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Abstract
We propose a strategy for discriminative training of the i-

vector extractor in speaker recognition. The original i-vector
extractor training was based on the maximum-likelihood gener-
ative modeling, where the EM algorithm was used. In our ap-
proach, the i-vector extractor parameters are numerically opti-
mized to minimize the discriminative cross-entropy error func-
tion. Two versions of the i-vector extraction are studied—the
original approach as defined for Joint Factor Analysis, and the
simplified version, where orthogonalization of the i-vector ex-
tractor matrix is performed.
Index Terms: speaker verification, i-vectors, PLDA, discrimi-
native training

1. Introduction
Recently, systems based on i-vectors [1, 2] (extracted from cep-
stral features) have provided superior performance in speaker
verification. The so-called i-vector is an information-rich low-
dimensional fixed-length vector extracted from the feature se-
quence representing a speech segment (see Section 2 for de-
tails on i-vector extraction). A speaker verification score is
produced by comparing two i-vectors corresponding to the seg-
ments in the verification trial. The function taking two i-vectors
as an input and producing the corresponding verification score
is designed to give the log-likelihood ratio between the “same-
speaker” and “different-speaker” hypotheses. Best performance
is currently obtained with Probabilistic Linear Discriminant
Analysis (PLDA) [2]—a generative model that models i-vector
distributions allowing for direct evaluation of the desired log-
likelihood ratio verification score (see Section 2.4 for details).

In [3], it was shown that discriminatively training the PLDA
parameters can lead to improvement in recognition perfor-
mance. In this paper, we go deeper in the speaker recognition
chain and we show that a similar discriminative training frame-
work can be adopted for training the parameters of the i-vector
extractor. We apply this technique in two kinds of i-vector ex-
tractor. In the first case, the traditional extraction—as proposed
in [1]—is studied. It will be further referred to as the full i-
vector extractor. Its parameters are given by a single matrix
T. In the second case, the simplified extraction (referred to as
“Simplification 2” in [4]) is addressed. Its parameters are given
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by three matrices—T, G, and V. It will be further referred to
as the simplified i-vector extractor.

This paper is organized as follows: Section 2 introduces
a theoretical background of the individual parts of the speaker
recognition chain, Section 3 introduces the technique of dis-
criminative training, Section 4 describes the experimental setup
and results, and Section 5 concludes the paper.

2. Theoretical background
The i-vectors provide an elegant way of reducing large-
dimensional input data to a small-dimensional feature vector
while retaining most of the relevant information. The technique
was originally inspired by Joint Factor Analysis (JFA) frame-
work introduced in [5, 6].

The main idea is that the speaker- and channel-dependent
Gaussian Mixture Model (GMM) supervector s can be modeled
as:

s = m+Tw (1)

where m is the Universal Background Model (UBM) GMM
mean supervector, T is a low-rank matrix representing M bases
spanning subspace with important variability in the mean super-
vector space, andw is a latent variable of sizeM with standard
normal distribution.

For each observation X , the aim is to compute the parame-
ters of the posterior probability of w:

p(w|X ) = N (w;wX ,L
−1
X

) (2)

The i-vector φ is the Maximum a Posteriori (MAP) point esti-
mate of the variablew, i.e., the meanwX of the posterior distri-
bution p(w|X ). It maps most of the relevant information from
a variable-length observation X to a fixed- (small-) dimensional
vector. LX is the precision of the posterior distribution.

2.1. Sufficient statistics

The input data for the observation X is given as a set of zero-
and first-order statistics — nX and fX . These are extracted
from F dimensional features using a GMM UBM with C mix-
ture components, defined by a mean supervectorm, component
covariance matrices Σ(c), and a vector of mixture weights ω.
For each Gaussian component c, the statistics are given respec-
tively as

N
(c)
X

=
X

t

γ
(c)
t (3)

f
(c)
X

=
X

t

γ
(c)
t ot (4)
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where ot is the feature vector in time t, and γ
(c)
t is its occu-

pation probability. The complete zero- and first-order statis-
tics supervectors are fX =

“
f
(1)
X

′

, . . . , f
(C)
X

′
”
′

, and nX =“
N

(1)
X

, . . . , N
(C)
X

”′
.

For convenience, we center the first-order statistics around
the UBM means, which allows us to treat the UBM means ef-
fectively as a vector of zeros:

f
(c)
X

← f
(c)
X
−N

(c)
X
m

(c)

m
(c) ← 0

Similarly, we “normalize” the first-order statistics and the ma-
trix T by the UBM covariances, which again allows us to treat
the UBM covariances as an identity matrix:1

f
(c)
X

← Σ
(c)− 1

2 f
(c)
X

T
(c) ← Σ

(c)− 1

2T
(c)

Σ
(c) ← I

where Σ(c)− 1

2 is a Cholesky decomposition of an inverse of
Σ

(c), and T(c) is an F ×M submatrix of T corresponding to
the c mixture component such that T =

“
T

(1)′, . . . ,T(C)′
”′
.

2.2. i-vector extraction

As described in [5] and with the data transforms from the pre-
vious section, for an observation X , the corresponding i-vector
is computed as a point estimate:

φ
X

= L
−1
X
T
′
fX (5)

where L is the precision matrix of the posterior distribution,
computed as

LX = I+
CX

c=1

N
(c)
X
T

(c)′
T

(c) (6)

2.3. i-vector extraction—simplified version

According to [4], the i-vector extraction can be simplified to
reduce the computation complexity. Assuming there is a lin-
ear (orthogonal) transformation G that would orthogonalize all
individual per-component submatrices T(c), the i-vector extrac-
tion can be expressed as

φ̂
X

= GL̂
−1
X
G
′
T
′
fX (7)

where
L̂X = Diag (I+VnX ) (8)

where V is an M × C matrix whose cth column is
diag(G′T(c)′

T
(c)
G). Diag(·) maps a vector to a diagonal

matrix.

2.4. PLDA

To facilitate comparison of i-vectors in a verification trial, we
use a Probabilistic Linear Discriminant Analysis (PLDA)model
[7, 2]. It can be seen as a special case of JFA with a single Gaus-
sian component. Given a pair of i-vectors, PLDA allows to com-
pute the log-likelihood for the same-speaker hypothesis and for

1Part of the factor computation is the evaluation ofT′Σ−1
f , where

the decomposedΣ
−1 can be projected to the neighboring terms, see [5]

for detailed formulae.

the different-speaker hypothesis. One can directly evaluate the
log-likelihood ratio of the same-speaker and different-speaker
trial using

s(φ1, φ2) = φ
T
1 Λφ2 + φ

T
2 Λφ1 + φ

T
1 Γφ1 + φ

T
2 Γφ2

+ (φ1 + φ2)
T
c+ k, (9)

where Λ, Γ, c, k are derived from the parameters of PLDA as
in [3].

2.5. i-vector length normalization

PLDA assumes that the input i-vectors are normally distributed.
However, in earlier studies ([2]), it has been shown that this
assumption is not met.

Length normalization [1, 8] of the i-vectors forces them to
lie on a unity sphere, which brings them closer to the Gaussian
distribution shell where most of the probability density mass is
concentrated. The transformation is given as

φ̄ =
φ

‖φ‖
=

φp
φ′φ

(10)

3. Discriminative classifier
We describe how we train the i-vector extractor parameters θ

in order to discriminate between same-speaker and different-
speaker trials, without having to explicitly model the distribu-
tions of i-vectors.

The set of training examples, which we continue referring
to as training trials, comprises both different-speaker, and same-
speaker trials. Let us use the coding scheme t ∈ {−1, 1} to rep-
resent labels for the different-speaker, and same-speaker trials,
respectively. Assigning each trial a log-likelihood ratio s and
the correct label t, the log probability of recognizing the trial
correctly can be expressed as

log p(t|φ1, φ2) = − log(1 + exp(−st)). (11)

In the case of logistic regression, the objective function to be
maximized is the log probability of correctly classifying all
training examples, i.e., the sum of expressions (11) evaluated
for all training trials. Equivalently, this can be expressed by
minimizing the cross-entropy error function, which is a sum
over all training trials

E(θ) =

NX
n=1

αnELR(tnsn) +
λ

2
‖θ − θML‖

2
, (12)

where the logistic regression loss function

ELR(ts) = log(1 + exp(−ts)) (13)

is simply the negative log probability (11) of correctly rec-
ognizing a trial. We have also added the regularization term
λ
2
‖θ − θML‖

2, where λ is a constant controlling the trade-
off between the error function and the regularizer, and θML is
the original maximum-likelihood estimate of the given parame-
ter. This kind of regularization is similar to the sum-of-squares
penalty; however, it controls the distance from the original pa-
rameters rather than the parameter range itself. This way, op-
timizing the error function fine tunes the already good parame-
ters.

The coefficients αn allow us to weight individual trials.
Specifically, we use them to assign different weights to same-
speaker and different-speaker trials. This allows us to select
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a particular operating point, around which we want to optimize
the performance of our system without relying on the proportion
of same- and different-speaker trials in the training set. The ad-
vantage of using the cross-entropy objective for training is that
it reflects performance of the system over a wide range of oper-
ating points (around the selected point).

3.1. Gradient evaluation

In order to numerically optimize the parameters θ, we want to
express the gradient of the error function

∇E(θ) =

NX
n=1

αn
∂ELR(tnsn)

∂θ
+ λ(θ − θML). (14)

We see that the loss function ELR(tnsn) is not directly depen-
dent on θ; therefore, the chain rule must be subsequently ap-
plied.

Let us start by deriving the loss function w.r.t. the direct
parameters of ELR

∂ELR

∂θ
=

∂ELR

∂s

∂s

∂θ
(15)

The first r.h.s. fraction of (15) is defined as

∂ELR(ts)

∂s
= −tσ(−ts), (16)

where σ(·) is the logistic function. Noting that the score s is a
function of a length-normalized i-vector pair

s = s(φ̄1, φ̄2),

we get

∂sn

∂θ
=

s(φ̄1, φ̄2)

∂φ̄1

∂φ̄1

∂θ
+

s(φ̄1, φ̄2)

∂φ̄2

∂φ̄2

∂θ
(17)

From (9), knowing thatΛ and Γ are symmetrical, we can derive

s(φ̄1, φ̄2)

∂φ̄1

= 2φ
′

2Λ+ 2φ
′

1Γ+ c (18)

Note that the two sides of the trial can be swapped so that an
analogous equation applies when deriving w.r.t. φ2. Again, we
apply the chain rule to derive through the length normalization:

∂φ̄

∂θ
=

∂φ̄

∂φ

∂φ

∂θ
(19)

where
∂φ̄

∂φ
=

1

‖φ‖

“
I− (φ̄φ̄

′
)
”

. (20)

At this point, it is trivial to express the cross-entropy E
as a function of some arbitrary set of M i-vectors Φ =
(φ1, · · · , φM ). With the given formulas for derivatives, it is
also straightforward to express the gradient ∂E(Φ)

∂Φ
. To derive

through the i-vector extractor, we will make use of the chain
rule for differentials, where the following holds:

dE =
X
ij

∂E

∂φij

dφij =
X

k

∂E

∂θk

dθk. (21)

By making use of the matrix differentials, we can express dΦ as
a function of dθ. For the full i-vector extractor, the differential
for j-th column of dΦ is given as

dφj = −L−1
j dLjL

−1
j T

′
fj + L

−1
j dT

′
fj (22)

dLj =
X

c

N
(c)
j

“
dT

(c)′
T

(c) +T
(c)′

dT
(c)

”
(23)

In the case of the simplified i-vector extractor, the corre-
sponding differentials w.r.t. the matrices T,G, andV are given
respectively as

dφ
Tj = GL̂

−1
j G

′
dT

′
fj (24)

dφ
Gj =

“
dGL̂

−1
j G

′ +GL̂
−1
j dG

′

”
T
′
fj (25)

dφ
Vj = −GL̂−1

j Diag(dVnj)L̂
−1
j G

′
T
′
fj (26)

where L̂ is defined in (8). Substituting one of the dφ from the
above catalogue to (21), we can find the gradient ∂E(θ)

∂θ
.

In the case of the full i-vector extractor, the derivative can
be expressed as

∂E(T)

∂T
=

MX
j=1

−

„
L
−1
j

∂E

∂φ′j
φ
′

j + φj

∂E

∂φj

L
−1
j

«
T
′
Nj

+ L
−1
j

∂E

∂φj

fj , (27)

where Nj is a diagonal matrix, whose entries are
(N

(1)
j , · · · , N

(1)
j , N

(2)
j , · · · , N

(2)
j , · · · ), where every N

(i)
j of

nj is expanded to match the feature dimensionality.
For the simplified i-vector extraction, the derivatives of the

parameters are

∂E(T)

∂T
=

MX
j=1

fj
∂E

∂φj

GL̂
−1
j G

′ (28)

∂E(G)

∂G
=

MX
j=1

L̂
−1
j G

′

„
T
′
fj

∂E

∂φj

+
∂E

∂φ′j
f
′

jT

«
(29)

∂E(V)

∂V
=

MX
j=1

−nj

„
∂E

∂φj

G
′ ◦ f ′jTGL̂

−2
j

«
(30)

where the ◦ stands for the Hadamard product.

4. Experiments
4.1. Test setup

The results of our experiments are reported on the female part
of Condition 5 of the NIST 2010 speaker recognition evalua-
tion (SRE) dataset [9]. The recognition accuracy is given as
a set of equal error rate (EER), and the normalized detection
cost function (DCF) as defined in both the NIST 2010 SRE task
(DCFnew) and the previous SRE evaluations (DCFold).

4.2. Feature extraction

In our experiments, we used cepstral features, extracted using
a 25 ms Hamming window. 19 mel frequency cepstral coeffi-
cients together with log energy were calculated every 10 ms.
This 20-dimensional feature vector was subjected to short time
gaussianization [10] using a 3 s sliding window. Delta and dou-
ble delta coefficients were then calculated using a five-frame
window giving a 60-dimensional feature vector.

Segmentation was based on the Brno University of Tech-
nology (BUT) Hungarian phoneme recognizer and relative av-
erage energy thresholding. Also, short segments were pruned
out, after which the speech segments were merged.
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4.3. System Setup

One gender-independent UBM was represented as a diagonal
covariance, 64-component GMM. It was trained using LDC
releases of Switchboard II Phases 2 and 3, Switchboard Cellular
Parts 1 and 2, and NIST 2004-2005 SRE.

The initial i-vector extractor T was trained on the female
portion of the following telephone data: NIST SRE 2004, NIST
SRE 2005, NIST SRE 2006, Switchboard II Phases 2 and 3,
Switchboard Cellular Parts 1 and 2, Fisher English Parts 1 and
2, giving 8396 female speakers in 1463 hours of speech. The
dimensionality of the i-vectors was set to 400. The initial or-
thogonalization matrix G was estimated using heteroscedastic
linear discriminant analysis (HLDA), as described in [4].

As described in Section 2.5, length normalization was ap-
plied after i-vector extraction.

PLDA was trained using the same data set as the T matrix.
Only the Fisher portion was trimmed off, reducing the amount
of data by approximately 50%. The across-class covariance ma-
trix (eigen-voices) was of rank 90, and the within-class covari-
ance matrix (eigen-channels) was full-rank.

The training dataset for the discriminative training was
identical to the dataset of PLDA. The cross-entropy function
was evaluated on the complete trial set, i.e., all training samples
were scored against each other, giving 378387 same-speaker tri-
als, and over 468 million different-speaker trials.

4.4. Numerical optimization

The numerical optimization of the parameters was performed
in matlab using the optimization and differentiation tools in the
BOSARIS Toolkit [11]. It uses the trust region Newton conju-
gate gradient method, as described in [12, 13]. In addition to
the first derivatives as given in Section 3.1, this method needs
to evaluate the second order Hessian-vector product [14], which
can be effectively computed via the ‘complex step differentia-
tion’ [15].

Different values for the regularization coefficient λ were
tested. Good convergence and stability were observed when
setting it to 0.2 for the full i-vector extractor parameters, and
0.8 for the simplified version. In the case of the simplified
version, the matrices G and T were optimized subsequently.
It was found, however, that even though optimizing V kept
on decreasing the error function, it would always decrease the
recognition performance on the test set. Different regularizers
were also tested; however, it turned out that together with good
initialization, the discriminative training works only as a “fine-
tuner” of the initial parameters.

Table 1 shows the situation when training the full i-vector
extractor. There is only a slight improvement in performance.
In the case of the simplified i-vector extractor, the improvement

Table 1: Comparison of ML and discriminatively trained full
i-vector extractors in terms of normalized DCFs and EER

DCFnew DCFold EER

ML 0.6678 0.2200 4.74
discriminative 0.6478 0.2144 4.41

is more apparent—see Table 2 for results. We see that the sim-
plified system is still worse than the full one; however, discrim-
inative training has shown its potential.

Table 2: Comparison of ML and discriminatively trained sim-
plified i-vector extractors in terms of norm. DCFs and EER

DCFnew DCFold EER

ML 0.7496 0.2710 6.18
discriminative 0.6691 0.2403 5.41

5. Conclusions
We have proposed a technique for discriminative training of the
i-vector extractor parameters using cross-entropy as the error
function. We have applied the technique both to the original
i-vector extractor and to its simplified version. In both cases,
the discriminative training was effective, giving higher relative
improvement in the simplified case.
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