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ABSTRACT

Phonotactic approach, phone recognition to be followed by language
modeling, is one of the most popular approaches to language identi-
fication (LID). In this work, we explore how language identification
accuracy of a phone decoder can be enhanced by varying acoustic
resolution of the phone decoder, and subsequently how multireso-
lution versions of the same decoder can be integrated to improve
the LID accuracy. We use mutual information to select the opti-
mum set of phones for a specific acoustic resolution. Further, we
propose strategies for building multilingual systems suitable for LID
applications, and subsequently fine tune these systems to enhance
the overall accuracy.

Index Terms— Phonotactic language identification, hidden
Markov models, neural networks, mutual information, multilingual

1. INTRODUCTION

In most of the speech databases, phone definitions are done accord-
ing to IPA or SAMPA or a similar definition to optimize the accu-
racy for speech recognition. In language identification (LID) us-
ing phonotactic approach [1, 2, 9], words across languages are pro-
nounced using the phones of the phone decoder and the difference in
these pronunciations are captured using n-gram language models to
identify the language of the spoken utterance.

It is well known that the performance of the language identifi-
cation systems can be enhanced by using decoders specific to target
languages. In this case, we may choose language specific decoders
generated from the labeled data or derive language specific phones
from a multilingual phone inventory as in [3]. However, this ap-
proach is not practical when the number of target languages in the
LID system becomes large. Therefore, it would be interesting to op-
timize the systems for the overall performance across all the target
languages. There has also been effort to improve the performance
of the LID systems using discriminative approaches [5], or by com-
bining the output of several decoders [6, 7]. While the work in [3]
was interesting for target oriented phone selection, it was focused
on choosing the set of phones from a multilingual phone inventory,
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specific to the target languages. Extending [3] to select the opti-
mum set of phones across all target languages (TOPT extended), the
performance deteriorated from the baseline system, when applied to
decoders not specific to the target languages.

It may be noted that phone recognition accuracy and LID accu-
racy are highly correlated. Further, when a phone is removed from
the decoder, the examples which otherwise are recognized as this
phone would now be recognized as other phones. The effect of these
two factors were not considered in the selection of the phones in
[3]. As a result, it could not be extended to non-target language de-
coders. We, in this work, formulate the phone selection process as an
optimization of mutual information [4, 10, 11] of the new decoder,
taking into consideration the above two factors. We further check the
effectiveness of the approach using a hybrid hidden Markov model -
neural network (HMM-NN) implementation [8, 9] of the Hungarian
1 decoder.

Further, we propose strategies for developing multilingual de-
coders suitable for LID applications. We also fine tune the resolu-
tion of the multilingual decoder and integrate with the monolingual
decoders to enhance the LID accuracy. Hungarian and Czech1 de-
coders were used for building the multilingual decoders.

We present the theoretical formulation of the new phone selec-
tion algorithm, using bigram counts. We use mutual information to
select the optimum set of phones and later verify if the phones not
selected should be removed from the database or should they be re-
placed with a phone that has similar acoustic characteristics based on
the mutual information of the new phone decoder resulting from the
decision. Thus, in our work, the phone selection problem is reformu-
lated as a phone elimination problem, and we refer to this approach
as Phone Selection by Elimination (PSE).

2. PHONE SELECTION BY ELIMINATION (PSE)

2.1. Mutual information

An intuitively plausible measure of the average amount of informa-
tion provided by the random event T about the random event L is the
average difference between the number of bits it takes to specify the
outcome of L when the outcome of T is not known and the outcome
of T is known. Mutual information is a powerful tool to measure the
dependency between random variables[4]. Suppose a discrete token
variable (unigram, bigram or a trigram) and language class variable

1http://catalog.elra.info/product info.php?products id=1045
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are T and L, respectively, the mutual information between the two
variables is defined as:

I(T, L) = H(L) − H(L|T )

=
X
T

X
L

p(ti, lj) log

„
p(ti, lj)

p(ti)p(lj)

«
(1)

where H(·) is the entropy.
Ideally, from the string of tokens, the language identity should be

obtained. This means that I(T,L), the average mutual information
between the random variable ti and the random variable lj should
be maximized, or rather the decoder should have phones with high
mutual information.

Further, we consider an LID task for N languages as N two
class problems, where each of the target language needs to be dis-
tinguished from the rest of the languages. Thus, we can formulate
the language recognition as a series of two class separation prob-
lems. For each target language, a one-versus-rest classifier can be
built, which is indeed the case, we need to negate the non-target
languages and accept the target language for the specific sample.
We consider the identity of a language l as a random variable that
can take one of many values depending on the number of languages
to be recognized. Given the task of classifying a target language l

against the competing languages, we define another variable Γ =˘
l+, l−

¯
, which has two values, where l+ denotes that it is the

target language, l− denotes that it is not the target language. We
use bg(ti, tj) to denote the bigram with phone ti to be followed by
tj . For a given language l, the presence of the bigram bg(ti, tj)
is another random variable that takes two possible values in β =
{bg(ti, tj)l+ , bg(ti, tj)l−} where bg(ti, tj)l+ denotes that the bi-
gram bg(ti, tj) is present in language l and bg(ti, tj)l− denotes that
the bigram bg(ti, tj) is present in language l−. Thus, Γ is the target
versus non-target classes, and β is the set of phones that are present
in the target language or non-target languages or both.

Mutual information of a phone can then be expressed in terms
of the presence bigram β and the language category Γ summed over
all languages that can be estimated as:

I(β; Γ) =
X
l∈Γ

X
bg(ti,tj)∈β

a(ti)p(bg(ti, tj), l)

log
p(bg(ti, tj), l)

p(bg(ti, tj))p(l)
(2)

where p(bg(ti, tj), l) is the probability that the bigram bg(ti, tj)
appears in language l, p(bg(ti, tj)) and p(l) are the probability of bi-
gram bg(ti, tj) and language l respectively, and a(t) is the recogni-
tion accuracy of the phone t without considering insertion and dele-
tion errors.

2.2. Entropy leak

Let us consider a system with three phones ah, ih and uh, and their
recognition accuracy without considering insertion and deletion er-
rors be 90, 80, and 40 per cent respectively. It is clear that more
examples of the phone uh are being recognized as ah or ih resulting
in inconsistency in the definitions of ah and ih when they are rec-
ognized using the phone decoder. This in turn increases the random-
ness (entropy) in the recognition of phones ah and ih and reduces
the mutual information of these phones, phones with high recogni-
tion accuracy. Thus, the mutual information of a phone calculated

merge i i: merge t t1:
merge s s: merge ts ts
merge r r: merge S Z
merge z z: merge m m:
merge k k: merge d d :
merge d t1 merge j j:
merge S S: merge z dz

remove x

Table 1. Decision whether to merge or remove the phones not se-
lected for the decoder

from the output sequence is after the blurring effect of the phone
recognition errors. To penalise phones with negative contribution
towards the LID performance of other phones, we chose to multiply
the mutual information of every phone with the phone recognition
accuracy, without considering the insertion errors.

From eqns. (1) and (2), it seems that selecting phones with large
values of mutual information is the way to choose phones for LID
systems, it is now clear that we also need to consider the negative
contribution towards the performance of other phones, which is in-
fluenced by the phone recognition accuracy.

2.3. Selection of phones

Rather than choosing the phone with the highest mutual information,
our strategy is to eliminate the ones that cause minimum loss in the
mutual information of the phone decoder after its deletion or substi-
tution with another phone. In other words, we modified the phone
selection problem to a phone elimination/deletion problem.

If a phone is selected for deletion, it could either be removed
from the decoder, or edit the phone sequence at the output of the
decoder and replace it with the acoustically closest phone or merge
the examples of the two phones before building the acoustic mod-
els. In the case of deletion, all examples which would otherwise
have been recognized by this phone will now be recognized as other
phones. Confusion matrix of the decoder was used to estimate what
percentage of this phone examples are distributed towards the counts
of other phones. Similarly, if it is chosen for replacement with an-
other phone, then all the phones which were recognized correctly as
this phone would get replaced by the new target phone and the rest
would get distributed towards the counts of the other phone bigrams.
This distribution also can be estimated from the confusion matrix of
the phone decoder.

We calculate the mutual information of the system without the
phone under consideration and check if the mutual information of
the system would be better with a removal of the phone from the
decoder or with a substitution with the acoustically closest phone
and make a decision as regards to every phone chosen for deletion.
Phones were classified into broad phonetic categories and the closest
phone in the same group only was considered for a subsitution. If a
phone x is chosen for subsitution with phone y and vice versa, then
they are not selected in this phase for deletion/substitution, there is a
chance that they could be parallel models of the same phone. In this
experiment, however, we did not encounter such case.

Table 1 lists the results of identifying the phones with minimum
effect on the mutual information of the phone decoder. merge y y:
means the phone y: is merged with y, either in the model or dur-
ing the post-editing of the labels. remove x means phone x can be
deleted from the decoder. In our experiments, merging of the phones
in the model gave slightly better results than post-editing, and there-
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at start, 45 phones 7.15e-02
merge pau int 7.49e-02
merge pau spk 7.51e-02

Table 2. Merging of the final set of phones for better mutual infor-
mation

fore all the results reported in this work use merging of phones in the
model.

2.4. Measuring the acoustic similarity of phones

In our work, we use continuous density HMMs where the proba-
bility distributions were modeled using neural networks[8, 9], and
the probability was not measured in the likelihood sense across all
possible state sequences, but for the best state sequence Sopt. Ex-
amples were therefore force aligned with the correct transcription to
the state level and the distance of phone λ1 and λ2 can be expressed
using KL-divergence [12] as in [13]:

D(λ1, λ2) =
1

N

NX
k=1

1

Tk

j TkX
tk=1

log(p(o(tk)|λ1, s(tk)))

− log(p(o(tk)|λ2, s(tk)))

ff
(3)

o(t) is the feature vector at time t, and s(t) is the state at time
t, and p(o(t)|λ, s(t))) is the probability of o(t) for model λ, at
state s(t) obtained after force aligning the example with their cor-
rect phone state transcription , Tk is the number of frames in the kth

example and N is the total number of examples of the model λ1.
In our case, however, a merge resulted in a better phone recogni-

tion and LID accuracy and therefore the results reported in this work
use merging of phones before training the acoustic models.

2.5. Merging phones with high mutual information

By now, we have decided the number of phone models to be used
in the decoder. There may be phones in the decoder, that are par-
allel models of the same phone, or phones having diverse acoustic
characteristics, but representing the same linguistic event.

For this, at a time, we chose a phone to be merged with every
other phone in the selected phone inventory, select the best merge
in terms of the mutual information if such a merge enhanced the
mutual information of the decoder. After deciding on this, it starts
over with the next phone merge and goes until such a merge does
not lead to an increase in the mutual information of the decoder. In
this case, it may be noted that the models were maintained in the
decoder, only replacing of the labels was done if it enhances the
mutual information of the decoder. Table 2 shows how the mutual
information of the decoder increases for certain phone pair merges.

3. EXPERIMENTS AND RESULTS

3.1. Fine tuning a monolingual decoder

For benchmarking the results, we used 30 secs. segments of NIST
2005 dataset1, while CallFriend database2 for the respective lan-
guages was used for training the language models. Bigram counts

1http://www.nist.gov/speech/test/lre
2http://www.ldc.upenn.edu
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Fig. 1. DET curve - Comparison of the LID results of the baseline
system, TOPT extended[3], and PSE. min DCF points are marked
using o.

Baseline TOPT
extended

PSE

min. DET 8.62 9.19 7.41
EER 8.69 9.26 7.58

Table 3. Comparison of the LID results of TOPT extended and PSE
for a decoder with 43 phones derived from the baseline system

required for estimating the mutual information were calculated from
the data prepared by us for the calibration of the LID systems. All
phone decoders were fine tuned for the optimum phone insertion
penalty, and was found that it is different from the optimum phone
insertion penalty value for the best phone recognition results. Our
baseline monolingual Hungarian and Czech decoders have 61 and 45
phones respectively. In all the experiments reported in this work, we
used 500 neurons to model the probability distributions in the HMM-
NN decoder. The performance of the baseline system could have
been enhanced by using a bigger neural network to model the prob-
ability distributions, but for compuational considerations, we chose
a moderate size of 500 neurons.

Table 3 and Figure 1 compare the results the LID performance
for the 30 secs. segments of the NIST data for the baseline system
with 61 phones, and the system with 43 selected phones using the
TOPT extended and PSE.

Further, we varied the acoustic resolution of the system across
different number of phones. Reducing the number of phones was

No. of
phones

35
hu35

43
hu43

48
hu48

57
hu57

61
hu61

fused
system

min. DET 8.11 7.41 7.70 8.20 8.62 5.92
EER 8.28 7.58 7.80 8.34 8.69 6.11

Table 4. Effect of varying the acoustic resolution on the LID perfor-
mance
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one to one mapping many to one mapping
No. phones 70 73 76 82 64 69 72 81
min. DET 8.68 8.37 8.47 8.62 8.92 8.14 7.77 8.49
EER 8.74 8.45 8.79 8.66 8.94 8.42 7.96 8.52

Table 5. LID - Multilingual approach

Decoder HU CZ multilingual fused
(HU+CZ)

fused
(ML)

min. DET 8.62 9.87 7.44 6.69 5.01
EER 8.69 9.98 7.80 6.78 5.11

Table 6. Final system - fused using linear backend

found to be meaningful for the Hungarian decoder, and we note that
there is always an acoustic resolution that is optimum for the LID
task, which sometimes could be different from the resolution arising
out of the phone definitions of the database. Table 4 shows the LID
performance of systems with different acoustic resolutions derived
from the same baseline system and also the final system when the
output of systems with 43, 48 and 57 phones were fused into a single
output using a linear backend [7]. This combination outperformed
other combinations.

3.2. Multilingual phone recognition for LID

For building the multilingual(ML) decoder, we considered the Hun-
garian(HU) and Czech(CZ) decoders. First, we grouped phones in
each of the languages to phonetically motivated clusters, and let each
phone in CZ ( source language ) to be mapped to a phone in HU (tar-
get language) if the distance (eqn. (3)) between them is less than
a chosen threshold. This threshold effectively decides the number
of phones in the multilingual system. Mapping is allowed between
members of the same phonetic cluster only, and details of the algo-
rithm can be found in [13]. Now, there are several strategies possible:

1. One to one mapping (o2o) - Only one phone in the source lan-
guage is allowed to be mapped to a target language phone. If
more than one phone satisfies the distance criteria, the closest
is selected for mapping.

2. Many to one mapping(m2o) - All phones in the source lan-
guage satisfying the distance criteria are mapped to the target
language phone.

3. Use SAMPA/IPA mapping

Table 5 lists the LID performance of the o2o and m2o mapping
of phones across CZ and HU for different phone inventory sizes. In-
cidentally, for the multilingual system using SAMPA mapping with
75 phones, we got 8.44 and 8.46 per cents respectively for min. DET
and EER respectively. This is very close to the LID results for the
best o2o mapping with 73 phones, for which phone mappings were
similar, but not the same as SAMPA. In the m2o mapping with 72
phones, 34 phones from the CZ were mapped to 28 phones in HU
and 11 phones in CZ remained without any mapping.

Subsequently, the multilingual decoders were fine tuned for the
acoustic resolution using PSE, and a system with 47 phones gave
7.44 and 7.80 per cents min. DET and EER respectively as its per-
formance measure. This decoder was derived from the m2o mapped
decoder with 72 phones and has 33 phones from the CZ decoder
mapped to 27 HU phones, and 11 phones not shared between CZ
and HU.

Further, we integrated CZ, HU using a linear backend[7], and
also the PSE modified HU decoder hu43, CZ and the multilingual
decoder with 47 phones derived from them2o mapped decoder with
72 phones. Table 6 lists the results of each of the systems.

4. CONCLUSION

We presented a method to vary the acoustic resolution of phone
decoders to enhance the language identification performance using
phone selection by elimination approach. Also, it was shown that
such multiresolution systems developed for the same language could
be integrated together for better overall LID performance.

We then proposed strategies for the development of multilingual
decoders and then fine tuned these decoders to optimize the LID
performance. Further, the multilingual decoder and monolingual de-
coders were integrated to enhance the overall system performance.
It was seen that the phone mapping using SAMPA/IPA suitable for
speech recognition applications is not the optimum mapping for LID
applications.
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