PARALLEL TRAINING OF NEURAL NETWORKS
FOR SPEECH RECOGNITION

Karel Vesely
Master Degree Programme (2), FIT BUT
E-mail: xvesel39@stud.fit.vutbr.cz

Supervised by: Luka$ Burget,
E-mail: burget@fit.vutbr.cz

ABSTRACT

The feed-forward multi-layer neural networks have significant importance in speech recogni-
tion. They can be used for phoneme-state classification, speech parametrisation, language mod-
els and for language or speaker recognition. The need for the acceleration of neural network
training is caused by huge quantities of training data. A new training tool 7Net was designed
and optimized for multi-processor computers. The acceleration rates are reported on a real
speech processing task.

1 INTRODUCTION

The feed-forward multilayer neural networks (NN) have many practical applications. They can
be used for classification, pattern recognition, prediction, dimensionality reduction or control.
In case of speech recognition, the neural networks are typically used as phoneme-state clas-
sifiers [1]. The NNs’ input is speech frame transformed to feature vector and the output is a
vector of phoneme-state class membership probabilities.

Even if we use previous parallel NN training implementation SNet [2], typically the training
time exceeds 24 hours (using 163h AMIDA corpus, four-layer network with 1 million parame-
ters and 6 client parallelization). The long training periods are uncomfortable for practical use.
This paper describes TNet — a new faster implementation of parallel neural network training.

2 PARALLELIZATIONS

Feed-forward neural network is an adaptive multivariate transform function with ability to
“memorize” the training examples. It can be seen as a sequence of linear and nonlinear trans-
formations. Supervised learning is used, the learning consists of correcting the linear transform
weights. Due to Kolmorogovs’ theorem [3] we believe that the network is able to express any
possible function when having enough layers and neurons per layer. Standard on-line gradient
descent algorithm with error backpropagation is used for the learning, the weight updates are
done per bunch (a block of N frames).

The on-line learning imposes strong data dependencies which makes the parallelization diffi-
cult. Two effective approaches to parallel network training have been reported [4]:



Data parallelization The training data is divided into disjoint sets. Each thread has its own
network instance and works on its own data-set. Weight synchronisation occurs periodi-
cally when N frames are processed. The weight difference matrices are gathered, summed
up and a new set of weights is generated and distributed.

Node parallelization In this case, there is only one instance of network. The network layers
are divided into disjoint sets of neurons. Each thread has associated its own set. This
method imposes higher frequency of synchronisation than data parallelization method.
The threads are synchronized by a barrier before one can proceed to the next layer.

data parallelisation node parallelisation

Figure 1: Two types of parallelization

The problem is that with data parallelization the overhead of weight synchronisation increases
by adding more slave threads while with node parallelization poor cache performance will
slow-down the training when layer division sets are too small. The promising strategy can be to
combine both approaches and find the optimal operation point.

SNET VS. TNET

Our baseline is given by previous implementation of parallel NN training SNet. The new im-
plementation TNet is faster because it is multi-threaded application where all the threads share
same address space, while SNet is a client server application which uses TCP-IP connection for
weight synchronisation.

So far the TNet implements data parallelization. The design of the tool was chosen with respect
to both high performance and simple extensibility. The GotoBLAS! library is used to accelerate
linear algebra operations. The neuron weights are shared for all the threads which improves the
processor cache hit-rate. The network consists of polymorphic classes derived from base class
“Component”, this ensures the extensibility.

EXPERIMENTS

Two-layer network topology was used for all the experiments. The network consists of 598
inputs, 1000 neurons in the hidden layer and 135 neurons in the output layer. The sigmoid

Uhttp://www.tacc.utexas.edu/tacc-projects/



nonlinearity is used for the hidden layer and softmax nonlinearity for the output layer.

The network was trained on 10h subset of AMIDA corpus, the cross-validation was performed
on lh from the same corpus. The parameterisation based on critical bands and long temporal
contexts (510ms) was used. Same cross-validation accuracies were obtained both by TNet and
SNet. The training speed of TNet and SNet was measured 10x for each parallelization order.
The experiments were performed on the HP ProLiant DL785 G5 server with 8 quad-core AMD
Opteron 8356 processors (32 cores). The measured training accelerations are in Fig. 2.

6
5
4
3
2
1
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 2: Training acceleration by parallelization

S CONCLUSION

As we can see in Fig. 2, the TNet implementation is 2x faster than SNet in case of 8 core
parallelization. Further acceleration is still possible, but it will require more complicated and
less universal design. Another promising way of acceleration is the use of modern GPUs, which
can offer massive parallelization. These experiments will be subject of future work.

ACKNOWLEDGMENTS

This work was partly supported by Grant Agency of Czech Republic project No. 102/08/0707,
and by Czech Ministry of Education project No. MSM0021630528, and by Czech Ministry of
Interior project No. VD20072010B 16, and by the BUT FIT grant FIT-S-10-2, and the research
plan MSM0021630528.

REFERENCES

[1] Bourlard, H., Morgan, N.: Connectionist Speech Recognition a Hybrid Approach. Norwell
MA USA, Kluwer Academic Publishers 1993, ISBN 0-79-239396-1

[2] Kontér, S.: Paralelni trénovani neuronovych siti pro rozpozndvani feci. [diplomové price],
FIT VUT v Brné

[3] Jan, J.: Cislicova filtrace, analyza a restaurace signald, Vutium, 2002, ISBN 80-214-1558-4

[4] Pethick, M., Liddle, M., Werstein, P., Huang, Z.: Parallelization of a Backpropagation
Neural Network on a Cluster Computer. Dunedin, New Zealand, University of Otago 2003



