20 39 20 39
BN 29.6 26.4 24.7 28.4 25.8

BN+∆ 27.0 24.9 – 26.5 24.4
BN+∆+∆

2 27.1 – – – –

Table 6. WER [%] of direct BN features vs. direct BN features
appended with derivatives. Direct feature sizes are given in headers.

in the HMM, the explicit derivatives serve as an extension tothe
contextual modeling mechanism – they help to overcome the limita-
tion introduced by the first order Markov model property. In other
words, instead of improving the features, the deltas ratherimprove
the model. While for cepstral features the purpose of deltasis thus
twofold (bringing the context and improving the model), MLPfea-
tures benefit from the deltas only by a better model. Finally,consider
that for PLP features the deltas bring about 35% relative gain and the
double deltas only another 11%3, it supports that for the MLP fea-
tures the double deltas become redundant.

The basic question of how many features to use can be answered
using Fig. 2 showing the system error as a function of the feature
size for Meetings task. The optimal direct feature size appears to be
around 45 features. When using deltas, the optimal overall size is
higher but not double, 50–70 features.

When the overall feature size is around 40 features, the decision
of using deltas is not straightforward. The Fig. 2 suggest that for the
Meetings, both 20+20∆ and 40+0∆ perform about the same. How-
ever, the antidiagonals of Tab. 6 for CTS and Arabic give a different
answer. The CTS task suggests using rather 20+20∆ than 39+0∆
(45.4% vs. 47.8%). The Arabic suggests the opposite, preferring
39+0∆ over 20+20∆ (25.8% vs. 26.5% for wLP-TRAP). It means
that the proper choice of the features depends on the the taskand
possibly relates to its complexity.

4. SUMMARY AND CONCLUSION

The paper addressed an experimental optimization of the novel
Bottle-Neck feature extraction. For a maximum objectivity, three
independent LVCSR tasks were employed which use two different
MLP implementations and three different HMM implementations.

It was shown that the BN features outperform probabilistic fea-
tures in all scenarios of different tasks and different MLP input raw
features. Next, the neural network structure was studied. It was
shown that five-layer BN MLP was relatively insensitive to the ra-
tio of its two large hidden layer sizes. The optimal one had about
twice more neurons in the first large layer than in the second.It
was also shown that the four-layers and the five-layers MLPs per-
form comparably for larger feature vectors. Next, a suitable MLP
training targets were searched for. The phoneme-state targets were

one using BN MLP trained on 15 subsequent frames of PLPs without deltas
and producing 39 features (23.8% WER, MLP trained on 63 hours) vs. a
common PLP system with two derivatives (25.1% WER).

3The respective results 43.1%, 28.2%, and 25.1% WER were obtained on
the Arabic task.
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Fig. 2. WER[%] as a function of feature size, Meetings task.

shown to perform markedly better than the phoneme targets. Sub-
sequently, the need of an output transform was investigated. It was
observed that BN features can perform well even without a trans-
form, however, the decorrelating transforms generally improve the
performance. Finally, the feature vector size and the use ofdelta fea-
tures were explored, showing that the first derivatives substantially
improve the system. The optimum feature size was found between
45 and 70 features, depending on the use of deltas.

The BN MLP can be successfully employed in conjunction with
different input raw features delivering BN features that reach or even
outperform the standard cepstral features. Although not explicitly
targeted and shown in this paper, Bottle-Neck and cepstral features
provide complementary information and when used jointly, they can
further improve the performance of the current state-of-the-art
LVCSR systems [7].

5. REFERENCES

[1] A. Janin et al., “The ICSI-SRI Spring 2006 meeting recogni-
tion system,” inMLMI’06, Lecture Notes in Computer Science.
2006, vol. 4299, pp. 444–456, Springer.

[2] H. Hermansky and S. Sharma, “TRAPs – classifiers of tempo-
ral patterns,” inICSLP’98, Sydney, 1998.
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