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Abstract
We present the AMIDA 2009 system for participation in the
NIST RT’2009 STT evaluations. Systems for close-talking,
far field and speaker attributed STT conditions are described.
Improvements to our previous systems are: segmentation and
diarisation; stacked bottle-neck posterior feature extraction;
fMPE training of acoustic models; adaptation on complete
meetings; improvements to WFST decoding; automatic opti-
misation of decoders and system graphs. Overall these changes
gave a 6-13% relative reduction in word error rate while at the
same time reducing the real-time factor by a factor of five and
using considerably less data for acoustic model training.
Index Terms: speech recognition, meeting transcription

1. Introduction
Over the past 10 years the processing of meeting speech under a
large variety of conditions and scenarios was the focus of many
research groups. The progress made has attracted researchers
to the field from outside the speech community, interested in
higher level, downstream processing. With the advent of high
quality telephone and video conferencing systems the opportu-
nity to record, process, recognise, and categorise the interac-
tions in meetings is recognised even by sceptics of speech and
language processing technology. This area was also the focus
of the AMI and AMIDA projects[1]: acquisition, multi-modal
recognition, and higher level processing of meetings, distributed
and connected via teleconferencing or in a single room. Many
components are necessary to capture interaction between peo-
ple that does not require automatic speech recognition (ASR).
However ASR naturally is the most important part to capture
content.

While ASR is often solely associated with transcription,
many applications in the meeting domain do not require full
transcripts (e.g. content linking[2]). Nevertheless, formal eval-
uations conducted by the U.S. National Institute of Standards
and Technology(NIST) focus on transcription. The system pre-
sented here was developed for the participation in the NIST
RT’09 evaluations conducted in April 2009. These evaluations
were the latest in a series that started in 2002, and where the
AMI/AMIDA group participated since 2005[3]. Our previous
contribution [4] has achieved very competitive performance for
close talking conditions. In 2009 our main focus was on the far
field condition where we have achieved the best result.

The test conditions in 2009 were similar to previous years.
Data from different meeting rooms with a variety of recording
configurations are processed. Two tasks are addressed: record-
ing from individual head (IHM) as well as multiple distant mi-
crophones (MDM) in arbitrary configuration and number. The

configuration can vary substantially by room , but configuration
information for each room may be used. In 2009 one new aspect
was added. Meetings from the AMIDA corpus, recorded on two
sites, connected with video conferencing, were included.

The AMIDA meeting transcription system changed in many
aspects: front-ends for both IHM and MDM, updated seg-
mentation and a new MDM diarisation component; stacked
bottle-neck posterior features; fMPE training of acoustic mod-
els, adaptation on complete meetings; a substantially improved
decoder; and local optimisation of system graphs. Overall this
allowed an improvement between 6-13% relative reduction in
word error rate (WER) while at the same time reducing the real-
time factor by more than a factor of five. In the following sec-
tions we outline the changes in greater detail.

2. The AMIDA 2007 System
The AMIDA 2007 system[4] served as the base for develop-
ment. The system accepts both IHM and MDM input and op-
erates in several passes using cross-adaptation between passes
using models with different front-ends, training strategies and
training data. The key features in the system were: beam-
forming; MLP features; adaptation from 2000h of CTS retain-
ing data using narrow band/wide band (NB/WB) transforms;
speaker adaptive and minimum phone error (MPE) training; and
decoding based on lattices. The real-time factor (RTF) on the
IHM part was close to 100. In the following sections more detail
on the system will be given where required. All comparisons
in this paper are based on the NIST RT evaluation data sets for
2007 and 2009, denoted as rt07seval and rt09seval respectively.

3. Segmentation, Clustering and Filtering
The system development strategy is based on different enhance-
ment, segmentation, and speaker labelling of IHM and MDM
input but similar later processing stages.

3.1. Individual Head Microphone

Segmentation was performed in identical fashion to previous
years[5]. A multi-layer perceptron based speech silence classi-
fier is trained on MF-PLP and cross-talk features. Segmentation

#Seg Tot CMU EDI NIST VT

Ref 4527 29.3 36.7 24.5 24.5 31.2
30h 2717 32.6 41.2 26.2 29.1 33.3
90h 4541 31.7 42.4 25.3 26.8 31.7

Table 1: %WER on rt07seval. Ref is manual segmenta-
tion, and 30/90h give the amount of training data for MLPs.
CMU/EDI/NIST/VT are meeting rooms.
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Segmentation Clustering Unadapted Adapted

Ref - 42.1 36.3
auto - 43.8 38.1
auto Ref 40.1 31.1
auto no delay 42.8 34.5
auto with delay 42.1 32.7

Table 2: %WER on rt07seval using the first (unadapted) and
third (adapted) pass of the RT’07 AMIDA MDM system

itself uses Hidden Markov Models (HMMs) for the purpose of
setting duration constraints and speech/silence class priors, and
an insertion penalty. For the 2009 system the models were re-
trained on parts of the 2009 IHM training set, naturally includ-
ing the silence portions. More than 90 hours of audio and 290
meetings were used for training. Table 1 shows results for a 2-
pass adapted system on the rt07seval set. One can observe an
overall gain of 0.9% WER absolute from retraining while the
number of segments becomes closer to the reference. However,
the gains are not uniform across meeting rooms. For lapel mi-
crophones (e.g. CMU) results get poorer, while for lower qual-
ity head microphones (NIST,VT) results improve substantially.

The results generalised reasonably to the rt09seval set as
outlined in Sec. 6. However, one meeting from the NIST meet-
ing room gave rise to a substantial WER differences between
reference and automatic segmentation of more than 10% abso-
lute. The reasons are likely to be imbalances in gain between
microphone channels which are not automatically adjusted for.
The segmentation is particularly vulnerable to this due to the
use of cross channel energy features.

3.2. Multiple Distant Microphone

In previous years the output of a diarisation system developed
by ICSI/SRI was used for segmentation and clustering. In
2009 that system was replaced by one based on [6], specifically
adapted for ASR. Here the distant microphone channels are first
Wiener filtered, followed by microphone array beamforming
with the BeamFormIt toolkit[7]. The energy based beamformer
delivers a single audio stream, together with relative delay esti-
mates between channels. While in [6] only the beamformed au-
dio was used for clustering, the delay values now augment stan-
dard MFCC features (for clustering only). Segments clustering
is using the BIC criterion, with initial cluster number based on
the amount of data. The MFCC and delay feature streams are
normalised to yield identical average BIC scores.

Table 2 shows WER results of automatic approaches in
comparison with the reference, for segmentation and speaker
clustering. The loss from automatic segmentation alone is
1.7%, not surprisingly the difference after adaptation is similar.
The difference between the unadapted results with or without
speaker information originates from cepstral mean and variance
normalisation (CMN/CVN) as that also is speaker based. Us-
ing delay features for clustering brings substantial performance
gain, and the final loss from automatic speaker clustering is
1.6% WER absolute. Experiments indicate that the losses for
automatic segmentation and clustering are almost additive.

3.3. Room filtering

One of the challenges for RT’09 were meetings held in two
rooms. This implies that audio from room 1 was played through
the loud-speaker in room 2. Thus speech from room 1 appears
in the recordings in room 2. There is an unknown and variable
audio transfer delay between rooms. Since the recording system
and the transport video conferencing systems are independent

1 2 3 4 5 6 7 8 9 10 11 12 13 14
−50

0

50

100

150

200

Speaker Number

Room Assignment Scores, 0E90501, IMR Segmentation

Score
Number of Frames

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−400

−200

0

200

400

Speaker Number

Room Assignment Scores, 0E90501, Remote Room Segmentation

Score
Number of Frames

Figure 1: Example of room segment filtering

%Data retained 80% 90% 95% 100%

ML 42.6 42.2 42.8 42.8

MPE 40.7 40.5 40.7 40.8

Table 3: %WER on rt07seval using different thresholds on con-
fidence scores in lattices.

echo cancellation was not possible. Performing segmentation
in each room separately will yield different segments and it is
unclear which are the correct ones. In order to filter out loud-
speaker segments the following algorithm was used:

1. Take beam-formed audio file for each room
2. Perform speaker segmentation on room 1 audio

(a) For each speaker and frame, calculate the max.
cross correlation between the audio from room 1
and room 2 (the delay). If delay > 0, increment
room 1 count, otherwise the room 2 count

(b) Assign speaker to room with highest count
(c) Discard segments from speakers in room 2

3. Repeat using segmentation from room 2 audio, discard-
ing segments assigned to room 1

Fig. 1 shows an example of frame counts. Speaker cluster-
ing output yielded too many clusters, but the important ones are
clearly visible. With the above algorithm the single speaker in
the remote room is clearly identified from each side. Results on
the rt09seval multi-room meetings reveal that 3.1% WER ab-
solute can be gained from using automatic room filtering com-
pared to using only audio from one (i.e. the best) room. But
naturally this number depends on the amount spoken in each
room. Interestingly, the difference with reference segmentation
is only 2.3% which seems to indicate that differences in seg-
mentation are indeed a problem.

4. Modelling
4.1. Acoustic modelling
Several changes to acoustic modelling were made. The meeting
training data originates from a variety of corpora (see [4]). In
addition to the corpora used for the RT’07 system, about 6 hours
of multi-room data was added (the AMIDA corpus), yielding a
total of 177 hours of speech for IHM training. Data selection for
MDM training however is not trivial: as training is performed
on a single audio stream concurrent speech must be avoided.
Automatic removal of overlapped speech is difficult. Removal
of segments that contain any form of overlap would ignore more
than 50% of the data. Hence automatic methods for finding and
removing overlap need to be used. Based on alignment and
word boundary times about 154 hours of training data were re-
tained. However, alignment is often unreliable in boundary re-
gions, even for IHM channels. An additional confidence based
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Figure 2: Stacked bottleneck feature computation.

HLDA-PLP +BN +LCRCBN +SBN

36.0 31.7 30.6 29.4

Table 4: %WER on rt07seval using reference segmentation.

selection was used to remove an additional 10% of the data.
Lattices were generated for the complete training set and ranked
according to the highest word level posterior probability in the
lattices. Table 3 shows results for maximum likelihood(ML)
and MPE training. While reasonable gain is observed for ML,
the impact on discriminative training (1 iteration) is modest.
In addition to the changes in data, the BeamFormIt[7] beam-
former was used. While conceptually identical to the system
used before, the improved post-filtering allowed a reduction of
2.2%WER absolute on the rt07seval set.

In 2009 all models were trained on meeting data only. In
that way the considerable complexity due to the use of the
Fisher corpus for training was avoided. Naturally this comes at
the cost of performance loss, as cross-adaptation with NB/WB
models was shown to be very effective[4]. The simpler train-
ing setup allowed two changes. Use of two types of modified
feature vectors, and fMPE training[8].

Bottle-neck (BN) features were introduced in [4] as a
contrast to LCRC (left/right context) features. However, it
is straight-forward to extend BN features with the LCRC
paradigm. In this case the output of LC and RC BN MLPs forms
the input to a ’merger’ MLP, again with bottleneck output, re-
sulting in LCRCBN features. Taking this concept further, the
stacked BN features are presented in Fig. 2. Here the contextual
MLP is shared between all contexts. This allows to reduce the
number of parameters in the system. Table 4 shows a compari-
son of the feature types. Results are obtained using vocal tract
length normalisation(VTLN) and CMN/CVN and BN features
augment the PLP standard feature vectors. The resulting fea-
ture vector dimensionality ranges from 69 to 80. SBN features
clearly outperform all other variants. However, for the purpose
of complementarity LCRCBN features are also used.

fMPE is implemented using the RDLT framework[9]. Pos-
terior probabilities of the Gaussian are computed for each frame
and these are spliced with the averages of posteriors for adjacent
frames 1-2, 3-5 and 6-9 on the right and likewise for the left con-
text (i.e. 7 groups spanning 19 frames in total). All Gaussians
in ML trained HMM model are pooled and clustered using ag-
glomerative clustering to create a GMM with 1000 components.
Only offset features (not the posteriors) are used. Table 5 shows
results for use of fMPE in conjunction with BN features. As
expected the gains are not additive and reduced with more com-
plex time dependent features. Nevertheless an improvement of
1.4% WER can be observed.

HLDA-PLP+ ML MPE fMPE fMPE+MPE

- 35.6 32.6 31.4 29.7

+LCRCBN 30.4 28.1 26.7 26.3

+SBN 29.4 27.5 26.9 26.1

Table 5: %WER on rt07seval. Comparison of discriminative
training and posterior features

Lexicon size n–gram Arcs in WFST WER RTF

2K 7 11.8M 55.3 0.827
6K 7 12.5M 48.2 0.625
10K 7 13.8M 47.2 0.582
16K 7 14.7M 46.8 0.589
50K 4 15.6M 46.8 0.579

Table 6: %WER results on rt07seval using different vocabulary
size and n-gram order.

Figure 3: Graph of the MDM system

4.2. Language modelling

Language model (LM) training data was kept identical to that
used in 2007[4]. As OOV rates are generally found to be low
using wordlist padding, only words from the 2007 evaluation
data were added to the dictionary. However, two changes were
triggered by using Juicer[10], a weighted finite state transducer
(WFST) decoder. Firstly, language model pruning is required
to allow construction of WFSTs, which typically means a loss
of 0.5%WER absolute. However, secondly the use of ngrams
of higher order than 3 allows improved output. Table 6 shows
results for language models of varying order and vocabulary
size while approximately maintaining a certain decoder speed.
The use of 7gram LMs with small vocabulary yields identical
results to a 4gram LM with 50k vocabulary. This configuration
allows for rapid initial adaptation (see Sec.5).

4.3. Decoding

Whereas the RT’07 relied mostly on HTK HDecode[4], the
2009 systems make almost exclusive use of Juicer[10], apart
from lattice generation and rescoring. Juicer was considerably
changed and is now substantially faster than HDecode at equal
error rates, and as outlined before, also allows the use of higher
order n-grams. Decoder parameters were optimised using meth-
ods outlined in [11] for each model configuration.
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Description Automatic Manual

LM AM Notes Tot IDI EDI NIST Tot IDI EDI NIST
6kLM09-7g M2 41.3 45.1 32.3 44.9 38.3 44.0 31.9 38.3

50kLM09-4g M1 45.9 50.9 36.8 48.3 43.7 50.2 36.8 43.3

50kLM09-4g M2 CMLLR 36.4 38.8 28.5 40.2 32.9 37.9 27.7 32.5

50kLM09-4g M3 CMLLR 28.3 28.5 21.4 33.2 24.2 27.8 21.1 23.5

50kLM09-4g M4 Lattices / MLLR 27.6 28.3 20.9 31.9 23.9 27.9 20.6 22.8

50kLM09-4g M3 Rescore / MLLR 27.2 28.0 20.3 31.9 23.5 27.5 20.0 22.6

Confusion network 27.4 28.6 20.4 31.6 23.8 28.0 20.7 22.5

Table 7: %WER on rt09seval IHM for the AMIDA 2009 system. IDI/EDI/NIST are meeting rooms.

Segmentation Pass rt07seval rt09eval
Tot Tot Del Ins

Automatic First 40.3 44.2 10.8 4.7
Final 29.3 33.2 9.3 3.2

Reference First 37.8 42.3 10.3 3.2
Final 26.5 30.7 8.3 2.1

Table 8: %WER on MDM for the AMIDA 2009 system.

5. System overview and design
System design differed substantially from previous years. In-
stead of manual graph generation a semi-automatic approach
was used. The resource optimisation toolkit (ROTK) allows the
implementation of complex systems in the form of data process-
ing graphs. Modules are for example: PLP computation; decod-
ing using a specific configuration; adaptation; or segmentation.
Once the modules are defined semi-automatic optimisation of
graphs can be implemented. Thus the models and modules
become more important than the exact processing sequence.
For IHM the acoustic models developed were: HLDA-PLP/ML
(M1) and HLDA-PLP/MPE (M2), VTLN/SBN/MPE/fMPE
(M3), VTLN/LCRCBN/MPE/fMPE (M4). For MDM no LCR-
CBN models were created. The language models used are a 4g
LM based on 50K vocabulary, and a 7gram LM with 6K vo-
cabulary. For adaptation purposes a module for intersection of
system output was added. Here, the intersection of two out-
puts, in terms of word and time, are retained. It was found in
previous experiments on rt07seval that full meeting adaptation
(rather than just on a 10 minute extract) yields improvements
which are sustained or slightly improved when only adapting on
intersection output (which typically discards half of the data).

Unfortunately an exhaustive search for all module com-
binations for identification of the best system is far too com-
plex. Hence only local searches were conducted, as well as grid
searches for locally optimal parameters. The result for MDM is
given in Fig. 3. The IHM graph is considerably larger due to
more models to choose from.

6. Results and Conclusions
The tables 7 and 8 show the overall performance. The IHM re-
sults for each decoding step are shown, for MDM only first and
final passes are presented. The real-time factor (single thread)
for the IHM system is 19.4, the output of M3 models is avail-
able at 9.84 RTF. The tables show the difference between auto-
matic and manual segmentation. For IHM the large discrepancy
in WER is mostly down to NIST data and the aforementioned
issues with signal gain imbalance. The difference between auto-
matic and manual segmentation on rt09seval is similar to that on
rt07seval data. The WER difference between MDM and IHM
on reference data is still high with 6.9% WER.

A wide range of new methods have been included into the

AMIDA 2009 system for meeting transcription: : updated seg-
mentation and MDM diarisation; stacked bottle-neck posterior
features; fMPE training of acoustic models; adaptation on com-
plete meetings; a substantially improved decoder; automatic op-
timisation of decoders and local optimisation of system graphs.
Nevertheless, the system complexity overall was significantly
reduced, in terms of training and amounts of training data, as
well as RTF performance. The system can be tested on request
by interested parties under www.webasr.org.
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