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Brno University of Technology, Speech@FIT, Brno, Czech Republic
{ ihannema, kombrink, karafiat, burget } @fit.vutbr.cz

Abstract

We develop a similarity measure to detect repeatedly occur-
ring Out-of-Vocabulary words (OOV), since these carry impor-
tant information. Sub-word sequences in the recognition output
from a hybrid word/sub-word recognizer are taken as detected
OOVs and are aligned to each other with the help of an align-
ment error model. This model is able to deal with partial OOV
detections and tries to reveal more complex word relations such
as compound words. We apply the model to a selection of con-
versational phone calls to retrieve other examples of the same
OOV, and to obtain a higher-level description of it such as being
a derivation of a known word.

Index Terms: out-of-vocabulary, OOV, hybrid word/sub-word
recognizer, similarity measure, alignment error model

1. Introduction
Certain OOVs tend to occur several times in some documents,
while they do not appear in the majority of other documents, and
thus are not included in the dictionary of the speech recognizer
(ASR). Typically, those are topic-specific words - e.g. while
”Mycelium” is a rare word, in a lecture about mushrooms, we
observed it more than twenty times. Another example is the
name of a new person, which appears in the news only for a
certain time period. A conventional ASR will replace those
words by similar sounding in-vocabulary words (IVs) and since
rare words have a low impact on the word error rate, this is of-
ten neglected. However, from an information retrieval perspec-
tive, it is desirable to correctly recognize those words. Topic-
specific terms contain important information and are also suited
for document indexing. After recognizing OOVs, we want to
detect whether some of them are reoccurring. For that, it is nec-
essary to develop a similarity measure for recognized OOVs.
Ultimately, we would like to compose new word models from
reoccurring OOVs and to add them to the recognizer.

Several approaches to OOVs detection exist, either based on
computing confidence scores on the ASR output [1, 2], or using
backoff-, filler- or generic-word models, which model portions
of speech that do not match the pronunciations of words in the
vocabulary. Approaches based on confidences mark a recog-
nized word (or just a part of it) as ’wrong due to the presence
of an OOV’, if the confidence score is low. A conventional rec-
ognizer is sufficient for such approaches, but in the presence of
OOVs, the word boundaries of the wrongly recognized IVs of-
ten do not match the reference words, so that the exact start and
end points of the OOV are difficult to obtain.

0This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707,
Czech Ministry of Education project No. MSM0021630528 and by
BUT FIT grant No. FIT-10-S-2. We thank Josef Žižka for fast develop-
ment of our OOV demo and Igor Szöke for help with the hybrid ASR.
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Figure 1: OOV recognition with hybrid word/sub-word model
and comparison of sub-word sequences, extracted from one-
best recognition output.

We, however, are not only interested in detecting whether
an OOV was present, but also want to retrieve a description for
it, covering the OOV region as precisely as possible. There-
fore, we detect OOVs with a hybrid word/sub-word recog-
nizer [3, 4, 5, 6], which contains a generic word model based
on sub-words (e.g. phones, syllables, multi-phone units). In
the search for the most likely word sequence, the recognizer
chooses the word models that maximize the likelihood of the
overall path. Everywhere, it has the freedom to choose either
an in-vocabulary word or the generic word. Thus, portions of
speech, which cannot be modeled well by any word model, will
be recognized as a sequence of sub-words. The resulting word
boundaries in OOV regions are potentially more accurate than
in the conventional word-based ASR.

Figure 1 shows the approach: The fact, that the generic
model was chosen for a portion of speech, indicates the pres-
ence of an OOV and also retrieves its starting and ending times.
The sequence of recognized sub-words serves as a description
of the detected OOV. Given several of these detected sub-word
sequences (called ’OOV candidates’), we want to use a similar-
ity measure to decide, whether some can be clustered as being
the same OOV. For the comparison of sub-word sequences, we
introduce an alignment error model. The focus of this paper
is not to make any claims about optimality or superiority of the
used techniques, but to introduce the task of recognizing repeat-
edly occurring OOVs and the challenges arising from it.

2. Alignment of recognized OOVs
The output of the OOV detection using the hybrid word/sub-
word recognizer is a set of OOV candidates, i.e. detected se-
quences of sub-words. When operating on multiple output hy-
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OOV recognized sub-word sequence closest in-vocabulary

abnormalities ae b n ao r m ae l ax t iy z abnormally, abnormal
bioluminescence b ay ax l uw m ax n eh s en s bio, luminous
counterilluminate k aw n t axr ax l uw m ax n ey t counter, illuminated
monochromatic m aa n ax k r ax m ae t ih k mono, chromatography
polychromatic p aa l ih k r ax m ae t ih k poly, chromatography

Figure 2: Examples of well-recognized OOVs (36k words in vocabulary) from the TED database1.

potheses as e.g. in lattices, each candidate is associated with a
posterior probability. So far, we only used the one-best output
and made a hard decision on what is considered as OOV.

Our task is to identify for each OOV candidate those other
OOV candidates, which are likely to correspond to the same ref-
erence word. We do this by aligning the sub-word sequences of
two OOV candidates in comparison - the example shows recog-
nized sub-word sequences for the OOV ’illumination’:

ax l uw m ax n ey sh en
l ih m ax n ey sh en z

• The alignment requires deletions, substitutions and in-
sertions.

• The second detected sub-word sequence does not cover
the whole OOV region (recall of region),

• Only a part of it is correctly overlapping with an OOV
(precision of region).

Looking at examples of recognized OOVs (figure 2), we
observe, that except e.g. proper names in foreign languages like
’Eyjafjallajökull’, the majority of OOVs can be (morphologi-
cally) related to other known words or to other OOVs:

• Derivational suffixes: ’abnormalities’→
’abnormal(ly)’

• Compound words: ’counterilluminate’ → ’counter’ +
’illuminate’

• Semantic prefixes: The OOVs ’poly-’ and ’monochro-
matic’ both introduce the OOV ’chromatic’.

It is desirable to identify ’chromatic’ as the root (here also
OOV), since it can occur on its own (e.g. ’chromatic disper-
sion’) and both prefixes are in-vocabulary. Those examples mo-
tivated us to introduce a more general form of comparison by
alignment, where we allow to strip pre- and suffixes, and not
only compare the OOV candidate to all other OOV candidates,
but also to all IVs, and to all combinations of several OOVs or
IVs. We implemented this as a search, where we decode a par-
ticular detected sub-word sequence to a sequence of other OOV
candidates or IVs.

The search space is represented as a lexical finite state trans-
ducer (FST) L, which contains all recognized OOV candidates
and all IVs in a word-loop2 (figure 3). Given a particular sub-
word sequence (represented as input FST I), we retrieve se-
quences of OOVs/IVs that exactly match the input by using fi-
nite state composition:

I ◦ L (1)

1with permissions ”http://www.ted.com”
2We did not apply a word language model in L, since we assume,

that the OOVs are detected in places, where such prior knowledge had
already failed.

b

hh

s

ay

ey

ao

ow

ih

b

b

m

m

s

t

iy

iy

axr

z

HOME

t

SIT

axr

ih

OOV1

BABY

z

OOV3

HOMES

<w>

axr

OOV2

ng

BABIES

SISTER

SIS

SITTING

b ey b iy s ih t axr

Figure 3: Toy example of lexical FST L containing all recog-
nized OOVs and IVs and a given sub-word sequence, repre-
sented below as input FST I . The composition I ◦ L is dashed.

2.1. Alignment error model

Since the recognized sub-word sequences can contain errors, we
apply a mediating alignment error FST E, which is widening up
the hypothesis space by possible errors:

F = I ◦ E ◦ L (2)

The result F is a lattice of possible alignments of the input
sequence (figure 4). While in the example of figure 3 only one
sequence (’BABY OOV2’) matches the input, the hypothesized
alignment errors allow to retrieve more OOVs/IVs (figure 4).

An error model fulfills two purposes: it compensates for the
thin representation of the output - i.e. recovers from just using
the one-best hypothesis, and it also adapts to repeating error
patterns which were not observed during training of the ASR
system (or result from insufficient modeling). For example, if
an ASR is applied on foreign accented speech, an error model
could be trained on typical vowel confusions.

In our case, the error model E is implemented as a weighted
finite state transducer (WFST) [7]3. When using the log semir-
ing, the weights are negative log-probabilities, which we train
on observed alignment patterns in development data. Also the
lattice F (Eq. 2) is a WFST - each path through F is a possible
alignment of the input sequence to a sequence of OOVs/IVs and
has a score/probability attached, used as cost of the alignment.

3We use the OpenFST toolkit ”http://www.openfst.org/”.
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Figure 4: A resulting alignment lattice F = I ◦ E ◦ L using the toy example from figure 3.

In its simplest case, E has just one state [8] and implements
three basic alignment operations4 as self-loops:

• substitutions: xx:yy, − log(p(yy|xx, T rainText))

• insertions: xx:eps, − log(p(xx|Ins, TrainText))

• deletions: eps:xx, − log(p(Del|xx, T rainText))

To better deal with imprecise regions and partly retrieved
OOVs and to cope with added/deleted pre- or suffixes, we as-
sume, that at the beginning or at the end of every recognized
sub-word sequence there is a region, which can be stripped off,
replaced or added at a lower cost. Thus, edit costs depend on,
whether belonging to a consecutively edited sequence at the be-
gining/end or to a normal operation within a word. We extended
the error model to a layered structure:

• The core layer contains the error model introduced above
(possibly conditioning edit operations on phone context).

• An outer layer models consecutive edit operations at the
sequence boundaries.

• A word layer models the cost of compounding words.

3. Similarity scoring and clustering
As a similarity score (distance metric) of recognized sub-word
sequences, we use the scores from the alignment error model,
i.e. the cost of aligning two sequences to each other. Given the
similarity score, we could use soft cluster assignments (like in
fuzzy clustering), but so far we cluster simply by thresholding
the obtained scores.

For a particular OOV candidate, we obtain the lattice F
containing possible alignments, with scores. We prune the
alignment lattices by only keeping paths in a beam (multiplica-
tive factor) around the score of the alignment of the OOV to
itself. The self-alignment score should normalize for the length
and the prior probability of the sub-word sequence. We perform
a Viterbi forward search and then obtain the n-best paths using
the A*-algorithm backwards from the final state. The word la-
bels in the pruned alignment lattice (see fig. 4) serve as other
OOV candidates and IVs, which are considered to be similar to
the particular OOV candidate. They are used for two tasks5:

1. Query-by-example: Given an OOV candidate (sub-
word sequence), retrieve all other occurrences in the
database. We just extract all OOVs from the pruned
alignment lattice and report their positions in the data.

2. Higher-level OOV description: We retrieve the best
full alignment paths. An OOV can be described as
being a compound word or as being derived from
IVs. E.g. aa f ax s m ae k s (’Office Max’) →
OFFICE OOV1572

4A state transition is represented as input:output,weight.
5See ”http://www.prednasky.com/ ted/” for a demonstration on

Fisher data.

3.1. Cluster evaluation

We decided to exclude short detected sub-word sequences (1-
3 phones) from scoring and from our lexicon FSA, since we
observed, that they are likely to be false alarms and that the de-
tected region mostly covers only a small fraction of the under-
lying OOV. Therefore, it can not serve as a discriminative rep-
resentation of the OOV to be recognized elsewhere. The same
applies if an OOV candidate is only partially overlapping with
an OOV from the manual reference. We consider a reference
word to be ’signicantly overlapping’ with the OOV candidate, if
the word is either overlapping almost completely, or the overlap
is large enough to distinguish the word (e.g. at least 4 phones).

If the same sub-word sequence is recognized several times,
most often the same reference words are present (80% of cases),
but this is not always true. For example, the OOV candidate
k ao r t eh k s was recognized for the reference OOVs
’cortex’, ’neocortex’ and ’Gore-Tex’. Thus, using a particular
sub-word sequence as OOV candidate may be ambiguous.

Also, an OOV candidate might overlap with more than one
reference word (some of them may be in-vocabulary). For ex-
ample, for the OOV candidate ’Frederick’s photograph’

f r eh d r ih k s f ow t ax g r ae f
Several distinct OOVs (and IVs) can be correctly clustered:

f ow t ax g r ae f ih k ’photographic’

f r eh d r ih k ’Frederick’
We consider two OOV candidates to be correctly clustered to-
gether, if there is any reference word (in any of its occurrences),
that overlaps significantly with both of them.

When retrieving other examples of the OOV candidate, we
consider all words with a common word stem to be correct -
e.g. the whole family ’convulse’, ’convulsing’, ’convulsions’,
. . . should be retrieved and not only the exactly matching word.
To be able to evaluate that, we produced a reference stemming
dictionary for the IVs and the OOVs in the reference. In a first
step, we applied the Porter stemmer6 to our dictionary and then
hand-corrected it by also adding some splittings not considered
by the algorithm so far.

4. Setup
Our LVCSR uses 2-pass decoding with speaker adaptations
(CMLLR, VTLN) and was derived from the AMIDA 2005 CTS
recognizer as previously used in [1]. As acoustic features, we
used posterior features using long temporal context. The acous-
tic models were trained speaker independently on 250 hours of
Switchboard data. As recognition network, we used a hybrid
word/sub-word language model (LM). The sub-word LM con-
sists of 3977 phone and multiphone units trained on the RT06
dictionary ([5], 47k words). The word LM (bigram open-set
Katz-backoff) was trained on ≈ 2250 hours of Switchboard
(1+2) and Fisher (except test set).

We used 6.2 hours from Hub5 Eval01 as development data
to train the error model (negative log-probabilities in a phoneme

6Martin Porter, ”http://tartarus.org/∼martin/PorterStemmer/”
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ASR word accuracy OOV precision OOV recall OOV candidates (≥ 4 phones) overlap with reoccurring OOV

67.78% 85.3% 23.3% 2323 928

Table 1: Results of OOV detection with hybrid word/sub-word recognizer on a selection of Fisher data.

beamwidth 4.0 5.0 6.0 7.0

recall reoccurring OOVs 51.7% 60.0% 66.1% 71.4%

avg. cluster accuracy 70.0% 58.6% 40.7% 25.5%

avg. cluster completeness 42.6% 49.5% 57.2% 62.5%

accuracy OOV description 55.0% 47.8% 38.5% 29.1%

Table 2: Clustering of OOV candidates using scores from simi-
larity measure at different beamwidths.

score OOV candidate overlaps

0.525 1x aa k s ay d oxide

0.936 3x d aa k s ay d oxide
2.936 1x d aa k s Dachshund

missed 1x n ay t r ih k aa k s ay d nitric oxide

Table 3: Scoring output for the candidate aa k s ay d
using beamwidth 6.0. The first line contains the self-alignment.
The cluster accuracy is 3/4 (three correct ’oxide’, one wrong
’Dachshund’) and the cluster completeness is also 3/4 (’nitric
oxide’ missed).

confusion matrix). As test set, we selected 57 entire telephone
calls (10 hours) from the Fisher database (noisy, conversational
speech), so that each call is mainly centered around a particular
topic and is thus likely to contain reoccurring topic-related rare
words. We substantially reduced the vocabulary size to the 2860
most frequent words (unigram probabilities from LM training),
which resulted in 6.1% OOV rate on the test set. This is artifi-
cially high (also due to call selection), but since our primary
focus was not OOV detection, it provided us with sufficient
OOVs for the development of an OOV similarity metric. Ta-
ble 1 shows the OOV detection. We preferred operating points
with high OOV detection precision, since we assume, that this
results in a higher clustering accuracy.

5. Results
Table 2 evaluates the similarity measure for our two tasks. An
OOV candidate is targeted, if it is overlapping with an OOV, and
if that OOV reoccurs in the overlaps of other OOV candidates.
The recall of reoccurring OOVs is the percentage of targeted
candidates, for which we retrieve at least one correct example
of the reoccurring OOV.

When retrieving other OOV candidates in query-by-
example mode (task 1), we compute two measures for each
OOV candidate (see example in table 3):

• Cluster accuracy is the percentage of clustered words,
that are correct (i.e. have a significant overlap in a word
with a common stem).

• Cluster completeness is the percentage of OOV candi-
dates with the same reference word that were retrieved
(is not applied to false alarms).

Thus, according to table 2, on average, 40-60% of the re-
sulting cluster members are correct and the resulting clusters
cover 50-60% of the desired other examples.

For task 2, using the alignment scoring as a higher-level
OOV description (to find e.g. derivations and compounds), we

compute the OOV description accuracy, which is the percentage
of suggested alignments, that are correct, considering common
word stems. According to table 2, on average 40-50% of the
suggested alignments are correct.

6. Discussion and conclusions
Finding reoccurring OOVs is a new task, which to our know-
ledge has not been addressed so far. It is related to query-by-
example techniques [10], which try to spot other occurrences
of a keyword given one or more examples of it (audio snippets
or phonetic representations), but especially deals with partial
detections.

We presented a similarity measure for detected OOVs based
on alignment error. Through alignment, we also try to reveal
more complex relations like composed and derived words. We
think, that systems dealing with an unlimited vocabulary should
be able to make use of such word relations and e.g. not fail,
simply because one inflected form was not seen during training.
The sub-word (multiphone) based approach to OOV detection
seems to be compatible with that idea, since it also composes
words from common sub-words observed during training.

The introduced methods are rather simple and represent
’a first shot’. We want to apply the techniques to the TED
database, using a vocabulary that was not artificially limited.
Instead of just using the one-best output of the ASR, we want
to switch to using ASR lattices and a more sophisticated (prob-
abilistic or fuzzy) clustering algorithm. Building on that, we
could either train the error model in maximum likelihood sense
on training lattices, or apply query-by-example or keyword
spotting techniques on lattices.
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