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Abstract
We propose a novel design for acoustic feature-based automatic
spoken language recognizers. Our design is inspired by recent
advances in text-independent speaker recognition, where intra-
class variability is modeled by factor analysis in Gaussian mix-
ture model (GMM) space. We use approximations to GMM-
likelihoods which allow variable-length data sequences to be
represented as statistics of fixed size. Our experiments on NIST
LRE’07 show that variability-compensation of these statistics
can reduce error-rates by a factor of three. Finally, we show
that further improvements are possible with discriminative lo-
gistic regression training.
Index Terms: acoustic language recognition, intersession vari-
ability compensation, discriminative training

1. Introduction
Spoken language recognition is the problem of automatically
recognizing the language spoken in a given speech segment. In
recent literature, e.g. [1], language recognition methods have
been classified as either phonotactic or acoustic. Phonotactic
language recognizers make explicit use of phoneme recogniz-
ers, similar to those used in LVCSR (large vocabulary contin-
uous speech recognition). In contrast, acoustic language rec-
ognizers directly model short-term frequency analyses, such
as MFCC or PLP features [2]. An advantage of the acoustic
method is that it avoids the complexities and resources needed
to train and run phoneme recognizers. In this paper we ex-
plore novel ways of constructing acoustic language recognizers.
These recognizers form part of our ‘BUT-AGNITIO’ submis-
sion to the 2009 NIST Language Recognition Evaluation1.

We build our approach on the existing recipe of transform-
ing sequences of MFCC features to sequences of shifted delta
cepstra (SDC) and then modeling the SDC sequences with
language-dependent GMMs (Gaussian mixture models) [3].
Several variants on this basic technique have been pub-
lished, some involving discriminative training and/or channel-
compensation, see e.g. [1, 2, 4, 5, 6] and references therein.

The novel aspect of our proposal is that we apply a tech-
nique which has recently led to progress in GMM-based text-
independent automatic speaker recognition. This technique re-
places all computationally expensive evaluations of GMM log-
likelihoods by evaluation of a simplified lower-bound. This
simplification allows replacement of variable-length input fea-
ture sequences with sufficient statistics of fixed size [7, 8, 9]. We
use these statistics for all further computation, in both training
and test. The advantages include (i) efficient implementation

1http://www.itl.nist.gov/iad/mig/tests/lre/2009

of speaker-recognition-style channel compensation and (ii) the
possibility to perform discriminative training of language mod-
els with multiclass logistic regression.

Below we discuss feature extraction and computation of
sufficient statistics. Next we present the factor-analysis model,
which leads to the channel compensation procedure. Finally,
we show how to use these ideas to create a number of different
language recognition systems, which we then exercise on the
NIST 2007 Language Recognition Evaluation [10].

2. Acoustic Features and UBM

This section is a brief summary of acoustic feature extrac-
tion and UBM training. For more detail, see our previous
work [4, 11]. The inputs to the language recognizer are seg-
ments of recorded telephone speech of varying duration. Every
speech segment is mapped to a variable-length sequence of fea-
ture vectors as follows: After discarding silent portions, every
10ms speech-frame is mapped to a 56-dimensional feature vec-
tor. The feature vector is the concatenation of an SDC-7-1-3-7
vector and 7 MFCC coefficients (including C0). We shall refer
to the feature vector of frame i of segment s as ~φsi.

A 2048-component, language-independent, maximum-
likelihood GMM was trained with the EM-algorithm on the
pooled acoustic feature vectors of all development data of all
available languages. We follow speaker recognition terminol-
ogy and refer to this language-independent GMM as the uni-
versal background model, or UBM [12]. We shall refer re-
spectively to the mean-vector and (diagonal) precision matrix
of Gaussian component k of the UBM as ~µk and Pk.

3. Sufficient statistics

This section describes how variable-length input sequences of
feature vectors are mapped to sufficient statistics of fixed size.
This mapping is parametrized by the UBM. All input sequences,
for both training and test purposes, are mapped to sufficient
statistics and all further processing is based only on the statis-
tics, rather than the original feature sequences. Let Pksi =

P (k|~φsi) denote the posterior probability of UBM component
k, given feature vector ~φsi, computed with the standard recipe
for GMM observations, assuming frame-independence. For
segment s, with frames indexed i = 1, 2, . . . , Ns, we define
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the zero- and first-order statistics respectively as:

nsk =

Ns∑
i=1

Pksi (1)

fsk =

Ns∑
i=1

PksiP
1
2
k (~φsi − ~µk) (2)

where k = 1, · · · , 2048. For later convenience, we stack the
first-order vectors for all components into a single supervector,
denoted fs = [f ′s1 · · · f ′s2048]′. (A supervector is just a very
large vector, in this case of size 114688).

In contrast to the original recipe in [7], we do not use
second-order statistics, because they cancel when forming
GMM log likelihood ratios. We also center and reduce our
statistics relative to the UBM, so that we can henceforth regard
the UBM as having zero mean and unity precision for all com-
ponents. This simplifies the formulas below for working with
the statistics, because after this transformation we do not need
to refer to the UBM parameters again.

4. Modeling language and channel
In both speaker and language recognition, the term channel
variability has become a synecdoche, which refers to more gen-
eral within-class variability. In speaker recognition a more ac-
curate term is intersession variability. In language recognition,
it is understood to mean variability between speech segments
of a given language, when different things are said in that lan-
guage, by different speakers, in different ways, over different
channels and generally under different circumstances on differ-
ent occasions.

Following [7], we defer the responsibility of understanding
these complex phenomena to a statistical model. Although con-
ceptually simple, the model is powerful because it has a few
million parameters. The model has a two-level hierarchy: First,
we assume there is a different Gaussian mixture model (GMM)
that generates every observed speech segment. Second, we as-
sume a meta-model that generates the GMM for every segment.
These GMMs have segment-and-language-dependent compo-
nent means, but fixed component weights and precisions, cho-
sen to be equal to the UBM weights and precisions. In other
words, we parametrize segment GMMs by their means only.
Specifically, we use a factor-analysis model for the kth com-
ponent mean of the GMM for segment s:

msk = t`(s)k + Ukxs (3)

where `(s) denotes the language of segment s; the t`k are lan-
guage location vectors; xs is a vector of C segment-dependent
‘channel’ factors; and Uk is a 56-by-C factor loading matrix.
The channel factors are assumed to be drawn independently
from the standard normal distribution.

As in the case of the first-order statistics, we stack
component-dependent vectors into supervectors ms and t` and
we stack the component-dependent Uk matrices into a single
tall matrix U, so that (3) can be expressed more compactly as:

ms = t`(s) + Uxs (4)

We refer to U as the channel matrix. Finally, if there are K
different languages, then we let T = [t1t2 · · · tK ]. Our meta-
model for language-and-segment-dependent GMMs is now
parametrized by (T,U), where T represents the locations of
languages in GMM space and U represents within-language

variability. The training of the language recognizer is there-
fore the problem of using development data to assign values to
(T,U).

4.1. Estimating the channel matrix

We train the channel matrix U with maximum likelihood, by
using the EM-algorithm of [7]. We use all speech segments for
all of the languages that we have available in our development
data. We start by assigning tentative values to the language lo-
cation vectors t`k, by using a single iteration of relevance-MAP
adaptation from the UBM in the manner of [12]. This adapta-
tion can be expressed succinctly in terms of our statistics as:

t`k =

∑
s fsk

r +
∑

s nsk
(5)

where the sums are over all segments s belonging to language
`. In our experiments we used a relevance factor of r = 2. With
the language locations held fixed, the EM-algorithm iteratively
re-estimates xs for every segment s and then Uk for every com-
ponent k, over all of the data. The EM-algorithm maximizes a
lower-bound to the log-likelihood of the model (3), over all of
the training data. As noted above, the lower bound allows us to
represent all of this data by their sufficient statistics. This means
that the EM-algorithm needs to iterate only over all segments,
rather than over all frames of all segments. We tried different
sizes for U and found C = 50 to be a good choice.

4.2. Channel compensation

Given the channel matrix U and the statistics fsk, nsk for a seg-
ment s, we can perform a language-independent maximum-a-
posteriori (MAP) point-estimate of the channel factors xs, rela-
tive to the UBM. This estimate is computed as:

x̂s =

(
I +

∑
k

nskU
′
kUk

)−1

U′fs (6)

Next, the effect of the channel factors can be approximately re-
moved from the first-order statistic thus:

f̃sk = fsk − nskUkx̂s (7)

We refer to f̃sk (or the stacked supervector f̃s) as the compen-
sated first-order statistic. In our experiments reported below,
we try both uncompensated and compensated statistics for ev-
ery system variant. In all cases we find the compensation to
dramatically improve accuracy.

5. System descriptions
Here we describe three variants of language recognition sys-
tems, all based on sufficient statistics. All systems use the same
estimate of U as explained above, but they differ in the way T
is estimated:

5.1. Baseline

Our baseline system used no channel compensation and no dis-
criminative training. We used uncompensated segment statistics
to make relevance-MAP estimates of the language locations and
uncompensated statistics to score new test segments. Specifi-
cally, we used (5) for the language locations, and as explained
in section 4, we pack the K location supervectors for each of
the K languages into the columns of a matrix denoted T.
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We score new test segments with a fast approximate linear
scoring technique for GMMs, that we have recently proposed
for speaker recognition [9]. This scoring technique is also based
on sufficient statistics, but further simplifies the scoring in [7]
by omitting non-linear terms. Given the first-order statistic fs
for a test segment s and the language location matrix T (with
K columns for each of K languages), we generate a vector of
K language-dependent scores thus:

~λs = T′fs (8)

5.1.1. Channel-compensated baseline

Next, we add channel compensation to the baseline, but still
without discriminative training. This system is the same as
above, except that we use channel-compensated first-order
statistics everywhere. For the language locations, we reuse (5),
but now with compensation:

t̃`k =

∑
s f̃sk

r +
∑

s nsk
(9)

Again we pack the location supervectors into the columns of a
matrix denoted T̃ and we score thus:

~λs = T̃′ f̃s (10)

5.2. Discriminative training of locations

Next, we note that the linear scoring formula (10) is a clear in-
vitation to try discriminative training of the language locations
via multiclass logistic regression (MCLR), where the class log-
likelihoods are formed analogously to ~λs, by multiplying a dis-
criminatively optimized coefficient matrix with the data vector.
For a general introduction to logistic regression, see e.g. [13],
and for our previous application of logistic regression to lan-
guage recognition see [14]. The complication in the present
case is that the logistic regression is of challenging scale—the
number of training examples is of order 104 and the input su-
pervector size is of order 105. We solved this by implementing
an algorithm for large-scale unconstrained convex optimization,
known as trust-region Newton conjugate gradient, and which
uses both first- and second-order partial derivatives of the objec-
tive function [15, 16]. For this system our scores are expressed
as:

~λs = T̆′ f̃s (11)

where the matrix T̆, the columns of which can be interpreted
as discriminatively trained language locations, is optimized via
logistic regression.

5.3. Discriminative recognition via segment GMMs

There is a variant of the above logistic regression formula,
where the input for every segment to the discriminative rec-
ognizer is a segment-GMM estimate, rather than a first-order
statistic. Using relevance-MAP adaptation and compensated
statistics, the mean estimate of component k of the GMM for
segment s is:

g̃sk =
f̃sk

r + nsk
(12)

The stacked GMM supervectors g̃s can then be used as train/test
inputs for logistic regression. In this case we denote the scores:

~λs = W′g̃s (13)

where W is optimized via logistic regression. We note that (ex-
cept for the particulars of channel compensation) this method is
very similar to previous work where the training is performed
by linear SVMs (support vector machines) rather than logistic
regression, see e.g. [1, 2].

5.4. Score normalization

In some of the above systems, we found frame-count normal-
ization to be helpful. That is, we formed normalized scores as:

~λ′s =
~λs∑2048

k=1 nks

(14)

In the case of logistic regression systems, we pre-normalized
the first-order statistics, so that the discriminative training took
account of the normalization. In our experimental results below,
we shall indicate which systems were thus normalized.

6. Evaluation criteria
The question of how to best judge the accuracy of language rec-
ognizers has been answered in the literature in different ways.
A straight-forward solution is multiclass misclassification error-
rate. However, this solution is lacking in two respects: (i) It
does not account for variation in the costs and priors associated
with application of the recognizer, and (ii) it does not allow for
analysis of performance in terms of discrimination and calibra-
tion. Presumably in response to these needs, several authors
reporting on the series of NIST Language Recognition Eval-
uations have adopted the solution of pooling language detec-
tion scores over multiple targets and then analyzing the pooled
scores with tools borrowed from speaker recognition, such as
EER and DET-curves. Unfortunately this practice is in our opin-
ion theoretically unfounded—and indeed our experience shows
that it can give misleading results. Briefly, the problem is that
the speaker recognition tools allow for a single score thresh-
old to decide between two competing hypotheses, but language
recognition (even when formulated as a one-against-the-rest de-
tection problem) remains a multiclass problem which cannot be
analyzed in terms of a single threshold. For further discussion
see [17, 18].

The solution which we use to report on our experiments be-
low is based on [17]. It is designed with two purposes in mind:
(i) To facilitate comparison with others, we want it to be as close
as possible to the language detection error-rate, Cavg, as used in
the NIST Language Recognition Evaluations [10, 19]. (ii) How-
ever, since we are busy with basic recognizer development and
we want to judge the discrimination rather than the calibration
of our algorithms, we prefer not to use the calibration-sensitive
Cavg as is. Our solution is to discount the effect of calibration by
letting the evaluator calibrate every system. That is, the eval-
uator optimizes calibration on the evaluation data2 and then re-
ports the value ofCavg obtained with this calibration. We denote
this measure by C∗avg.

The evaluator’s calibration transformation involves only
scaling and translation of the score-vector, so that it does not
alter the ability of the scores to discriminate between classes.
In particular, the calibration transformation is invertible, so it
does not alter the information content of the scores.

In summary C∗avg measures discrimination, not calibration.
It is therefore similar in spirit to the EER (equal-error-rate) and

2Our MATLAB code to perform this optimization is freely available
at http://niko.brummer.googlepages.com/focalmulticlass.
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‘minimum detection cost function’ of speaker recognition, but
it avoids the above-mentioned problems of score pooling.

7. Experimental results
We evaluated the three system variants, as described in section
5, on the 14 languages of the closed-set language detection task
of the NIST 2007 Language Recognition Evaluation (LRE’07),
with input segments of nominal duration 30 seconds [10]. Our
development data, which was used to train all system parame-
ters was the same data we used in preparation for LRE’07 and
does not overlap with the LRE’07 evaluation data, see [4]. We
used C∗avg as evaluation criterion, as explained above.

The results are shown in Table 1: Column 1 refers to the
sub-section in the text describing the system. In column 2,
MAP denotes relevance-MAP adaptation and MCLR denotes
multiclass logistic regression. Column 3 refers to the kind of
supervector that was used as input to each system: f denotes
first-order statistic and g denotes segment-GMM supervector.
Column 4 refers to frame-count normalization. The last two
columns give C∗avg, expressed as a % error-rate: Column 5
shows results without any channel compensation, while column
6 is with compensation.

For all three systems, channel compensation gives dramatic
reduction in error-rate. A further improvement is achieved by
the last variant of logistic regression training. It is however in-
teresting to note that good results may be achieved by a moder-
ately simple system design without any discriminative training.

Table 1: Results on LRE’07, closed-set, 30s.

section train input norm C∗avg C∗avg
raw comp

5.1 MAP f no 11.32 1.74
5.2 MCLR f yes 9.5 3.09
5.3 MCLR g yes 4.56 1.55

8. Conclusion
We have demonstrated by experiments on NIST LRE’07, that
the GMM factor-analysis modeling of [7] for speaker recogni-
tion, as implemented by using sufficient statistics, can also be
used to build accurate acoustic language recognizers.
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