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Abstract

This paper summarizes the BUT-AGNITIO system for NIST
Language Recognition Evaluation 2009. The post-evaluation
analysis aimed mainly at improving the quality of the data (fix-
ing language label problems and detecting overlapping speakers
in the training and development sets) and investigation of dif-
ferent compositions of the development set. The paper further
investigates into JFA-based acoustic system and reports results
for new SVM-PCA systems going beyond BUT-Agnitio origi-
nal NIST LRE 2009 submission. All results are presented on
evaluation data from NIST LRE 2009 task.

1. Introduction

The goal of this paper is to present a consolidated ver-
sion of BUT-Agnitio system description for NIST LRE 2009.
BUT-Agnitio system included 7 acoustic and phonotactic sub-
systems, and elaborate calibration and fusion, however, its re-
sults were not optimal. The post-evaluation experiments ad-
dressed mainly the issues of the data, of which the detection
and deletion of segments from speakers overlapping between
the training and development was found to be the most impor-
tant.

We have also investigated into the composition of develop-
ment data set, as this issue was widely discussed at the evalua-
tion workshop.

Finally, this paper deals with approaches that we have found
the most promising for language recognition: joint factor anal-
ysis (JFA) for the acoustic part, and SVM with dimensionality
reduction for the phonotactics.

The paper is organized as follows: section 2 presents the
data used in training and development sets. Section 3 defines
the basic scheme of our system while section 4 describes the
calibration and fusion. Section 5 gives an overview of the front-
ends (or sub-systems) and defines their common parts, and 6
deals with individual front-ends as they come into the fusion.
Section 7 presents the experimental results in a structuredway,
and section 8 concludes the paper.

This work was partly supported by US Air Force European Office
of Aerospace Research & Development (EOARD) Grant No. 083066,
European project MOBIO (FP7-214324), Grant Agency of CzechRe-
public project No. 102/08/0707, and Czech Ministry of Education
project No. MSM0021630528. We are grateful to Pietro Lafacefrom
Politecnico di Torino for allowing us to use the LPT data set

2. Training and development data

The following data (distributed by LDC and ELRA) were used
to train our systems:

CallFriend
* Fisher English Part 1. and 2.
* Fisher Levantine Arabic
* HKUST Mandarin

Mixer (data from NIST SRE 2004, 2005, 2006, 2008)
development data for NIST LRE 2007

* OGI-multilingual
* OGI 22 languages
* Foreign Accented English

SpeechDat-East
* SwitchBoard

Voice of America radio broadcast

The VOA data needs further explanation, as there are two
parts of this data. Note that only telephone conversations ex-
tracted from this data were used in the evaluation.

• VOA2 is raw radio data that originally had no language
labels. Before NIST LRE 2009, BUT performed auto-
matic labeling of this data by its production phonotactic
system based on Hungarian phone recognizer [3]1 and
shipped it to NIST and LDC.

• VOA3 was officially made available by NIST – the labels
are given by the sources, some of this data was audited.

2.1. Original training and development data

Our data was split into two independent subsets, which we de-
noted TRAIN and DEV. The TRAIN subset had 54 languages
(including the 23 target languages of NIST LRE2009) and had
about 80 000 segments (2500 hours) in total. The DEV subset
had 57 languages (including the 23 targets) and a total of about
60 000 segments (195 hours). The DEV subset was split into
balanced subsets having nominal durations of 3s, 10s and 30s.
The DEV set was based on segments from previous evaluations
plus additional segments extracted from longer files from CTS
(corpora marked with a star ’*’ in the table above), VOA3 and
human-audited VOA2 data, which were not contained in the
TRAIN set.

1The system is available through Phonexia,http://phonexia.
com/download/demo-lid
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2.2. LPT data

In the post-evaluation analysis, we have investigated the influ-
ence of having additional data for calibrating the system. As
Loquendo/Politecnico di Torino (LPT) had excellent results in
the evaluation, we experimented with their development set,
that was generously provided to us by Prof. Pietro Laface.
LPT VOA data contains segments from three different sources:
VOA2, VOA3 and FTP2, see details in [2]. The language labels
for each speech segment were the ones provided by NIST or au-
tomatically generated by LPT group (with possibility of errors),
followed by some auditing. The LPT development set had 34
languages (including the 23 targets) and a total of about 10 000
segments (51 hours).

2.3. Additional VOA2 data

VOA2 data was used in experiments on influence of training
and development data (section 7.3). In addition to the original
labels provided by us to NIST (obtained by the phonotactic sys-
tem [3]), this data was also labeled by our JFA-G2048 system
(see section 6.1). Only the segments, where the top-level hy-
pothesis from both systems agreed, were selected. In this way,
we obtained about 680 hours of speech in about 4800 segments.

3. General System description
In this section we describe the general system architecturethat
is common to all systems. Each system has three main stages:

Front-ends, of which there may be multiple different ones for
a complete system. Each front-end stage maps the input
speech segment to ascore-vector. We denote these front-
end outputs asamorphous scores. The dimensionality
of these scores vary between 23 and 68, as described in
more detail later.

Back-end, which performs fusion and calibration. The back-
end fuses the amorphous scores from the front-ends
and outputscalibrated scores. These scores function as
multi-class log-likelihoods. In the Closed-set case, there
are 23 log-likelihoods per input segment, for each of the
23 target languages. In the Open-set case, there are 24:
the 23 target log-likelihoods as well as the log-likelihood
for the hypothesis that the input is from some other lan-
guage. The back-end is further described in the next sec-
tion.

Decision stage,which takes the (i) back-end output log-
likelihoods and (ii) the priors as defined for each trial.
These are used in Bayes’ rule to obtain the posterior dis-
tribution over the language classes. The posterior is then
used to make minimum-expected-cost Bayes decisions.
For closed-set the prior allows 23 hypotheses, and for
open-set 24 hypotheses3. For each input segment, there
are multiple detection trials, where the prior is varied be-
tween trials, as specified in the evaluation plan.

4. Back-end
The back-end maps one or more amorphous input score-vectors
to a calibrated output score-vector, for every input segment.
There are two back-end variants, for closed-set and open-set
respectively. Both variants are composed of separate Gaussian

2Data downloaded from VOA Internet archive.
3Note, that only the results for the closed set are reported inthis

paper.

back-ends (GBE’s) for different front-ends, followed by a single
discriminative fusion and calibration stage:

4.1. Gaussian Back-end (GBE)

The GBE models the amorphous scores with a different Gaus-
sian model in amorphous score-space, for each language class.
In the closed-set case, all the class models share the same com-
mon within-class covariance (CWCC). In the open-set case, the
23 target languages share the CWCC, but the out-of-set class
has a larger covariance. In all cases there are different class-
conditional means.

For the closed-set case, we use maximum likelihood (ML)
estimates for the parameters. The CWCC was estimated over
all 57 languages, while we used the means only for the 23 target
languages.

In the open-set case, we take the out-of-set covariance as
CWCC+BCC, where BCC is the between-class covariance, es-
timated from the means of all 57 languages in DEV, so BCC
was estimated from 57 data points. The mean for this model
was chosen as the mean of the 57 language means.

The output scores of the GBE are the 23 or 24 log-
likelihoods of the input score-vector, given each of the class
models.

4.2. Fusion and calibration

In contrast to our previous work, where we used three separate
back-ends for nominal durations of 3s, 10s and 30s, we built
a single duration-compensated fusion and calibration stage for
NIST LRE 2009.

Let there beM input systems, where systemi produces
amorphous score-vectorsit for a given inputt. Each system
also outputs, as ancillary information, an indication of the du-
ration of the input segment, denoteddit. For acoustic systems,
this was the number of 10ms speech frames found by the VAD
(voice-activity-detection). For phonotactic systems, this was the
expected number of phones in the segment. LetB() denote the
mapping effected by the GBE, then the output of the fusion and
calibration is:

~ℓt =
M

X

i=1

a1iB(sit) + a2iB(d−0.5
it sit) + a3iB(d−1

it sit)

+ b + C~γt

(1)

whereaji are scalar fusion weights,b is an offset vector,C is
a matrix and~γt is a vector of ancillary data. For systems which
fused both acoustic and phonotactic subsystems, we composed
~γ of the phone and frame durations, as well as their square roots.
In cases where we fused more than one phonotactic system, we
used the expected number of phones for each system.

Notice that for each system, we fused in three differently
normalized score variants and for each of these variants, a dif-
ferent GBE was trained.

The fusion parameters(aji,b,C) were discriminatively
trained using multi-class logistic regression. This tendsto pro-
duce well-calibrated class log-likelihoods. We verified this fact
by judging calibration on independent data (see jackknifingbe-
low), by comparingCavg (as defined in NIST evaluation plan
[1]) and C∗

avg
4. Note thatC∗

avg was used only in the develop-

4When we are busy with basic recognizer development (i.e. the
front-ends), we want to judge thediscriminationrather than the calibra-
tion of our algorithms. In this case, we prefer not to use the calibration-
sensitiveCavg as is. Our solution is to discount the effect of calibration
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ment, all results are reported on the evaluation data using the
conventionalCavg.

4.3. Jackknifing

We used our TRAIN data subset to train all front-ends, while
we used our DEV data to train all the back-end stages and also
to test the performance. To keep back-end training and test sep-
arate, we resorted to a jackknifing scheme. We did 5 outer it-
erations, where in each, we randomly partitioned the DEV data
into 5 subsets balanced across all 57 languages. In 5 inner it-
erations, one subset was held out as test data, while the other 4
were used for back-end training.

We computedCavg andC∗

avg on each of the 25 test sets and
averaged. We also averaged the 25 back-ends thus obtained for
a final back-end which was applied to the LRE’09 evaluation
data.

5. Front-end types
There are two types of front-end,acousticand phonotactic.
Here, we give general descriptions of both types, followed by
details of each front-end.

5.1. Acoustic

The acoustic systems are based on MFCC/SDC [6] acoustic fea-
tures. This paper contains only a brief summary of acoustic
feature extraction and UBM training. For more detail, see our
previous work [4, 5].

The inputs to the language recognizer are segments of
recorded speech of varying duration. The voice activity detec-
tion (VAD) is performed by our Hungarian phoneme recognizer
[11]5 – we simply drop all frames that are labeled as silence or
speaker noises.

All acoustic systems used the popular shifted-delta-
cepstra (SDC) [6] feature extraction. The feature extraction is
similar to BUT LRE 2005 system [5]. Every speech segment
is mapped to a variable-length sequence of feature vectors as
follows: After discarding silence portions, every 10ms speech-
frame is mapped to a 56-dimensional feature vector. The fea-
ture vector is the concatenation of an SDC-7-1-3-7 vector and 7
MFCC coefficients (including C0). Cepstral mean and variance
normalization are applied before SDC.

Vocal-tract length normalization (VTLN) performs simple
speaker adaptation. We used an efficient VTLN warping-factor
estimator based on GMM [7].

A 2048-component, language-independent, maximum-
likelihood GMM was trained with the EM-algorithm on the
pooled acoustic feature vectors of all 54 languages in the
TRAIN data-set. We follow speaker recognition terminology
and refer to this language-independent GMM as theuniversal
background model, or UBM [8].

5.2. Phonotactic

The phonotactic systems were based on 3 phoneme recogniz-
ers: two ANN/HMM hybrids and one based on GMM/HMM

by letting theevaluatorcalibrate every system. That is, the evaluator op-
timizes calibration on the target data and then reports the value ofCavg
obtained with this calibration. We denote this measure byC∗

avg. MAT-
LAB code to perform this optimization is freely available athttp://
niko.brummer.googlepages.com/focalmulticlass, see
also [16].

5available from http://speech.fit.vutbr.cz/en/
software.

context dependent models. All the recognizers are able to pro-
duce phoneme strings as well as phoneme lattices. In case of
lattices, expected phone counts (“soft-counts”) were usedin the
following processing [9].

5.2.1. Hybrid phoneme recognizers

The phoneme recognizer is based on hybrid ANN/HMM ap-
proach, where artificial neural networks (ANN) are used to es-
timate posterior probabilities of being in given phone-state for
given frame. The input to the neural network is a block of Mel
filter-bank log energies, with a context of 310ms around the cur-
rent frame. Frame phone-state posteriors are then used as emis-
sion likelihoods in an HMM-based Viterbi decoder producing
phone strings or lattices.

Hybrid recognizers were trained for Hungarian and Russian
from the SpeechDat-E databases6. For more details see [11,
10].

5.2.2. GMM/HMM phoneme recognizers

The third phoneme recognizer was based on GMM/HMM
context-dependent state-clustered triphone models, which are
trained in similar way as the models used in AMI/AMIDA
LVCSR [12]. The models were trained using 2000 hours of En-
glish telephone conversational speech data from Fisher, Switch-
board and CallHome databases. The features are 13 PLP coef-
ficients augmented with their first, second and third derivatives
projected into 39 dimensional space using HLDA transforma-
tion. The models are trained discriminatively using MPE crite-
rion [13]. VTLN and MLLR adaptation is used for both training
and recognition in SAT fashion. The triphones were used for
phoneme recognition with a bi-gram phonotactic model trained
on English-only data.

6. Front-end descriptions
This section lists the details of all the different front-end vari-
ants.

6.1. JFA-G2048

This is an acoustic system inspired by Joint Factor analysisas
introduced to speaker recognition by Patrick Kenny [14, 15].
Unlike “full” JFA, where both inter-session and speaker vari-
abilities are modeled with sub-spaces, we use a simplified ver-
sion, with only one sub-space representing the inter-session
variability. For segments, the super-vector of GMM means
for languagel(s) is expressed by:

ms = tl(s) + Uxs,

wheretl is the location vector of languagel, U is a factor load-
ing matrix withC factors in its columns, andxs is a vector of
C segment-dependent channel factors. Detailed descriptioncan
be found in [16]. An important feature of this system is that all
we need to estimate its parameters, or to score a segment is a
set of sufficient statistics of fixed length.

The channel factor loading matrixU is trained via an EM
algorithm over 500 sessions of each of the 23 target languages.
The super-vector dimensionality is about105 and the dimen-
sionality of the channel subspace is 200. The language location
vectorstl were MAP-adapted with relevance-MAP adaptation
from the UBM [8], using also 500 sessions of each of the 23
target languages.

6seehttp://www.fee.vutbr.cz/SPEECHDAT-E.
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For this system, we generated 68 models, to produce 68
front-end scores. We used all of the 54 available languages and
trained two separate models for those languages that have both
telephone and radio speech.

Test utterance scoring is done by language-independent
channel-compensation, followed by linear scoring againsteach
language model [17].

6.2. JFA-G2048-RDLT

Region Dependent Linear Transforms (RDLT) [18] is a discrim-
inatively trained feature extraction, which is a generalization of
a technique known in speech recognition as fMPE [19]. In our
system, 256 linear transformations (56x56 matrices) take one
common 56-dimensional feature vector of SDC+MFCC as in-
put. The outputs of the transformations are linearly combined to
form a single 56-dimensional output feature vector. The mixing
weights are given by posterior probabilities of 256 components
of a GMM, which is trained on the same input features. The
transformations are discriminatively trained in similar manner
as described in [18, 19] to maximize the expected probability
of a segment being correctly recognized by a set of language
dependent GMMs, which are ML-trained on the RDLT output
features. The average duration of training segments is about
1 second. After training the RDLT, the set of language depen-
dent GMMs is discarded, and the RDLT features are used to
generate statistics for the JFA system described in section6.1.

6.3. RDLT - no channel compensation

This subsystem uses the same RDLT features as system JFA-
G2048-RDLT described in the previous section. The difference
is that there is no channel compensation – in other words, we
use plain MAP-adapted language models trained on RDLT fea-
tures. The scoring is done by linear scoring against each lan-
guage model [17].

6.4. MMI-FeaCC-G2048

This subsystem uses GMM models with 2048 Gaussians per
language, where mean and variance parameters are re-estimated
using Maximum Mutual Information criterion - the same as
for BUT LRE2005 [5]. The SDC features are first compen-
sated using eigen-channel adaptation in feature domain [20, 21].
Starting from target language models with means MAP-adapted
from UBM using the compensated features, mean and variance
parameters are further re-estimated using MMI criterion [4].

6.5. EN-TREE-45-N4, HU-TREE-6133-N4, RU-TREE-50-
N4

In all systems, binary decision tree language modeling was
based on creating a single language independent tree (refer-
enced as “UBM”) and adapting its distributions to individual
language training data, as described in Navratil’s work [22, 23].
We used English, Hungarian, and Russian phone recognizers to
generate lattice-based expected phone 4-gram counts.

6.6. SVM-HU-N3

In this subsystem, the trigram-lattice-counts from Hungarian
phone recognizer were used as features for subsequent classi-
fication by SVMs, similar to MIT’s work [24].

Table 2:Fixing the data.

Eval data, [Cavg] 30s 10s 3s
JFA-G2048-RDLT 3.62 6.39 16.47
- rename ‘pers’ segments as ‘fars’3.56 6.36 16.14
- speaker ID filtering 2.33 5.09 15.06

Table 3:Amount of omitted data by speaker ID filtering

language omitted data
bosn 92.8 %
croa 77.9 %
port 17.6 %
russ 30.1 %
ukra 93.8 %

7. Experimental results

All results are presented asCavg on NIST LRE 2009 evaluation
data for closed-set condition. The results of all systems and
their fusion are summarized in Table 1. We present results for
23 detectors (only models for target languages) and for more
detectors (54 detectors - one for each language in TRAIN set or
68 detectors when VOA and CTS data have separate model).

7.1. Fixing problems with the data

The obtained results did not meet our expectations, as we saw
big difference between results on the development (30s condi-
tion Cavg = 0.66) and evaluation sets (Cavg = 2.34). We
wanted to investigate, what was wrong with the development
set. The biggest difference was observed for JFA-G2048-RDLT,
so that we focused our work on this system - see Table 2.

We found two main problems. The first bug was using two
different labels: “Persian” and “Farsi” for segments from the
same language in our DEV data. After re-labeling, we obtained
small, but consistent improvement across all durations.

The second problem was more serious: for some languages
with little amount of data, we found that the TRAIN and DEV
sets contained large amount of speech from the same speak-
ers. This negatively influenced training of the calibrationand
fusion parameters. This problem was addressed by training a
speaker ID system for each training utterance and scoring all
development utterances from the corresponding language. A
GMM-UBM based speaker ID system developed by BUT for
NIST 2006 SRE evaluation was used [26]7.

Based on the histogram of scores (example for Ukrainian
in Figure 1) showing clearly bi-modal structure of identical and
different speakers, we chose a language-dependent threshold of
speaker ID score for omitting utterances from the development
set. The amounts of omitted data are in Table 3. This step brings
a nice improvement as we can see in Table 2.

Table 4 shows the results for all systems and fusion after fix-
ing both above mentioned problems. It is obvious that the per-
formance depends heavily on the quality of the data: compared
to Table 1, we obtained significant and consistent improvement
across all systems and all durations.

7This system is available through Phonexiahttp://phonexia.
com/download/demo-sid.
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Table 1:Individual systems’ and fusion results with the original development data. Outputs denoted ’-’ were not produced because of
too high computational load.

Eval data, [Cavg] 30s 10s 3s
System/Detectors 23 54/68* 23 54/68* 23 54/68*
EN-TREE-45-N4 3.36 - 7.29 - 18.83 -
RU-TREE-50-N4 3.69 3.52 7.02 6.55 16.99 16.81
HU-TREE-6133-N4 4.29 4.05 8.17 8.05 19.14 19.09
SVM-HU-N3 3.82 - 9.28 - 21.54 -
JFA-G2048-RDLT 3.68 3.62* 6.55 6.39* 16.29 16.47*
MMI-FeaCC-G2048 4.47 - 6.46 - 14.92 -
RDLT – no channel comp. 7.07 5.57* 9.97 8.34* 18.66 17.29*
Fusion 2.29 2.34 3.77 3.86 10.29 10.19
Fusion - development data 0.77 0.66 1.70 1.53 6.51 6.14

Table 4:Individual systems’ and fusion results with the fixed development data.

Eval data, [Cavg] 30s 10s 3s
System/Detectors 23 54/68* 23 54/68* 23 54/68*
EN-TREE-45-N4 2.71 - 6.52 - 18.28 -
RU-TREE-50-N4 2.97 2.80 5.80 5.38 16.19 15.93
HU-TREE-6133-N4 3.71 3.79 7.14 7.16 18.30 18.30
SVM-HU-N3 3.08 - 8.50 - 20.93 -
JFA-G2048-RDLT 2.33 2.53* 5.09 5.26* 15.06 15.51*
MMI-FeaCC-G2048 2.99 - 4.78 - 13.94 -
RDLT - no channel comp. 4.92 4.06* 7.81 6.69* 17.23 16.24*
Fusion 1.93 2.23 2.87 3.01 9.30 9.28
Fusion - development data 0.85 0.72 1.87 1.55 6.19 5.62

−20 0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500
UKRA SpkID train/test histogram

SpkID score

Figure 1: Histogram of speaker ID scores – example for
Ukrainian.

7.2. RDLT out and JFA tuning

We have seen good performance of RDLT features on the de-
velopment set. The comparison of JFA system with and with-
out RDLT (Table 5) shows slight superiority of RDLT for short
durations, but an unpleasant hit for the 30s condition. There-
fore, RDLT features were dropped from our JFA system for the
following experiments.

The next step was improving the JFA. Originally, we used
only 500 segments per target language to MAP-adapt language
location vectorstl before training the factor loading matrixU.
Here, we used all available data to traintl’s, so that the result-
ing model is much more stable. We have also tuned the opti-

Table 5: JFA system without RDLT features and tuning of the
JFA.

Eval data, [Cavg] 30s 10s 3s

JFA-G2048-RDLT (cleaned dev) 2.33 5.09 15.06
- drop RDLT features 2.18 5.17 15.16
- JFA model tuning 2.02 4.89 14.57

mum number of EM-iterations ofU matrix training. The per-
formance increased for all three durations (last line of Table 5).

7.3. Composition of the development set

Excellent results reported by LPT and MIT were partly at-
tributed to the work they invested in the creation and cleaning of
their development data. We have therefore compared three data-
sets for training the calibration of single acoustic JFA-G2048
system:

• our cleaned data, based only on VOA3 and audited
VOA2.

• LPT data containing segments from three different
sources: VOA2, VOA3 and FTP (see section 2.2)

• additional non-audited VOA2 data (see section 2.3).

The results of three calibration experiments in table 6 indicate
that the best performing system uses only the original calibra-
tion data. When adding additional VOA2 data to the training,
we have seen marginal improvement only for the longest 30s
duration.

Sub-optimal performance of LPT data can be probably at-
tributed to repetition of utterances in our TRAIN data-set and

219



Table 6:Analysis of LPT and additional VOA2 data.

Eval data, [Cavg] 30s 10s 3s
JFA-G2048 2.02 4.89 14.57
calibration on LPT like data 2.32
adding VOA2 data to calibration 2.54 5.62 15.03

adding VOA2 data to training 1.94 4.95 14.70

Table 7:SVM-PCA and their fusion.

Eval data, [Cavg] 30s 10s 3s
SVM-PCA 1.78 3.86 14.13
MMI-FeaCC-G20486 2.99 4.78 13.94
JFA-2048G 2.02 4.89 14.57

Fusion 1.57 2.76 10.22

in LPT development set (the speaker ID cleaning procedure
was not applied here). The other source of worse performance
can be quite small number of segments in LPT development set
compared to ours (10 000 against 63 000). Adding VOA2 data
to the calibration did not perform well, probably because ofthe
quality of automatically generated labels.

7.4. Grand finale with SVM-PCA systems

Recently, excellent results were obtained with SVM-based sys-
tems with principal component analysis (PCA) dimensionality
reduction [25]. The principle is very simple: vectors of ex-
pected n-gram counts are derived from lattices, and after com-
pression by square root, their dimensionality if drastically re-
duced by PCA. The resulting features are then used for SVM
scoring. Reducing the dimensionality allows for several orders
of speed up, and possibility to train on entire training data.

The presented SVM-PCA system is a fusion of 13 differ-
ent SVM systems, based on different level of n-gram language
model (3 or 4), different phone recognizers (Hungarian, Rus-
sian or English) and with different feature dimensionality. The
fusion was done exactly in the same way as described in sec-
tion 4.2, i.e. by estimating the calibration and fusion parameters
on jackknifed DEV set. Except for the shortest duration, thefu-
sion of 13 different SVM systems is by far the best system we
have (see Table 7).

When these 13 SVM-PCA systems are fused with the best
performing acoustic systems: MMI-FeaCC-G2048 (see 6.4)
and post-evaluation version of JFA-G2048, the results are very
competitive (last line of Table 7).

8. Conclusions
The presented results show crucial importance of careful work
with data in language recognition. Despite using 7 state-of-the-
art LRE systems, the original BUT’s results were suboptimal
due to problems with the data. It seems, that in case of care-
ful pruning of repeated speakers, we can quietly use only the
standard VOA3 and human-audited VOA2 data distributed by
NIST – we have not seen any significant advantage from using
additional data.

Among the acoustic systems, JFA-based one has clearly
superior performances, especially for longer durations. With
RDLT features, we have seen improved performance on shorter
segments (for which RDLT is actually trained), but deterioration
for long segments. More work is needed to have them offering

stable performance across wider range of durations.
Finally, the recently developed SVM-PCA approach seems

to perform better than the acoustic ones, except for the shortest
duration, and gives very competitive results when fused with
only two acoustic systems. In the same time, this combination
is not computationally hungry and could lead to developmentof
highly accurate and fast practical LRE systems.
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