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ABSTRACT

We describe an acoustic modeling approach in which all phonetic
states share a common Gaussian Mixture Model structure, and the
means and mixture weights vary in a subspace of the total parameter
space. We call this a Subspace Gaussian Mixture Model (SGMM).
Globally shared parameters define the subspace. This style of acous-
tic model allows for a much more compact representation and gives
better results than a conventional modeling approach, particularly
with smaller amounts of training data.

Index Terms— Speech Recognition, Hidden Markov Models,
Gaussian Mixture Models

1. INTRODUCTION

This paper describes work done during the Johns Hopkins Univer-
sity 2009 summer workshop by the group titled “Low Development
Cost, High Quality Speech Recognition for New Languages and Do-
mains”. For other work also done by the same team also see [1]
which describes work on lexicon learning, [2] which describes the
use of this approach in conjunction with out-of-language training
data, and [3] which provides more details on issues of speaker adap-
tation in this framework. In [4] the technical details of the approach
are presented more thoroughly than is possible here.

In the acoustic modeling approach we explore here, each speech
state is a Gaussian Mixture Model (GMM) but the parameters of
the GMM are not the parameters of our overall model. Instead, each
state is associated with a vector-valued quantity of dimension similar
to the feature dimension, and there is a globally shared mapping from
this “state vector” to the means and weights of the state’s GMM.
This approach has some similarities to Eigenvoices [5] and Cluster
Adaptive Training [6], except that we are using a subspace to model
the variablility between phones rather than the secondary effect of
speaker variation. There is also some relationship to the Joint Factor
Analysis approach used in speaker identification [7]. Because we do
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not expect a single shared GMM to model all phones very well, we
learn the mixture weights in the GMM which allows Gaussians in
irrelevant locations in acoustic space to be turned off. We will show
that learning the weights is an important feature of the model. The
acoustic model we describe here seems to give substantially better
results than a conventionally trained acoustic model.

Section 2 introduces the model; Section 3 discusses the model
and the reasons why we have chosen this particular form; Section 4
discusses the framework of our experiments in terms of code and
tools; Section 5 describes the software we used in testing it; Sec-
tion 6 describes our experimental setup and training procedures, Sec-
tion 7 gives experimental results, and Section 8 gives conclusions.

2. SUBSPACE GMM ACOUSTIC MODEL

The most basic form of the model can be expressed in the following
three equations:

p(x|j) =
IX

i=1

wjiN (x; μji,Σi) (1)

μji = Mivj (2)

wji =
expw

T
i vjPI

i′=1 expwi′
T vj

, (3)

where x ∈ �D is the feature, j is the speech state, vj ∈ �S is
the “state vector” with S � D being the subspace dimension, and
the model in each state is a simple GMM with I Gaussians, mix-
ture weights wji, means μji and covariances Σi which are shared
between states. The means and mixture weights are not parameters
of the model. Instead they are derived from a state-specific vector
vj ∈ �S with the “subspace dimension” S typically being around
the same as the feature dimension D, via globally shared parameters
Mi and wi. The reason why we describe it as a “subspace” model
is that the state-specific parameters vj determine the means μji and
weights wji for all i, which is I(D + 1) parameters per state, but
the dimension of S will typically be much less than I(D + 1) so the
models span a subspace of the total parameter space.

For a typical setup the number of parameters in the vectors vj

would be very small relative to the globally shared parameters wi

and Mi, so we introduce the notion of a “sub-state” where each
state j has Mj sub-states each with its own mixture weight cjm and
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vector vjm and the equations become:

p(x|j) =

MjX

m=1

cjm

IX

i=1

wjmiN (x;μjmi,Σi) (4)

μjmi = Mivjm (5)

wjmi =
expw

T
i vjmPI

i′=1 expw
T
i′
vjm

. (6)

A further modification we make is to add an additional “speaker vec-
tor” v

(s) ∈ �T , which lives in a “speaker subspace” of dimension T

(typically T � S � D). The speaker-adapted mean now becomes:

μ
(s)
jmi = Mivjm + Niv

(s)
, (7)

where the Ni matrices define the “speaker subspace”. The equa-
tion for the weights remains the same to avoid excessive per-speaker
computation. The use of two symmetric terms in (7) is reminiscent
of the Joint Factor Analysis approach in speaker identification [7].

2.1. Characteristics of the Subspace GMM model

Before going into detail on the training procedure of this model, we
will summarize some of its main properties. Firstly, it is a Gaus-
sian Mixture Model. This means that most standard techniques used
in conventional modeling, such as VTLN, Constrained MLLR, nor-
mal feature extraction procedures etc., are applicable. Although the
expanded GMM will typically be much larger than a normally con-
figured GMM system, our model has fewer parameters than a nor-
mal system. By this we mean that a well-tuned SGMM system will
typically have fewer parameters than a well-tuned GMM system, by
typically a factor of two to four. With smaller amounts of training
data, the parameter size of the SGMM system will actually be dom-
inated by the shared parameters Mi and Σi, which introduces the
possibility of training the shared parameters on out-of-domain data
and training the state-specific parameters on a smaller amount of in-
domain data. We explore this in [2].

2.2. Training SGMM models

The training of this model is an Expectation-Maximization (E-M)
procedure just like normal HMM training. In principle we need to al-
ternate training different parameter types on different E-M iterations
(e.g. v parameters then M parameters). We initialize the model by
training a single GMM on all speech classes pooled together. We
call this global model the “Universal Background Model” or UBM,
and write its parameters as μ̄i, Σ̄i and w̄i. Although the UBM does
not appear in Equations (4) to (6), it must be kept during later itera-
tions of model training and during testing because it is used to prune
the set of indexes i which we need to evaluate on each iteration. We
initialize the parameters Mi, vjm, Σi etc. in such a way that the
means and variances in each state on the first iteration are the same
as the UBM.

For the most part, training is fairly straightforward. The equa-
tions relating to the update of the parameters M and v are reminis-
cent of Speaker Adaptive Training (SAT) [8], in its original form as
it relates to MLLR adaptation. The parameter updates for cjm and
Σi are very simple and analogous to normal GMM training. Updat-
ing the parameters wi is slightly more difficult, as there is no natural
E-M-like process to update it, but in [4] we describe a simple method
that works well. Its derivation is based on a combination of Jensen-
type inequalities, local second-order Taylor-series expansions, and a
modification to the resulting quadratic auxiliary function which en-
sures stability while maintaining the same local gradient.

2.3. Decoding using SGMM models

In large vocabulary applications the decoding speed of the model
is comparable to a normal HMM. This is so even though the ex-
panded GMM is many times larger than a conventional system and
uses full covariances. It is possible to evaluate likelihoods quickly
because the extra structure of the model gives us opportunities for
pre-computation and pruning that are not applicable in a conven-
tional HMM-GMM system. As mentioned above, we use the UBM
to prune the set of indexes i that we need to evaluate on each frame
reducing it to a number (e.g. 10 or 20) that is comparable to the
number of Gaussians in a state in a conventional system. We can
structure the likelihood evaluation in such a way that evaluating each
additional Gaussian is only O(S); remember that S � D. The mem-
ory requirements will usually be dominated by a single normalizing
constant njmi that we compute for each Gaussian in the expanded
GMMs; this contains data-independent terms in its contribution to
the likelihood. The overall memory requirement is not much larger
than a conventional model. Something we should note in connec-
tion with decoding is that the optimal language model weight with
SGMM models is typically less than for conventional models, e.g.
10 rather than 14.

3. WHY THIS MODEL?

In this section we discuss why we have chosen the particular form of
model of Equations (4) to (6). This is to address various questions
and comments that we have encountered.

• Is this model related to tied-mixture (semi-continuous)
models?
It is different because the Gaussians within each state dif-
fer in mean as well as mixture weight. Also, the mixture
weights are represented in a lower dimension rather than
being parameters of the model.

• Why introduce sub-states rather than simply increasing
the subspace dimension?
Increasing the subspace dimension S would lead to an in-
crease in the number of parameters in Mi, which would lead
to parameter estimation problems on modestly-sized systems.
Also, we have never observed any benefit from increasing the
subspace dimension beyond about 60 or so, whereas intro-
ducing sub-states consistently helps.

• Is it necessary to model the mixture weights?
In speaker identification, the mixture weights are typically
not modeled. However, in our experiments, when we turn
off the estimation of wi this model gives very bad results, as
described in Section 7. So we believe the mixture weights are
very important.

• Why use the form expw
T
i vjm

P
I
i′=1

expw
T
i′

vjm
for the mixture

weights?
This form makes the log mixture weights a linear function
of the vector vjm (the numerator: w

T
i vjm), followed by a

normalization to make them sum to one. It has the same form
as multi-class logistic regression. It ensures that the weights
are positive and sum to one.

• Why use shared variances?
Making the variances a function of the vectors vjm is very
hard. The only way to make this fast in test-time is to make
the precisions (inverse variances) linear functions of vjm, as
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in SPAM [9]. This introduces difficulties ensuring positive
definite variances1

• Why use full covariances rather than diagonal?
Because of the structure of the model, using full covariances
does not substantially change either the parameter count or
the decoding speed. We will show in Section 7 that using full
covariances helps substantially.

• Is it possible to combine standard adaptation and discrim-
inative training techniques with this model?
For the most part. Vocal Tract Length Normalization (VTLN)
is trivial to combine with it. Constrained MLLR is also triv-
ial, although because we use full covariances, if we want to
estimate the transform from our model we need to compute it
in a different way, which we describe in [3]. MLLR is very
inefficient with this style of model because there is too much
per-speaker precomputation to do, but it gives very little im-
provement on top of CMLLR in typical scenarios. We have
previously successfully implemented discriminative training
with this model (to be described in [11]).

4. CODE FRAMEWORK

The framework we developed to train and test SGMM models uses
HTK [12] to do feature extraction and build the baseline models
which are used to align the training data for the first few passes of
training and initialize the UBM. After using HTK to build the ini-
tial models, we switch to our own C++-based framework for further
training and decoding. Our tools for training and decoding have sim-
ilar command-line options to the HTK tools HERest and HVite.
We use the phonetic context tree of the HTK baseline models in
our own system. Training and testing in our framework is based
on Weighted Finite State Transducers (WFST) [13], for which we
use the OpenFST tools and library [14]. We use WFSTs to obtain
finite state acceptors at the HMM-state level for our training tran-
scripts, and on the first few iterations of training, our tools evaluate
the Viterbi path through this acceptor based on likelihoods we com-
pute from the HTK models. Later iterations of training are based on
a Viterbi alignment using our SGMM models’ likelihoods. Decod-
ing is done by reading in a Finite State Acceptor which contains the
information compiled from the phonetic context tree, the lexicon,
and the language model which we built using SRILM tools [15].
For WER results we report here, we used the NIST scoring tool
sclite.

Our SGMM training and evaluation code makes heavy use of
matrix operations, and for this we created a C++ wrapper for stan-
dard matrix and vector libraries implemented in C. We used parts of
ATLAS, CLAPACK and TNT. We intend to release the code under an
open-source license; contact the authors for details.

1In fact, the first author has done experiments in which diagonal in-
verse variances were made a linear function of vjm with flooring, e.g.
1

σ2 jmid
= min(kid,pid ·vjm). This flooring sidesteps the issue of ensur-

ing positivity, but it introduces difficulties for fast decoding. This is because
to make the likelihood evaluation fast we need to remember which j, m, i, d

were floored which is hard to do within acceptable memory limits. We com-
bined this with a Semi-Tied Covariance transform [10] per i in place of the
full covariances per i. No word error rate improvements were seen, although
test-data likelihoods did improve.

5. DATABASES AND BASELINE SYSTEM

Here we report experiments on Callhome English. See [2] for further
results on Spanish and German and on multi-lingual experiments.
Callhome English is a part of the Callhome corpora [16] collected
by LDC for languages including Spanish, Arabic, German, Man-
darin and Japanese. The conversational nature of the speech database
along with high out-of-vocabulary rates, use of foreign words and
telephone channel distortions makes the task of speech recognition
on this database challenging.

The English Callhome database consists of 120 spontaneous
telephone conversations between native English speakers. Eighty
conversations corresponding to about 15 hours of speech are used as
training data. Two sets of 20 conversations, roughly containing 1.8
hours of speech each, form the test and development sets.

We use 39 dimensional PLP [17] features with energy and Δ
and ΔΔ and per-speaker mean and variance normalization to build
a single pass HTK [12] based recognizer with 1920 tied states and
18 mixtures per state, tuned to optimize WER after adaptation. The
same features and context tree were used for our system. We used
a 62k word lexicon with an OOV rate of 0.4%, and a trigram lan-
guage model with a perplexity of 95, built using the SRILM tools
[15]. The language model is interpolated from individual models
created from the English Callhome corpus, the Switchboard corpus
[18], the Gigaword corpus and some web data. The web data is ob-
tained by crawling the web for sentences containing high frequency
bigrams and trigrams occurring in the training text of the Callhome
corpus. The 90K PRONLEX dictionary with 47 phones is used as
the pronunciation dictionary for the system.

6. TRAINING PROCEDURE

The training procedure for our SGMM models is as follows. We ini-
tialize the UBM by clustering the diagonal Gaussians in the HTK-
derived HMM set to I = 400 Gaussians. We then train the UBM
for eight iterations of full-covariance E-M on the full training set
without class labels. We initialize the SGMM model from the UBM
as described in [4], with the subspace dimension S the same as the
feature dimension D + 1 (i.e. S = 39 + 1 = 40) and the matrices
Mi initialized such that the last 39 dimensions of vjm are inter-
preted as global offsets on the GMM’s means. The initial SGMM
model’s mean and variance parameters are the same as the UBM in
each state of the HMM. We train in epochs of 8 iterations. At the
beginning of every epoch starting from the third epoch, we split sub-
states up to some target value, perturbing the split vectors slightly as
described in [4]; sub-states are allocated proportional to some small
power (0.2) of the state count. On each iteration but the very first, we
train all parameter types except Mi, which are trained every other
iteration. On the very first iteration, we only update vjm. Within
each update phase, we update wi for three iterations.

7. RESULTS

In Table 1, we show unadapted English results, with various modi-
fications to show the relative importance of different features of the
model. The SGMM system has a subspace dimension of 40. The
results in Table 1 were obtained with a bigram language model; we
used this for speed of turnaround and to keep memory requirements
low in decoding; in the text we give selected trigram results.

The baseline WER is 54.7%; we tuned the size of the baseline
system for best WER. The best SGMM result is 49.3%, for a 5.4%
absolute (9.9% relative) WER reduction. Comparing the first and
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GMM: 54.7 (1800 states, 16 Gauss/state)
#Substates

1800 2700 4k 6k 9k 12k 16k
SGMM: 51.6 50.9 50.6 50.1 49.9 49.3 49.4
Diag-var: 55.7 55.3 54.5 53.9 54.1 53.7 53.8
Fix-Σi: 53.5 52.7 52.4 52.3 51.8 51.8 51.5
Fix-wi: 61.5 60.5 59.3 58.2 57.6 56.7 56.2
Fix-Mi: 61.0 60.2 58.9 57.2 55.8 54.2 53.1

Table 1. Baseline and SGMM WERs: Callhome English, unadapted

GMM: 53.6
+SAT: 49.3

#Substates
1800 2700 4k 6k 9k 12k 16k

SGMM: 50.1 49.8 49.2 48.9 48.5 48.0 47.9
+SAT: 50.0 49.6 49.1 48.5 48.2 47.8 47.7
+spk-vecs: 48.6 47.9 47.5 47.2 47.2 46.7
-SAT: 48.6 47.9 47.4 47.0 47.0 46.7

Table 2. Baseline and SGMM WERs with CMLLR adaptation

last columns of the “SGMM” row, we see that adding sub-states re-
duces the WER from 51.6% to 49.3%, or 4.5% relative. Forcing the
model’s covariances to be diagonal (the next row) gives a 7.9% rel-
ative degradation (the overall number of system parameters is only
slightly reduced by this change). The last three rows show what
happens if during training we do not update the parameters Σi, wi

and Mi respectively. For the variances, this means they are set to
the UBM’s variance Σ̄i; the un-trained wi are left as zero vectors;
and the un-trained Mi are all the same so the quantities vjm are
interpreted as offsets on the model means. The parameter type that
makes the most difference is wi which is interesting because it has
the smallest parameter count, and this shows the importance of the
weights in this model. The parameter that makes the least differ-
ence is Σi, which makes sense because the UBM’s initial variances
Σ̄i are a reasonable setting. We repeated the baseline GMM ex-
periment and the best SGMM experiment (originally 49.3%) with a
trigram language model. These numbers reduced WERs to 52.5%
and 47.4%. The relative WER reduction is about the same as before,
at 9.7%.

Table 2 shows results with various forms of speaker adaptation,
again with a bigram language model. The baseline used Constrained
MLLR adaptation with and without Speaker Adaptive Training
(SAT). We show results with and without SAT and with and without
the speaker vectors of Equation 7. Silence was excluded from the
estimation of all speaker adaptation parameters in SGMM experi-
ments (except for the SGMM+SAT experiment, where silence was
used in training time). Results are shown with a bigram language
model; the trigram results are: GMM 49.7%, +SAT 46.0%, SGMM
45.9%, +SAT 45.5%, SGMM+spk-vecs+SAT 44.7%, SGMM+spk-
vecs 44.5%. Comparing the best baseline and SGMM results (46.0%
vs 44.5%) we have a 3.3% relative improvement.

8. CONCLUSIONS

We have described a new type of statistical model, the Subspace
Gaussian Mixture Model (SGMM), and demonstrated that it can give
substantially better results than a conventionally structured model,
particularly without adaptation. We have shown the importance of
various features of the model, such as modeling the weights; us-
ing full-covariance Gaussians; and using sub-states. In companion
papers, we will describe the methods we used to optimize the Con-

strained MLLR transforms with this model [3] and show how we are
able to leverage out-of-domain data to further improve error rates [2].
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