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Abstract

In this paper we present an out-of-vocabulary word detector
suitable for English conversational and read speech. We use an
approach based on phone posteriors created by a Large Vocab-
ulary Continuous Speech Recognition system and an additional
phone recognizer, that allows detection of OOV and misrecog-
nized words. In addition, the recognized word output can be
transcribed more detailed using several classes. Reported re-
sults are on CallHome English and Wall Street Journal data.
Index Terms: confidence measures, out-of-vocabulary word
detection, phone posteriors, neural net, OOV

1. Introduction

Current speech recognition systems are customized to operate
with a limited vocabulary on a restricted domain. Therefore,
acoustic models are being trained on a target language, and
the language model is designed to cover the most frequently
expected words and multigrams.  Under real conditions,
however, such constraints of a restricted domain are violated
very easily: Systems still have difficulties to deal with open
vocabulary (foreign words, proper names) or accented speech
and mispronunciations all of which are common in human
speech. If a word is missing in the dictionary, the corresponding
speech will be misrecognized in any case, and its semantical
information is lost. Due to the contextual nature of the language
model, the estimates for the surrounding words also tend to be
invalid.

Given a speech signal x, the process of finding the most-
likely uttered word sequence w can be considered as a search
for the most appropriate model M (w;):

w = arg max P(M (w;)|z) (1)
Applying Bayes rule yields
w  arg max p(z| M (w;)) - P(M (w;)) )

where P(M (w;)) describes the prior probability of word
sequence w; determined by the use of a language model.
p(z|M (w;)) describes the conditional probability of the speech
input determined by the use of the acoustic model. As long as
in-vocabulary (IV) speech (i.e. speech of the restricted domain)
is concerned, misrecognized words in w are due to deficient
modeling or difficult acoustic conditions. But since the prior
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Figure 1: Posterior-based OOV Word Detection.

probability of any OOV word sequence P(M (w°°"")) accord-
ing to such a model is zero, the system will forcibly map OOV
speech input to an acoustically similar sequence of IV words
w'V with prior probability P(M (w")) > 0.

An attribute of current systems is apparently, that they still
treat OOV words and IV words in the same way. Therefore,
even though a standard speech recognizer is not able to deliver
the correct sequence of words, a classification of the word out-
put is still desirable - e.g. in order to detect speech aberrat-
ing from a strictly limited domain or repeatedly occuring OOV
content. Furthermore, OOV words are considered valuable in
information retrieval because they tend to carry semantics.

In order to identify OOV regions in speech, various confi-
dence measures have been used to detect misrecognitions due to
OOV content rather than just misrecognitions in general [2], [1].
Early work done in [1] and more recently by others in [2], [3]
aims to detect and model OOV content on the level of language
modeling.

2. Method

We proposed a new approach to detect OOV words in read
speech (Wall Street Journal) in [4]. A single score was obtained
by a neural net using two types of phone posterior input fea-
tures from concurrent recognizers. Among all other tested sin-
gle confidence measures, our posterior-based score estimated
by the neural net performed the best.

In this work, we extended our technique and applied it to
lower quality telephone speech (CallHome English), which is
our main target data. We compare results to those obtained on
read speech and show, that posterior-based OOV word detection
generalizes to a reasonable extent across data and across the lan-
guage model of the speech recognizer. In addition, our solution
offers an alternative to binary OOV detection: full classification
of the word output.

Figure 1 shows our current system combining the output
of two recognizers: a large vocabulary continuous speech rec-
ognizer (strong recognizer) which is constrained by a language
model, and a phone recognizer (weak recognizer).

The output of both recognizers consists of posteriors and
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Time Class Label Recognition Reference
0.49 IV incorrect THAT'S LET'S
0.75 1V incorrect A SAY
0.93 1V correct BACK BACK
1.17 IV correct TO TO

1.31 Silence <pau> <pau>
1.33 OOV BALANCE BELGIUM
1.68 OOV THEM

1.87 IV correct TO TO

Figure 2: Reference Classification Labels (IV=in-vocabulary).

labels with time boundaries. Phone posteriors of both systems
serve as input features to a neural net classifier. For any given
input vector in time, the net estimates the probability of being
out-of-vocabulary. We used the phone labels with time bound-
aries to preprocess the input features to contain temporal con-
text, which improved the accuracy of the neural net consider-
ably.

The strong recognizer also provides the recognized word
sequence with timing information - the actual speech recogni-
tion output. By averaging the probability estimate we create a
word-level score, and by thresholding it we classify the recog-
nized words.

2.1. System Operation

Figure 2 shows an example of how the OOV detection sys-
tem should ideally classify a recognized word sequence. The
desired word classification is determined by an alignment of
recognition (left) and reference (right) labels. We decided to
distinguish between

sil - no speech at all (both labels suggest silence)

ivcorr - correctly recognized speech (word labels equal)
ivincorr - misrecognized IV speech (word labels differ)
oov - misrecognized speech due to OOV input

We prepared data with reference and recognition labels for clas-
sification. In cases, where OOV words in the speech partially
or completely overlap (see “BELGIUM?” in figure 3) we defined
the desired classification as oov. Hence, we trained our neural
net using a combination of frame-level phone posterior features
extracted from both recognizers and their corresponding desired
labeling. The neural net can now be used to estimate per-frame
class probabilities from phone posteriors produced by the two
recognizers using any speech data.

2.2. Patterns in Posteriors

Certain reoccuring patterns contained in the phone posteriors
of both systems allow the neural net to learn the different word
classes. In correctly recognized segments we find:

e agreement between strong and weak recognizer
e strong only: certainty about predicted phones

In the part covered by OOV input we find:

e disagreement between strong and weak recognizer
e strong only: confusion about predicted phones

In [5], error patterns in phone posteriors and the ideas behind
our approach are examined thoroughly.

2.3. Posterior-based OOV Detection

Figure 3 shows the OOV word detection on a transcribed ex-
ample from the evaluation set. On the top, phone posteriors
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Figure 3: Input and Output for the OOV Word “BELGIUM .

| Vocabulary [ Word Error Rate [ OOV Word Rate ‘

38385 words 24.9% 1.52%
2860 words 29.5% 5.74%

Table 1: Hub5 evalOl Recognition Performance.

from the strong and the weak recognizer are shown. They rep-
resent probability distributions over the phone set sampled with
10 ms frame length, and show how likely a certain phone has
been uttered at a given time (the best path is pointed out by
phone labels). Below are given reference and recognition labels
showing the actual overlap of the OOV word “BELGIUM”. The
estimated frame-by-frame OOV probability is plotted by the red
curve.

3. System Setup
3.1. Weak Recognizer

Our phone posterior estimator based on a neural net processing
long temporal trajectories of Mel-filter bank energies as previ-
ously used in [4] served as weak recognizer for the immediate
estimation of phone posteriors with a sample length of 10 ms.

3.2. Strong Recognizer

The setup of the strong recognizer was derived from the 3-pass
Large Vocabulary Continuous Speech Recognition (LVCSR)
system used in [4]. We kept the acoustic models (trained on 250
hrs of Switchboard data) and replaced the language model with
a 38k closed-vocabulary language model trained on more than
2000 hrs of conversational telephone speech (Switchboard 1+2,
Fisher). Without changing the processing during the passes, we
achieved a very decent performance using NIST scoring (see
table 1).

Next, we substantially reduced the vocabulary size to 2860
words by removing words considered being rare according to
their low unigram probabilities. As table 1 shows, the percent-
age of word errors increased slightly more than the percentage
of OOV words contained in the evalO1 data set.

The output of our strong recognizer were lattices containing
both word and phone arcs attached with acoustic and language
model scores. As acoustic features we used the posterior fea-
tures estimated by the weak recognizer. We extracted the most
likely path using the Viterbi algorithm and used it as the actual
word output of the complete OOV detection system. Phone pos-
teriors were extracted using the Forward-Backward algorithm
on the lattices as explained in [8]. In both cases we used word
insertion penalty -10 and language model scaling factor 32.



[ Class [ CHE | WSJ]
sil | 17.6% | 19.1%
ivcorr | 53.2% | 63.8%
ivincorr | 20.6% 3.6%
oov 8.6% | 13.5%

Table 2: Time per Word Class.

3.3. Data

A major criticism of the work done in [4] was the small amount
of in-vocabulary misrecognitions in the data because misrecog-
nitions had been mainly introduced by OOV words. By switch-
ing to conversational speech, both misrecognition classes were
more balanced and reflect properties of more realistic data.
Also, the inversion of the ratio between IV and OOV misrecog-
nitions would show whether the approach is actually capable of
discriminating between both classes of misrecognitions.

Table 2 compares the time per class in CallHome English
(CHE) and Wall Street Journal (WSJ) data, after we introduced
OOV words by manually reducing the sizes of the dictionaries
(2k8 words CHE, 5k words WSJ). Information is given in time
rather than word domain because the neural net operates on pos-
terior frames with unity length. The amount of words in CHE
was 26k in the evaluation and 159k in the training set and 7394
word types in total.

The CHE data consisted of three subsets. We inherited the
given partitioning excluding about 10% of all sentences because
they contained OOV words wrt. the 38k dictionary used to cre-
ate the reference labels. The purpose and the statistics of the
reduced subsets are shown in table 3.

3.4. Training and Evaluation Labels

We compared two types of word labels, which were provided
with time boundaries, to create a reference classification for the
training and evaluation set of the neural net. The reference la-
bels were created using force-alignment of the speech given the
reference transcription and the large dictionary (38k words).
The recognition labels were created by the strong recognizer
during speech decoding using the small dictionary (2k8 words).
Thus, words contained in the 38k dictionary but excluded from
the 2k8 dictionary represented OOV content. Finally, we com-
bined it with the preprocessed phone posterior features of the
weak and strong recognizer in order to train and evaluate the
neural net.

3.5. The Neural Net

We used a 1-hidden layer multi layer perceptron (MLP) with
200 hidden neurons on preprocessed phone posterior features
sampled per 10 ms frames. The 270-dimensional input layer
accepted the current frame (45+45 phone posterior features)
plus one left and one right context frame. Initially, we used
a 3-dimensional output layer to distinguish between the word
classes sil, ivcorr, misrec (= ivincorr U oov) [4]. In this work
we extended it to four classes in favor of better results.

The 4-dimensional output layer of the neural net assigns
probabilities to a given frame of being in one of the following
classes: sil, ivcorr, ivincorr, oov. A softmax function in the
output layer yielded posterior probabilities of the output classes.

The objective function during the neural net training was
the overall classification accuracy on frame level determined by
choosing the class with maximum probability as estimate and
comparing it to the reference classification. During each itera-
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[ Subset [ Length [ OOV Word Rate | Used for |

evltest | 1.33 hrs 5.84% Evaluation
devtest | 2.13 hrs 4.92% | Cross Validation
train | 8.54 hrs 4.93% Training
Table 3: Subsets and their Usage.
ih ah m
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Figure 4: Context (left+right) for a given Frame (middle).

tion, the learning rate was either kept or halved depending on
the accuracy of the training data. Training was done up to ten
iterations by using early stopping.

3.6. Phone Posterior Preprocessing

In [4] the use of temporal context was found to improve the
performance of the neural net. Taking one preceding and one
succeeding frame at a fixed distance of 7 frames and concate-
nating them with the original frame into a new feature vector of
three times the original size showed optimal improvement. We
expected this optimum to be correlated with the average phone
duration (about 75ms).

In this work, we also preprocessed posterior features using
phone context. Hence, for each frame we take into account dy-
namic context based on actual phone labels extracted from the
phone posteriors of the weak system. Figure 4 shows the tem-
poral context preprocessing for the recognized word “THEM”
as second part of the OOV input “BELGIUM”. For a frame lo-
cated at 30% within the “ah” vowel, phone context is created
by adding one left and right frame accordingly located at ap-
proximately 30% within the adjacent phones. Similar to using
fixed distance frames, we concatenated them into a single input
feature vector of three times the original size. By doing this,
we could drop the ad-hoc determination of the optimal fixed
distance. Furthermore, phone context showed improvements in
OOV word detection in cases of difficult OOV words on WSJ
data [9].

4. Experiment and Results
4.1. Classification

Since all classifications were performed on word level, we av-
eraged the frame-level scores within the word boundaries using
arithmetic mean.

A binary classification on the recognized words was al-
ready sufficient for detecting OOV words. In this case, a thresh-
old on the score determined an operating point and allowed
to balance between the number of misses and false alarms.
The two following binary classifications were performed com-
monly:

® misrec - w € ivincorr U oov vs. w € sil U ivcorr?
® 00V -w € oov vs. w € sil U ivcorr U ivincorr?

In the misrecognition task we scored on P(ivincorr) +
P(oov) estimates and in the OOV detection task on P(oov)
estimates solely.

We also performed a full classification of the recognized
word output by choosing the word class with the maximum es-
timated probability and comparing it to the reference class in



[ sil [ ivcorr [ ivincorr [ oov ‘
94% 77% 52% | 61%
91% 91% 45% | 21%

Precision
Recall

Table 4: Performance of Full Classification.

Test | Train 3 Classes 4 Classes
Data | Data | misrec ooy misrec ooy
CHE | WSJ | 26.80 | 27.07 | 25.83 | 25.80
CHE | CHE | 23.56 | 27.60 | 23.48 | 21.73
WSJ | WSJ 17.19 | 11.90 | 17.52 | 1141
WSJ | CHE 18.36 | 13.63 17.56 | 14.35

Table 5: EER (in %) of NN-based MISREC/OOV Detection.

our evaluation data. In this case, the overall word class accu-
racy was 78%. We observed similar accuracies on the frame
level during neural net training. Precision and recall for each
class is shown in table 4.

4.2. From three to four Classes

In our previous work, word entropy [4] was found to be the
best lattice-based confidence score for OOV word detection.
By using this measure, the EER for OOV detection raised from
18.62% (WSJ) to 35.08% (CHE) and made us expect a consid-
erable performance drop-down for the neural net based score as
well.

The two columns in the center of table 5 compare the per-
formance of the original 3-class neural net on both data sets.
Surprisingly, the net trained on WSJ data still performed bet-
ter in OOV word detection on CHE than its CHE-trained coun-
terpart (compare bold numbers). And while on WSJ data the
detection of OOV words performed better than the detection
of misrecognized words, it was the other way around on CHE
data. We assumed that the data properties previously shown in
table 2 forced the neural net to specialize too much on the sub-
class with the higher prior while learning the misrec class, and
a proper distrimination of ivincorr and oov could be beneficial.

Thus, we retrained the neural net using 4 classes in the out-
put layer. As a matter of fact, this solved the unwanted behavior
we observed before. While the EER for misrecognitions did not
change significantly, it improved for OOV word detection (see
the bold numbers in the two right columns in table 5).

Generalization across data improved for detection of mis-
recognitions, whereas for OOV detection it degraded. Obvi-
ously, the net learned some properties of OOV words which are
unique to WSJ and CHE data. We suggest training on WSJ and
CHE data together to see if this again improves the generaliza-
tion of OOV word detection.

4.3. Overall System Performance

Finally, figure 5 shows the detection-error tradeoff (DET) curve
of misrec, oov and a third classification task performed on CHE
using the 4-class net scores. During the third task, an oracle
told whether a recognized word was in misrec or corr. Thus, all
correctly recognized words were omitted from the OOV scor-
ing. This task shows that the neural net was actually able to
distinguish between oov and ivincorr. Full classification OOV
detection results can be observed on this DET curve with the
operating point set to the false alarm probability of 1.2% yield-
ing a miss probability of 79%.
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Figure 5: Performance of Binary Classification Tasks.

5. Conclusion

The posterior-based OOV word detection approach generalizes
across data (clean speech, 16kHz vs. noisy speech, 8kHz) and
across varied language models (read speech, Sk words vs. spon-
taneous speech 2k8 words) with some performance degradation.
The 4-class neural net improves classification performance and
allows scoring with a single class or any conjuncted class prob-
ability. Evaluation can be performed either on binary detection
or on a classification with two up to four classes.
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